
Recent Progress on White-Box Attacks

Junwei Wang

Journée “Protection du Code et des Données”

Paris Saclay, Dec 13th 2018

White-Box Treat Model

plaintext

ciphertext

black-box model

knowing the cipher

observing I/O behavior
e.g. linear/differential cryptanalysis

plaintext

ciphertext

gray-box model

+ side-channel leakages

(power/EM/time/· · ·)
e.g. differential power analysis [KJJ99]

plaintext

ciphertext

white-box model [CEJvO02]

owing the binary

controlling the environment

2

White-Box Treat Model
� Goal: to extract a cryptographic key, · · ·
� Where: from a software impl. of cipher

� Who:
I malwares
I co-hosted applications
I user themselves
I · · ·

� How: (by all kinds of means)
I analyze the code
I spy on the memory
I interfere the execution
I · · ·

3

Typical Applications

Digital Content Distribution

videos, musics, games, e-books, · · ·

Host Card Emulation

mobile payment without a secure element

4

White-Box Compiler

A white-box complier takes as input a secret key and generates a “white-box secure”
program implementing some specific crypto. algo. with the specified secret key.

plaintext

ciphertext

plaintext

ciphertext

black-box model white-box model

“white-box security” [DLPR13]

I Unbreakability (this talk)
I One-wayness
I Incompressibility
I Traceability

No provably secure white-box complier for standard block ciphers is known.

5

Cryptographic Obfuscation

An obfuscator makes programs “unintelligible” while preserving their functionalities.

� Virtual Black-Box (VBB) Obfuscation
I Nothing is learned from the obfuscated programs except their I/Os.
I (Impossibility) VBB is impossible in general! [BGI+01]

I VBB for point functions exist. [Wee05]

I Can we VBB obfuscate a block cipher ?

� Indistinguishability Obfuscation (iO)
I Literally, it hides the origin of an obfuscated program
I Has many implications [SW14]

I Candidate constructions exist [GGH+13,· · ·]
I Does not imply unbreakability directly !

6

Overview

1 � White-Box Context

2 � Practical Countermeasures and Attacks

3 � Showcase: Break A White-Box Implementation

4 � Study of Differential Computation Analysis

Practical White-Box Compiler: Sketch

X R1 ε1 R2 ε2ε−11 Rrε−1r−1 Y. . .

pairwise annihilating parasitic

functions (e.g. encodings)
look-up tables

1. Represent the cipher into a network of transformations

2. Obfuscate the network by encoding adjacent transformations

3. Store the encoded transformations into look-up tables
8

Illustration: Protect One AES Column [CEJvO02]

L3 ⊕ S

M
B
◦

M
C
3

L2 ⊕ S

M
B
◦

M
C
2

L1 ⊕ S

M
B
◦

M
C
1

L0 ⊕ S

M
B
◦

M
C
0

4 × (8,32)-TBoxes

⊕

⊕

⊕

...

...

...

...

24 × (8,4)-XOR Tables

Ii ◦ Ri ◦ ε−1i−1

⊕

⊕

⊕

...

...

...

...

many other tables

εi ◦ I−1i

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

14KB memory and 56 table look-ups needed to compute εi ◦ Ri ◦ ε−1i−1

1The i-th round function Ri = MC ◦ SB ◦ ARKi and Ii represents the intermediate encoding

White-Box Attacks

� Specific attacks

� Generic attacks

� Combined analyses

Specific Attacks

RE

� to (partially) recover the
design of a particular impl.

� usually by reverse
engineering

� requiring skilled experts

� time-consuming

Trending: secret design paradigm a.k.a security through obscurity

11

Generic Attacks

� Generic and automatic

� Without knowing the
protections

� e.g. differential
computation attacks
(DCA) and differential
fault attacks (DFA)

12

Differential Fault Attack against AES

Normal:

