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White-Box Treat Model
� Goal: to extract a cryptographic key, · · ·
� Where: from a software impl. of cipher

� Who:
I malwares
I co-hosted applications
I user themselves
I · · ·

� How: (by all kinds of means)
I analyze the code
I spy on the memory
I interfere the execution
I · · ·
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Typical Applications

Digital Content Distribution

videos, musics, games, e-books, · · ·

Host Card Emulation

mobile payment without a secure element
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White-Box Compiler

A white-box complier takes as input a secret key and generates a “white-box secure”
program implementing some specific crypto. algo. with the specified secret key.

plaintext

ciphertext

plaintext

ciphertext

black-box model white-box model

“white-box security” [DLPR13]

I Unbreakability (this talk)
I One-wayness
I Incompressibility
I Traceability

No provably secure white-box complier for standard block ciphers is known.
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Cryptographic Obfuscation

An obfuscator makes programs “unintelligible” while preserving their functionalities.

� Virtual Black-Box (VBB) Obfuscation
I Nothing is learned from the obfuscated programs except their I/Os.
I (Impossibility) VBB is impossible in general! [BGI+01]

I VBB for point functions exist. [Wee05]

I Can we VBB obfuscate a block cipher ?

� Indistinguishability Obfuscation (iO)
I Literally, it hides the origin of an obfuscated program
I Has many implications [SW14]

I Candidate constructions exist [GGH+13,· · · ]
I Does not imply unbreakability directly !
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Overview

1 � White-Box Context

2 � Practical Countermeasures and Attacks

3 � Showcase: Break A White-Box Implementation

4 � Study of Differential Computation Analysis



Practical White-Box Compiler: Sketch

X R1 ε1 R2 ε2ε−11 Rrε−1r−1 Y. . .

pairwise annihilating parasitic

functions (e.g. encodings)
look-up tables

1. Represent the cipher into a network of transformations

2. Obfuscate the network by encoding adjacent transformations

3. Store the encoded transformations into look-up tables
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Illustration: Protect One AES Column [CEJvO02]
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14KB memory and 56 table look-ups needed to compute εi ◦ Ri ◦ ε−1i−1

1The i-th round function Ri = MC ◦ SB ◦ ARKi and Ii represents the intermediate encoding



White-Box Attacks

� Specific attacks

� Generic attacks

� Combined analyses



Specific Attacks

RE

� to (partially) recover the
design of a particular impl.

� usually by reverse
engineering

� requiring skilled experts

� time-consuming

Trending: secret design paradigm a.k.a security through obscurity
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Generic Attacks

� Generic and automatic

� Without knowing the
protections

� e.g. differential
computation attacks
(DCA) and differential
fault attacks (DFA)
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Differential Fault Attack against AES

Normal:

Faulty:
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� Modify a state byte between last two MixColumns
I How: statically / dynamically
I Expecting certain differential patterns (thanks to ShiftRow)

� Very few faulty executions are required to recover a column of key bytes
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A Showcase
Break the Winning Implementation of CHES 2017 CTF

– joint work with Louis Goubin, Pascal Paillier, Matthieu Rivain
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WhibOx Contest

� Goal: confront designers and attackers in the secret design paradigm
� Designers: invited to submit AES-128 implementations in C

I with secret chosen key
I source code ≤ 50MB
I compiled binary ≤ 20MB
I RAM consumption ≤ 20MB
I execution time ≤ 1 second

� Breakers: invited to recover the hidden keys
� Not required to disclose their identities & underlying techniques
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WhibOx Contest

� The competition lasted for about 4 months.
� Results:

I 94 submissions were all broken by 877 individual breaks
I Most (86%) of them were alive for < 1 day

� Scoreboard (top 5): ranked by surviving time

id designer first breaker score #days #breaks
777 cryptolux team cryptoexperts 406 28 1
815 grothendieck cryptolux 78 12 1
753 sebastien-riou cryptolux 66 11 3
877 chaes You! 55 10 2
845 team4 cryptolux 36 8 2

cryptolux: Biryukov, Udovenko
team cryptoexperts: Goubin, Paillier, Rivain, Wang
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The Winning Implementation

� Multi-layer protections
I Inner: encoded Boolean circuit with error detection
I Middle: bitslicing
I Outer: virtualization, randomly naming, duplications, dummy operations

� Code size: ∼28 MB
� Code lines: ∼2.3k
� 12 global variables:

I pDeoW: computation state (2.1 MB)
I JGNNvi:program bytecode (15.3 MB)

available at: https://whibox-contest.github.io/show/candidate/777
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The Winning Implementation

∼1200 functions: simple but obfus-
cated

� An array of pointers: to 210
useful functions

� Semantically equivalent to 20
different functions

I bitwise operations, bit shifts
I table look-ups, assignment
I control flow primitives
I ...

