Recent Progress on White-Box Attacks

Junwei Wang

Journée “Protection du Code et des Données”

Paris Saclay, Dec 13th 2018

CRYPTOEXPERTS s o0 Wé

White-Box Treat Model

plaintext O«

ciphertext O«
black-box model
knowing the cipher

observing /O behavior

e.g. linear/differential cryptanalysis

plaintext O«

S

ciphertext O
gray-box model

+ side-channel leakages
(power/EM /time/- - -)

e.g. differential power analysis [KJJ99]

2

plaintext O«

ciphertext O«
white-box model [CEJvO02]
owing the binary

controlling the environment

o
[m]
CRYPTOCGXPERTS"

Goal: to extract a cryptographic key, - - -

Where: from a software impl. of cipher
Who:

» malwares
» co-hosted applications
» user themselves

SR

How: (by all kinds of means)
s » analyze the code
» spy on the memory
» interfere the execution

B
i
> 00 *
e
Stos

SR

CXPERTS

Typical Applications

Digital Content Distribution Host Card Emulation

videos, musics, games, e-books, - - mobile payment without a secure element

NETFLIX

»8

White-Box Compiler

A white-box complier takes as input a secret key and generates a “white-box secure”
program implementing some specific crypto. algo. with the specified secret key.

plaintext plaintext

— OOO wi “white-box security” [DLPR13]
?_> | —— | » Unbreakability (this talk)
I » One-wayness

» Incompressibility
ciphertext ciphertext » Tracea b|||ty

black-box model white-box model

No provably secure white-box complier for standard block ciphers is known.

5 DD
CRYPTOCGXPERTS"

Cryptographic Obfuscation

An obfuscator makes programs “unintelligible” while preserving their functionalities. J

= Virtual Black-Box (VBB) Obfuscation
» Nothing is learned from the obfuscated programs except their 1/Os.
(Impossibility) VBB is impossible in general! [BGIT01]
VBB for point functions exist. [Wee05]
» Can we VBB obfuscate a block cipher ?

= Indistinguishability Obfuscation (iO)

» Literally, it hides the origin of an obfuscated program
Has many implications [SW14]
Candidate constructions exist [CGHT13,- -]

Does not imply unbreakability directly !
6

v

v

v

v

v

o
[m}
CRYPTOCGXPERTS"

White-Box Context
Practical Countermeasures and Attacks

Showcase: Break A White-Box Implementation

Study of Differential Computation Analysis

Practical White-Box Compiler: Sketch

pairwise annlhllatlng paraSItlc
look-up tables
functions (e.g. encodings)

1. Represent the cipher into a network of transformations
2. Obfuscate the network by encoding adjacent transformations

3. Store the encoded transformations into look-up tables
8 o
CRYPTOEXPERTS "

[llustration: Protect One AES Column [CEJvO02]

4 x (8,32)-TBoxes 24 X (8,4)-XOR Tables many other tables

%
~ D
by

14KB memory and 56 table look-ups needed to compute €, 0 R; o 8;_11

!The i-th round function R; = MC o SB o ARK; and Z; represents the intermediate encoding

White-Box Attacks

pA

> = Specific attacks
< = Generic attacks
m Combined analyses

Specific Attacks

= to (partially) recover the
design of a particular impl.

® usually by reverse
engineering

® requiring skilled experts
¥ time-consuming

Trending: secret design paradigm a.k.a security through obscurity

1 =
CRYPTOCGXPERTS"

@

~

12

Generic and automatic
Without knowing the
protections

e.g. differential
computation attacks
(DCA) and differential
fault attacks (DFA)

CXPERTS

fO|df | 21 | 65 e0 |83 |4b |81 b7 | 2b | 84 | 39 a9 | f1|56f |12 a9 | f1|56f |12
c9| 13|76 |cf fe|al|aa|b2 a2 | f1|ae |86 3a|al|e4 |44 al|ed4 |44 |3a
MC ARK SB. SR ARK
Normal: — — — — —
23| 8f | 61|50 cd | £6 | 17 | 17 66 | 04 | 1le | ab 33| f2| 72|62 72| 62|33 |f2
db | 6c | £3 | c6 1d |17 | d1 | bS b0 | e6 | 43 | 01 e7 |8e|la|7c Tc|e7|8e|1la fa | 00 | 00 | 00
@ 00 | 00 | 00 | 70
—
00| 00 | 756 | 00
le|df | 21|55 07 | 83 | 4b | 81 50 | 2b | 84 | 39 53 | f1 | 5f |12 53 | f1 | 5f |12 00 |34 |00 | 00
c9 | 13|76 | cf 00 | al | aa | b2 5c | f1 | ae | 86 4a | al |ed |44 al |ed |44 |4a
MC ARK SB SR ARK
Faulty: —_— —_— —_— — —_—
23| 8f | 61|50 33 | f5 | 17 | 17 98 | 04 | le | ab 46 | 2| 72 | 62 72| 62|46 | f2
db | 6¢c | £3 | c6 04 | 17 | d1 | b5 a9 | e6 | 43 | 01 d3 | 8e|1la|7c 7c|d3|8e|1la