Faulty:

db

23

c9

f0

6c

8f

13

df

f3

61

76

21

c6

50

cf

55

db

23

c9

1e

6c

8f

13

df

f3

61

76

21

c6

50

cf

55

1d

cd

fe

e0

17

f5

a1

83

d1

17

aa

4b

b5

17

b2

81

MC

04

33

00

07

17

f5

a1

83

d1

17

aa

4b

b5

17

b2

81

MC

b0

66

a2

b7

e6

04

f1

2b

43

1e

ae

84

01

ab

86

39

ARK

a9

98

5c

50

e6

04

f1

2b

43

1e

ae

84

01

ab

86

39

ARK

e7

33

3a

a9

8e

f2

a1

f1

1a

72

e4

5f

7c

62

44

12

SB

d3

46

4a

53

8e

f2

a1

f1

1a

72

e4

5f

7c

62

44

12

SB

e7

33

3a

a9

8e

f2

a1

f1

1a

72

e4

5f

7c

62

44

12

SR ARK

d3

46

4a

53

8e

f2

a1

f1

1a

72

e4

5f

7c

62

44

12

SR ARK

⊕

34

75

70

fa

00

00

00

00

00

00

00

00

00

00

00

00

� Modify a state byte between last two MixColumns
I How: statically / dynamically
I Expecting certain differential patterns (thanks to ShiftRow)

� Very few faulty executions are required to recover a column of key bytes

13

A Showcase
Break the Winning Implementation of CHES 2017 CTF

– joint work with Louis Goubin, Pascal Paillier, Matthieu Rivain

15

WhibOx Contest

� Goal: confront designers and attackers in the secret design paradigm
� Designers: invited to submit AES-128 implementations in C

I with secret chosen key
I source code ≤ 50MB
I compiled binary ≤ 20MB
I RAM consumption ≤ 20MB
I execution time ≤ 1 second

� Breakers: invited to recover the hidden keys
� Not required to disclose their identities & underlying techniques

16

WhibOx Contest

� The competition lasted for about 4 months.
� Results:

I 94 submissions were all broken by 877 individual breaks
I Most (86%) of them were alive for < 1 day

� Scoreboard (top 5): ranked by surviving time

id designer first breaker score #days #breaks
777 cryptolux team cryptoexperts 406 28 1
815 grothendieck cryptolux 78 12 1
753 sebastien-riou cryptolux 66 11 3
877 chaes You! 55 10 2
845 team4 cryptolux 36 8 2

cryptolux: Biryukov, Udovenko
team cryptoexperts: Goubin, Paillier, Rivain, Wang

17

The Winning Implementation

� Multi-layer protections
I Inner: encoded Boolean circuit with error detection
I Middle: bitslicing
I Outer: virtualization, randomly naming, duplications, dummy operations

� Code size: ∼28 MB
� Code lines: ∼2.3k
� 12 global variables:

I pDeoW: computation state (2.1 MB)
I JGNNvi:program bytecode (15.3 MB)

available at: https://whibox-contest.github.io/show/candidate/777

18

https://whibox-contest.github.io/show/candidate/777

The Winning Implementation

∼1200 functions: simple but obfus-
cated

� An array of pointers: to 210
useful functions

� Semantically equivalent to 20
different functions

I bitwise operations, bit shifts
I table look-ups, assignment
I control flow primitives
I ...

void xSnEq (uint UMNsVLp, uint KtFY, uint vzJZq) {

if (nIlajqq () == IFWBUN (UMNsVLp, KtFY))

EWwon (vzJZq);

}

void rNUiPyD (uint hFqeIO, uint jvXpt) {

xkpRp[hFqeIO] = MXRIWZQ (jvXpt);

}

void cQnB (uint QRFOf, uint CoCiI, uint aLPxnn) {

ooGoRv[(kIKfgI + QRFOf) & 97603] =

ooGoRv[(kIKfgI + CoCiI) | 173937] & ooGoRv[(kIKfgI + aLPxnn) | 39896];

}

uint dLJT (uint RouDUC, uint TSCaTl) {

return ooGoRv[763216 ul] | qscwtK (RouDUC + (kIKfgI << 17), TSCaTl);

}

19

Attack Overview

1. Reverse engineering ⇒ a Boolean circuit
I readability preprocessing

� functions / variables renaming
� redundancy elimination
� ...

I de-virtualization ⇒ a bitwise program
I simplification ⇒ a Boolean circuit

2. Single static assignment (SSA) transformation

3. Circuit minimization

4. Data dependency analysis

5. Key recovery with algebraic analysis

20

De-Virtualization
char program[] = "..."; // 15.3 MB bytecode

void * funcptrs = "..."; // 210 function pointers

void interpretor() {

uchar *pc = (uchar *) program;

uchar *eop = pc + sizeof (program) / sizeof (uchar);

while (pc < eop) {

uchar args_num = *pc++;

void (*fp) ();

fp = (void *) funcptrs[*pc++];

uint *arg_arr = (uint *) pc;

pc += args_num * 8;

if (args_num == 0) { fp(); }

else if (args_num == 1) { fp(arg_arr[0]); }

else if (args_num == 2) { fp(arg_arr[0], arg_arr[1]); }

// similar to args_num = 3, 4, 5, 6

}

}

simulate VM =⇒ bitwise program with many loops of 64 cycles

Computation State

64 (26)
rows

4096 (212) columns

64-bit (unsigned long integer)

global table of 218 elements
(= 64 · 4096)

Several loops only implement value swaps inside columns

Can be removed!