void xSnEq (uint UMNsVLp, uint KtFY, uint vzJZq) {

if (nIlajqq () == IFWBUN (UMNsVLp, KtFY))

EWwon (vzJZq);

}

void rNUiPyD (uint hFqeIO, uint jvXpt) {

xkpRp[hFqeIO] = MXRIWZQ (jvXpt);

}

void cQnB (uint QRFOf, uint CoCiI, uint aLPxnn) {

ooGoRv[(kIKfgI + QRFOf) & 97603] =

ooGoRv[(kIKfgI + CoCiI) | 173937] & ooGoRv[(kIKfgI + aLPxnn) | 39896];

}

uint dLJT (uint RouDUC, uint TSCaTl) {

return ooGoRv[763216 ul] | qscwtK (RouDUC + (kIKfgI << 17), TSCaTl);

}
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Attack Overview

1. Reverse engineering ⇒ a Boolean circuit
I readability preprocessing

� functions / variables renaming
� redundancy elimination
� ...

I de-virtualization ⇒ a bitwise program
I simplification ⇒ a Boolean circuit

2. Single static assignment (SSA) transformation

3. Circuit minimization

4. Data dependency analysis

5. Key recovery with algebraic analysis
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De-Virtualization
char program[] = "..."; // 15.3 MB bytecode

void * funcptrs = "..."; // 210 function pointers

void interpretor() {

uchar *pc = (uchar *) program;

uchar *eop = pc + sizeof (program) / sizeof (uchar);

while (pc < eop) {

uchar args_num = *pc++;

void (*fp) ();

fp = (void *) funcptrs[*pc++];

uint *arg_arr = (uint *) pc;

pc += args_num * 8;

if (args_num == 0) { fp(); }

else if (args_num == 1) { fp(arg_arr[0]); }

else if (args_num == 2) { fp(arg_arr[0], arg_arr[1]); }

// similar to args_num = 3, 4, 5, 6

}

}

simulate VM =⇒ bitwise program with many loops of 64 cycles



Computation State

64 (26)
rows

4096 (212) columns

64-bit (unsigned long integer)

global table of 218 elements
(= 64 · 4096)

Several loops only implement value swaps inside columns

Can be removed!
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Bitwise Loops

64 (26)
rows

4096 (212) columns

64-bit (unsigned long integer)

global table of 218 elements
(= 64 · 4096)

Several loops only implement value swaps inside columns

Can be removed!
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Obtaining Boolean Circuit

� A sequence of 64-cycle (non-overlapping) loops over 64-bit variables
I beginning: 64 (cycles)×64 (word length) bitslicing program
I before ending:bit combination
I ending: (possibly) error detection

� 64×64 independent AES computations in parallel
I Odd (3) number of them are real and identical
I The rest use hard-coded fake keys

� Pick one real impl. ⇒ a Boolean circuit with ∼600k gates
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Single Static Assignment Form

x = · · ·
y = · · ·
z = ¬x
x = z ⊕ y
y = y ∨ z
z = x ∨ y

...

⇒

t1 = · · ·
t2 = · · ·
t3 = ¬t1
t4 = t3 ⊕ t2
t5 = t2 ∨ t3
t6 = t4 ∨ t5

...

Each variable is only assigned once!
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Circuit Minimization
Detect (over many executions) and remove:

� Constant:
ti = 0 or ti = 1?

� Duplicate: keep only one copy

ti = tj?

� Pseudorandomness:

ti ← ti ⊕ 1⇒ same result

After several rounds, ∼600k ⇒∼280k gates (53% smaller)
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Data Dependency Analysis

Data dependency graph (first 20% of the circuit)

Data dependency graph (first 10% of the circuit)Data dependency graph (first 5% of the circuit)

•

MixColumn

SubByte

Pseudo-randomness generation?
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Cluster Analysis

� Cluster ⇒ variables in one SBox

� Identify outgoing variables:

s1, s2, · · · , sn

� Heuristically,

S(x⊕ k∗) = D(s1, s2, · · · , sn)

for some deterministic decoding function D.
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Key Recovery
� Hypothesis: linear decoding function

D(s1, s2, · · · , sn) = a0 ⊕

(⊕
1≤i≤n

aisi

)

for some fixed coefficients a0, a1, · · · , an.

� Record the si’s over T executions:
1 s

(1)
1 · · · s

(1)
n

1 s
(2)
1 · · · s

(2)
n

1
...

. . .
...