Modify a state byte between last two MixColumns
» How: statically / dynamically
» Expecting certain differential patterns (thanks to ShiftRow)
Very few faulty executions are required to recover a column of key bytes

13
CXPERTS

A Showcase
Break the Winning Implementation of CHES 2017 CTF

— joint work with Louis Goubin, Pascal Paillier, Matthieu Rivain

Goal: confront designers and attackers in the secret design paradigm
Designers: invited to submit AES-128 implementations in C

» with secret chosen key

» source code < 50MB

» compiled binary < 20MB

» RAM consumption < 20MB

» execution time < 1 second
Breakers: invited to recover the hidden keys

Not required to disclose their identities & underlying techniques

16
CXPERTS

The competition lasted for about 4 months.

Results:
» 94 submissions were all broken by 877 individual breaks
» Most (86%) of them were alive for < 1 day

Scoreboard (top 5): ranked by surviving time

id designer first breaker score | #days | #breaks
777 | cryptolux team_cryptoexperts 406 28 1
815 | grothendieck cryptolux 78 12 1
753 | sebastien-riou | cryptolux 66 11 3
877 | chaes You! 55 10 2
845 | team4 cryptolux 36 8 2

- cryptolux: Biryukov, Udovenko

s team_cryptoexperts: Goubin, Paillier, Rivain, Wang

17
CXPERTS

Multi-layer protections
» Inner: encoded Boolean circuit with error detection
» Middle: bitslicing
» QOuter: virtualization, randomly naming, duplications, dummy operations

Code size: ~28 MB

Code lines: ~2.3k

12 global variables:
» pDeoW: computation state (2.1 MB)
» JGNNvi:program bytecode (15.3 MB)

available at: https://whibox-contest.github.io/show/candidate/777

18
CXPERTS

https://whibox-contest.github.io/show/candidate/777

The Winning Implementation

~1200 functions: simple but obfus-
void xSnEq (uint UMNsVLp, uint KtFY, uint vzJZq) {
cated if (nIlajqq () == IFWBUN (UMNsVLp, KtFY))
EWwon (vzJZq);
= An array of pointers: to 210 v
H void rNUiPyD (uint hFqeIO, uint jvXpt) {
useful functlons xkpRp [hFqeI0] = MXRIWZQ (jvXpt);

. . }
B Semantically equivalent to 20
void cQnB (uint QRFOf, uint CoCiI, uint aLPxnn) {

different functions 00GoRv [(kIKfgI + QRFOf) & 97603] =
00GoRv [(kIKfgI + CoCiI) | 1739371 & ooGoRv[(kIKfgl + aLPxnn) | 39896];

» bitwise operations, bit shifts }
» table look-ups, assignment wint dLJT (uint RoubUC, uint TSCaT1) {
Py return 0oGoRv[763216 ul] | gscwtK (RouDUC + (kIKfgl << 17), TSCaTl);
» control flow primitives 3
>

19 =
CRYPTOCGXPERTS"

Reverse engineering = a Boolean circuit
» readability preprocessing

functions / variables renaming
redundancy elimination

» de-virtualization = a bitwise program
» simplification = a Boolean circuit

Single static assignment (SSA) transformation
Circuit minimization

Data dependency analysis

Key recovery with algebraic analysis

20
CXPERTS

De-Virtualization

char program[] = "..."; // 15.3 MB bytecode
void * funcptrs = "..."; // 210 function pointers

void interpretor() {
uchar #*pc = (uchar *) program;
uchar *eop = pc + sizeof (program) / sizeof (uchar);
while (pc < eop) {
uchar args_num = *pc++;
void (*¥fp) O;
fp = (void *) funcptrs[*pc++];
uint *arg_arr = (uint *) pc;
pc += args_num * 8;
if (args_num == 0) { fpO; }
else if (args_num == 1) { fp(arg_arr[0]); }
else if (args_num == 2) { fp(arg_arr[0], arg_arr[1]); }
// similar to args_num = 3, 4, 5, 6
}
}

simulate VM = bitwise program with many loops of 64 cycles

Computation State

4096 (2'%) columns

64 (2°) 64-bit (unsigned long integer)
rows -~
/

-

global table of 2'8 elements
(= 64 - 4096)