23

Bitwise Loops

64 (26)
rows

4096 (212) columns

64-bit (unsigned long integer)

global table of 218 elements
(= 64 · 4096)

Several loops only implement value swaps inside columns

Can be removed!

23

Bitwise Loops

64 (26)
rows

4096 (212) columns

64-bit (unsigned long integer)

global table of 218 elements
(= 64 · 4096)

Several loops only implement value swaps inside columns

Can be removed!
23

Obtaining Boolean Circuit

� A sequence of 64-cycle (non-overlapping) loops over 64-bit variables
I beginning: 64 (cycles)×64 (word length) bitslicing program
I before ending:bit combination
I ending: (possibly) error detection

� 64×64 independent AES computations in parallel
I Odd (3) number of them are real and identical
I The rest use hard-coded fake keys

� Pick one real impl. ⇒ a Boolean circuit with ∼600k gates

24

Single Static Assignment Form

x = · · ·
y = · · ·
z = ¬x
x = z ⊕ y
y = y ∨ z
z = x ∨ y

...

⇒

t1 = · · ·
t2 = · · ·
t3 = ¬t1
t4 = t3 ⊕ t2
t5 = t2 ∨ t3
t6 = t4 ∨ t5

...

Each variable is only assigned once!

25

Circuit Minimization
Detect (over many executions) and remove:

� Constant:
ti = 0 or ti = 1?

� Duplicate: keep only one copy

ti = tj?

� Pseudorandomness:

ti ← ti ⊕ 1⇒ same result

After several rounds, ∼600k ⇒∼280k gates (53% smaller)

26

Data Dependency Analysis

Data dependency graph (first 20% of the circuit)

Data dependency graph (first 10% of the circuit)Data dependency graph (first 5% of the circuit)

•

MixColumn

SubByte

Pseudo-randomness generation?

27

Data Dependency Analysis

Data dependency graph (first 20% of the circuit)

Data dependency graph (first 10% of the circuit)

Data dependency graph (first 5% of the circuit)

•

MixColumn

SubByte

Pseudo-randomness generation?

27

Data Dependency Analysis

Data dependency graph (first 20% of the circuit)Data dependency graph (first 10% of the circuit)

Data dependency graph (first 5% of the circuit)

•

MixColumn

SubByte

Pseudo-randomness generation?

27

Data Dependency Analysis

Data dependency graph (first 20% of the circuit)Data dependency graph (first 10% of the circuit)

Data dependency graph (first 5% of the circuit)

•

MixColumn

SubByte

Pseudo-randomness generation?

27

Cluster Analysis

� Cluster ⇒ variables in one SBox

� Identify outgoing variables:

s1, s2, · · · , sn

� Heuristically,

S(x⊕ k∗) = D(s1, s2, · · · , sn)

for some deterministic decoding function D.

28

Key Recovery
� Hypothesis: linear decoding function

D(s1, s2, · · · , sn) = a0 ⊕

(⊕
1≤i≤n

aisi

)

for some fixed coefficients a0, a1, · · · , an.

� Record the si’s over T executions:
1 s

(1)
1 · · · s

(1)
n

1 s
(2)
1 · · · s

(2)
n

1
...

. . .
...

1 s
(T)
1 · · · s

(T)
n

a0
a1
...
an

 =

S(x(1) ⊕ k)[j]
S(x(2) ⊕ k)[j]

...
S(x(T) ⊕ k)[j]

� Linear system solvable for k = k∗

29

Key Recovery
� And it works! For instance,

I a cluster with 34 outgoing in 504 total points
I collecting 50 computation traces
I no solution for the k 6= k∗

I one solution for each j for the k = k∗

j = 0: 0,0,0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
j = 1: 0,0,0,0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
j = 2: 0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
j = 3: 0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
j = 4: 0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
j = 5: 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
j = 6: 0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
j = 7: 0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

[
s7, s8, · · · , s21

]
×M =

[
S(x⊕ k∗)[0], · · · , S(x⊕ k∗)[7]

](15 × 8) binary matrix

15 encoding variables 8 S-Box output bits

� Repeat with remaining clusters... (14 subkeys recoverd)
30

Lesson Learned
Security through obscurity is the only hope for indus-
trial white-box demands currently, but it could be frag-
ile in front of a motivated and skilled attacker.