1 s
(T )
1 · · · s

(T )
n



a0
a1
...
an

 =


S(x(1) ⊕ k)[j]
S(x(2) ⊕ k)[j]

...
S(x(T ) ⊕ k)[j]


� Linear system solvable for k = k∗
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Key Recovery
� And it works! For instance,

I a cluster with 34 outgoing in 504 total points
I collecting 50 computation traces
I no solution for the k 6= k∗

I one solution for each j for the k = k∗

j = 0: 0,0,0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
j = 1: 0,0,0,0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
j = 2: 0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
j = 3: 0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
j = 4: 0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
j = 5: 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
j = 6: 0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
j = 7: 0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

[
s7, s8, · · · , s21

]
×M =

[
S(x⊕ k∗)[0], · · · , S(x⊕ k∗)[7]

](15 × 8) binary matrix

15 encoding variables 8 S-Box output bits

� Repeat with remaining clusters... (14 subkeys recoverd)
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Lesson Learned
Security through obscurity is the only hope for indus-
trial white-box demands currently, but it could be frag-
ile in front of a motivated and skilled attacker.



Generic Attacks
A Study of Differential Computation Analysis

– joint work with Matthieu Rivain



Differential Computation Analysis (DCA)
plaintext

ciphertext

0

1

(binary) computation trace

� DPA techniques in white-box context [BHMT16]

� Instead of power traces, using computation traces usually consisting of
runtime memory information

� Breaks many white-box designs
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DCA Techniques

group by predictionscollect traces

ϕk(·)
= 0

ϕ
k (·) = 1

average trace differential trace
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DCA Attack Limitations

1. Lack of in-depth understanding
I Only known to work on nibble encodings [BBMT18]

I Only known to work on the first and last rounds
I Most results are only experimental and DCA success probability is unknown

2. Suboptimal exploitation of the information in the computation traces
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Internal Encoding : Abstraction

x ϕk(·) s

input sensitive variable

n m
ε(·) v

intermediate variable

mm

� A key-dependent (n,m) function ϕk in a block cipher
� A random selected m-bit bijection ε
� ε ◦ ϕk, leaked in the memory, is an output of some table look-up

� To exploit the leakage of ε ◦ ϕk, n > m is necessary
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DCA against Internal Encoding

Based on well-established theory – Boolean correlation, instead of difference of means:
for any key guess k

ρk = Cor
(
ϕk(·)[i] , ε ◦ ϕk∗(·)[j]

)

ϕk(·) ε(·)
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ρk∗ and ρk×: Distributions

� Ideal assumption:
(
ϕk

)
k

are mutually independent random (n,m) functions

Correct key guess k∗,

ρk∗ = 22−mN∗ − 1

where

N∗ ∼ HG(2m, 2m−1, 2m−1) .

Only depends on m.

Incorrect key guess k×,

ρk× = 22−nN× − 1

where

N× ∼ HG(2n, 2n−1, 2n−1) .

Only depends on n.

ϕk(·) ε(·)
n m m
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ρk∗ and ρk×: Distributions
� Theoretical results and simulations when n = 8 and m = 4
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DCA Success Rate
� DCA success (roughly) requires:

∣∣ρk∗∣∣ > max
k×

∣∣ρk×∣∣ .
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Attack a NSC Variant: a White-Box AES

� Byte encoding protected
� DCA has failed to break it before this work

� Our approach: target a output byte of MixColumn in the first round

X1

X2

0

0

ARK,SB SR MC

ϕk1||k2(x1||x2) = 2 · Sbox(x1 ⊕ k1) ⊕ 3 · Sbox(x2 ⊕ k2) ⊕ Sbox(k3) ⊕ Sbox(k4) c

ε′ = ε ◦ ⊕c ,

n = 16,m = 8 , |K| = 216.
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Attack a NSC Variant: a White-Box AES

� Attack results: ∼ 1800 traces

� Same attack works on the “masked” implementation [LKK18] (intending to
resist DCA) as well.
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Summary

� White-box adversary models the real security treats in many
software applications deployed in the real world.

� No provably white-box secure construction is known for
standard block ciphers.

� Industrial trending: security through obscurity, which could
be fragile in front of motivated and skilled attackers.

� DCA against internal encoding has been analyzed in-depth.
I it is able to breaker “wider” encodings in “deeper” rounds.

� What can we hope for white-box cryptography?



WhibOx News

� WhibOx competition returns
I expected to start from the beginning of February 2019
I until the end of August 2019
I https://whibox-contest.slack.com/

� The 2nd WhibOx workshop will take place in May 18-19, 2019.
I organized by Chris Brzuska and Pascal Paillier
I affiliated to Eurocrypt 2019 (Darmstadt, Germany)
I including talks on all aspects (theory, attacks, design techniques)
I and a hands-on session dedicated to attack tools and demos

https://whibox-contest.slack.com/


Thank you!