23 o
CRYPTOCGXPERTS"

Bitwise Loops

4096 (2'%) columns

T

\
1
! \
64 (2) 2 |
rows

Several loops only implement value swaps inside columns

23 o
CRYPTOCGXPERTS"

Bitwise Loops

4096 (2'%) columns

64 (20)
rows

Several J#€ps only implement value swaps inside com™

Can be removed!
23 =
CRYPTOCGXPERTS"

A sequence of 64-cycle (non-overlapping) loops over 64-bit variables
» beginning: 64 (cycles)x64 (word length) bitslicing program
» before ending:bit combination
» ending: (possibly) error detection
64 x64 independent AES computations in parallel
» Odd (3) number of them are real and identical
» The rest use hard-coded fake keys

Pick one real impl. = a Boolean circuit with ~600k gates

24
CXPERTS

Single Static Assignment Form

r = tl =

y = log =

Z = T t3:—\t1

r = z®Dvy = ty = t3PDtg
y = yVvz s = t2 Vi3
z

= xVYy te = 14 V5

Each variable is only assigned once!

25 =
CRYPTOCGXPERTS"

Detect (over many executions) and remove:

Constant:
t; = 0 or t; = 1?

Duplicate: keep only one copy
t;=1t;?
Pseudorandomness:
ti < t; ® 1 = same result

After several rounds, ~600k =~280k gates (53% smaller)

26
CXPERTS

Data Dependency Analysis

Data dependency graph (first 20% of the circuit)

27 =
CRYPTOCGXPERTS"

Data Dependency Analysis

Data dependency graph (first 10% of the circuit)

27 =
CRYPTOCGXPERTS"

Data Dependency Analysis

Data dependency graph (first 5% of the circuit)

27 =
CRYPTOCGXPERTS"

Data Dependency Analysis

MixColumn

SubByte

Pseudo-randomness generation?

Data dependency graph (first 5% of the circuit)

27 =
CRYPTOCGXPERTS"

Cluster Analysis

® Cluster = variables in one SBox
= |dentify outgoing variables:

51,52, 5n
u Heuristically,

S(x ®k*) = D(s1,50,- , 5n)

for some deterministic decoding function D.

28 o
CRYPTOCGXPERTS"

Key Recovery

m Hypothesis: linear decoding function

D(s1, 89, ,8,) = ag @ (@ ai5i>

for some fixed coefficients ag, ay, - - - , a,.

m Record the s;'s over T executions:

LT) [@ k)
1?2 e[S e k)]
I N 5

L] lad [sem e

® Linear system solvable for k = k*

29 =
CRYPTOCGXPERTS"

And it works! For instance,

» a cluster with 34 outgoing in 504 total points
» collecting 50 computation traces

» no solution for the k # k*

» one solution for each j for the k = k*

:0,0,0,0,0,041,0,1,0,1,1,1,0,0,0,1,0,1,0,1}0,0,0,0,0,0,0,0,0,0,0,0,0,0
:0,0,0,0,0,01,0,001,1,001,1,1,1,1,1,1,0,0}0,0,0,0,0,0,0,0,0,0,0,0,0,0
:0,0,0,0,0,90,0,1,0,1,0,0,0,1,1,1,0,1,1,1}0,0,0,0,0,0,0,0,0,0,0,0,0,0
:0,0,0,0,0,090,0,0,1,1,0,0,0,1,1,1,0,1,1,1}0,0,0,0,0,0,0,0,0,0,0,0,0,0
:0,0,0,0,0,90,1,1,0,0,1,0,0,0,0,0,0,1,1,1}0,0,0,0,0,0,0,0,0,0,0,0,0,0
:0,0,0,0,0,0{0,0,0,0,1,0,0,0,0,0,0,0,0,0,1}0,0,0,0,0,0,0,0,0,0,0,0,0,0
:0,0,0,0,0,0941,0,0,0,1,0,0,1,0,1,0,1,0,1,0}0,0,0,0,0,0,0,0,0,0,0,0,0,0
:0,0,0,0,0,09{0,1,0,0,0,0,1,0,0,1,1,0,0,0,0}0,0,0,0,0,0,0,0,0,0,0,0,0,0

J
J
J
J
J
J
J
J

-}15 X 8) binary matrix
[s7.88,+ ,s21] x M = [S(z @ k*)[0],- -, S(z & k*)[7]]

15 encoding variables 8 S-Box output bits

Repeat with remaining clusters... (14 subkeys recoverd)
30
CXPERTS

| esson Learned

Security through obscurity is the only hope for indus-
trial white-box demands currently, but it could be frag-
ile in front of a motivated and skilled attacker.