Generic Attacks
A Study of Differential Computation Analysis

– joint work with Matthieu Rivain

Differential Computation Analysis (DCA)
plaintext

ciphertext

0

1

(binary) computation trace

� DPA techniques in white-box context [BHMT16]

� Instead of power traces, using computation traces usually consisting of
runtime memory information

� Breaks many white-box designs
33

DCA Techniques

group by predictionscollect traces

ϕk(·)
= 0

ϕ
k (·) = 1

average trace differential trace

34

DCA Attack Limitations

1. Lack of in-depth understanding
I Only known to work on nibble encodings [BBMT18]

I Only known to work on the first and last rounds
I Most results are only experimental and DCA success probability is unknown

2. Suboptimal exploitation of the information in the computation traces

35

Internal Encoding : Abstraction

x ϕk(·) s

input sensitive variable

n m
ε(·) v

intermediate variable

mm

� A key-dependent (n,m) function ϕk in a block cipher
� A random selected m-bit bijection ε
� ε ◦ ϕk, leaked in the memory, is an output of some table look-up

� To exploit the leakage of ε ◦ ϕk, n > m is necessary

36

DCA against Internal Encoding

Based on well-established theory – Boolean correlation, instead of difference of means:
for any key guess k

ρk = Cor
(
ϕk(·)[i] , ε ◦ ϕk∗(·)[j]

)

ϕk(·) ε(·)

37

ρk∗ and ρk×: Distributions

� Ideal assumption:
(
ϕk

)
k

are mutually independent random (n,m) functions

Correct key guess k∗,

ρk∗ = 22−mN∗ − 1

where

N∗ ∼ HG(2m, 2m−1, 2m−1) .

Only depends on m.

Incorrect key guess k×,

ρk× = 22−nN× − 1

where

N× ∼ HG(2n, 2n−1, 2n−1) .

Only depends on n.

ϕk(·) ε(·)
n m m

38

ρk∗ and ρk×: Distributions
� Theoretical results and simulations when n = 8 and m = 4

-0.75 -0.50 -0.25 0 0.25 0.50 0.75
0

0.1

0.2

0.3

0.4

ρk∗ and ρk×

P
M

F

ρk∗ modeled
ρk× modeled

0

1,000

2,000

3,000

4,000

C
ou

n
ts

ρk∗ simulated
ρk× simulated

39

DCA Success Rate
� DCA success (roughly) requires:

∣∣ρk∗∣∣ > max
k×

∣∣ρk×∣∣ .

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

m

P
r
(|ρ k∗

|>
m
ax

k
×
|ρ

k
×
|) n = 8

n = 10
n = 12
n = 14
n = 16

40

Attack a NSC Variant: a White-Box AES

� Byte encoding protected
� DCA has failed to break it before this work

� Our approach: target a output byte of MixColumn in the first round

X1

X2

0

0

ARK,SB SR MC

ϕk1||k2(x1||x2) = 2 · Sbox(x1 ⊕ k1) ⊕ 3 · Sbox(x2 ⊕ k2) ⊕ Sbox(k3) ⊕ Sbox(k4) c

ε′ = ε ◦ ⊕c ,

n = 16,m = 8 , |K| = 216.

41

Attack a NSC Variant: a White-Box AES

� Attack results: ∼ 1800 traces

� Same attack works on the “masked” implementation [LKK18] (intending to
resist DCA) as well.

42

Summary

� White-box adversary models the real security treats in many
software applications deployed in the real world.

� No provably white-box secure construction is known for
standard block ciphers.

� Industrial trending: security through obscurity, which could
be fragile in front of motivated and skilled attackers.

� DCA against internal encoding has been analyzed in-depth.
I it is able to breaker “wider” encodings in “deeper” rounds.

� What can we hope for white-box cryptography?

WhibOx News

� WhibOx competition returns
I expected to start from the beginning of February 2019
I until the end of August 2019
I https://whibox-contest.slack.com/

� The 2nd WhibOx workshop will take place in May 18-19, 2019.
I organized by Chris Brzuska and Pascal Paillier
I affiliated to Eurocrypt 2019 (Darmstadt, Germany)
I including talks on all aspects (theory, attacks, design techniques)
I and a hands-on session dedicated to attack tools and demos

https://whibox-contest.slack.com/

Thank you!