Generic Attacks
A Study of Differential Computation Analysis

— joint work with Matthieu Rivain

Differential Computation Analysis (DCA)

plaintext
(binary) computation trace
e TH i T
M H H \HH I
S —
\‘ ‘HH‘\H‘H \H‘H‘\HHH H‘\ H\‘H H‘\H \‘HHH\‘\H H‘HH Il h
OMUUU‘ AT A
ciphertext

= DPA techniques in white-box context [BHMT16]
® Instead of power traces, using computation traces usually consisting of
runtime memory information

® Breaks many white-box designs
33 =
CRYPTOEXPERTS "

DCA Techniques

collect traces group by predictions average trace differential trace

34

=]
CRYPTOCGXPERTS"

Lack of in-depth understanding

» Only known to work on nibble encodings [BBMT18§]
» Only known to work on the first and last rounds
» Most results are only experimental and DCA success probability is unknown

Suboptimal exploitation of the information in the computation traces

35
CXPERTS

Internal Encoding : Abstraction

n m m m
T —+#—> or(") s e(-) v
input sensitive variable intermediate variable

® A key-dependent (n,m) function ¢, in a block cipher
® A random selected m-bit bijection ¢
® co ., leaked in the memory, is an output of some table look-up

m To exploit the leakage of £ 0 ¢, n > m is necessary

36 =
CRYPTOCGXPERTS"

DCA against Internal Encoding

Based on well-established theory — Boolean correlation, instead of difference of means:
for any key guess /

pi=Cor(@i ()li) o ()l)

or(+) e() &

37 =
CRYPTOCGXPERTS"

pr+ and ppx: Distributions

u ldeal assumption: (gpk;)k are mutually independent random (7, m) functions

Correct key guess /", Incorrect key guess /:*,
pr =22MNT — 1 pre =22""NX — 1
where where
N* ~ HG(2™, 2m~1 om=1y N* ~ HG(2™, 2"t 2n) |
Only depends on m. Only depends on n.

o
[m]
CRYPTOCGXPERTS"

pr+ and ppx: Distributions

» Theoretical results and simulations when n = 8 and m = 4

041 ><,o;.‘ model‘ed | l p;“ simu‘lated [4’000
x p.~ modeled P~ simulated
0.3 - 3,000
LEI- X X 42
T 021 - 2,000 5
0.1} - 1,000
0 y X 0

-0.75 -0.50 -0.25 0 0.25 0.50 0.75

pi- and pj.-
39 SD
CRYPTOCEXPERTS

DCA Success Rate

= DCA success (roughly) requires: ‘pk*

e
o

e
S

Pr (o] > maxes |ppx)

>n]l€exxx}pkx
L —
~m-n=10
an =12
—e-n=14 ||
+m =16
Q\ N —
\O\ '
\ *
®
N *

40

o
[m]
CRYPTOCGXPERTS"

Byte encoding protected
DCA has failed to break it before this work

Our approach: target a output byte of MixColumn in the first round

: O
20 ARK, S SR I MC
(21]]z2) =2 - Sbox(z1 ® k1) ® 3-Sbox(ze ® k) @ Sbox(ks) @ Sbox(ky)
g =eo0d.,

n=16,m =8 ,|K| = 2'6.

41
CXPERTS

Attack a NSC Variant: a White-Box AES

m Attack results: ~ 1800 traces

0.1
k)(
I

0.08
0.06 ||
0.04
0.02

0

Correlation

Sample

= Same attack works on the “masked” implementation [LKK18] (intending to
resist DCA) as well.

42 So
CRYPTOCGXPERTS"

White-box adversary models the real security treats in many
software applications deployed in the real world.

No provably white-box secure construction is known for
standard block ciphers.

Industrial trending: security through obscurity, which could

be fragile in front of motivated and skilled attackers.

DCA against internal encoding has been analyzed in-depth.
» it is able to breaker “wider" encodings in “deeper” rounds.

What can we hope for white-box cryptography?

WhibOx competition returns
» expected to start from the beginning of February 2019
» until the end of August 2019
» # https://whibox-contest.slack.com/
The 2nd WhibOx workshop will take place in May 18-19, 2019.
» organized by Chris Brzuska and Pascal Paillier
» affiliated to Eurocrypt 2019 (Darmstadt, Germany)

» including talks on all aspects (theory, attacks, design techniques)
» and a hands-on session dedicated to attack tools and demos

https://whibox-contest.slack.com/

Thank you!

