Computing AES Related-Key Differential Characteristics with Constraint Programming

D. Gérault(1), P. Lafourcade(1), M. Minier(2), C. Solnon(3)

(1) - LIMOS, Université Clermont Auvergne
(2) - LORIA, Université de Lorraine
(3) - LIRIS, Université de Lyon

Code and Data Protection Day - December 2018
Revisiting AES RKD Characteristics with CP

- Differential cryptanalysis of the AES
 - First CP model for Step 1
 - Second CP model for Step 1
 - Third CP model for Step 1
 - CP model for Step 2
- Results
- Conclusion
AES (Advanced Encryption Standard)

Block cipher standard since 2001

- **Input:**
 - A plaintext $X = 128$ bits $= 4 \times 4$ bytes
 - A key $K = 128, 192,$ or 256 bits $= 4 \times 4, 4 \times 6,$ or 4×8 bytes

- **Output:** a ciphertext $E_K(X)$ such that $X = E_K^{-1}(E_K(X))$

- **Iterative process of r rounds:** $r = 10$ ($12, 14$) when $|K| = 128$ ($192, 256$)

Operations applied at each round $i \in [0, r-1]$ for AES-128:

- Key $K = K_0$ (4×4 bytes)
- Plaintext X (4×4 bytes)
- Ciphertext $X_r = E_K(X)$
- Subkey K_{i+1}
- ARK
- SB
- SR
- MC
- $i \neq r-1$
- KS
Cryptanalysis of the AES Block Cipher (1/2)

Differential Cryptanalysis [Biham and Shamir 1991]:

Track XOR differences through the ciphering process to recover the key:

- Let $\delta X = X \oplus X'$ be an input plaintext difference
- Let $\delta Y = E_K(X) \oplus E_K(X')$ be the output difference
- The cipher is weak if $\exists \delta X$ and δY such that $Pr[\delta Y|\delta X] >> 2^{-|K|}$
 \Rightarrow Key recovery in $O(1/Pr[\delta Y|\delta X])$
Cryptanalysis of the AES Block Cipher (2/2)

Related-Key Attack [Biham 1993]: Inject differences in texts and keys

- Let $\delta X = X \oplus X'$ be an input plaintext difference
- Let $\delta K = K \oplus K'$ be an input key difference
- Let $\delta Y = E_K(X) \oplus E_{K'}(X')$ be the output difference
- The cipher is weak if $\exists \delta X, \delta K, \text{ and } \delta Y$ such that $Pr[\delta Y|\delta X, \delta K] > > 2^{-|K|}
\Rightarrow$ Key recovery in $O(1/Pr[\delta Y|\delta X, \delta K])$
Related-Key Differential of AES

Goal: Find δX, δK_0, and δY that maximizes $Pr[\delta Y|\delta X, \delta K_0]$:

- ARK, SR, and MC are linear: $op(B_i) \oplus op(B_j) = op(B_i \oplus B_j)$
 \Rightarrow Probabilities are equal to 1 (or 0) for these operators

- SB is not linear:
 - Let $Pr[\delta_o|\delta_i] = \frac{\# \{(B_1,B_2) \in [0,256]^2 \mid \delta_i = B_1 \oplus B_2 \text{ and } \delta_o = S(B_1) \oplus S(B_2)\}}{256}$
 \Rightarrow Probability to have output difference δ_o given input difference δ_i
 - Perfect cipher: $\forall \delta_i, \delta_o, Pr[\delta_o|\delta_i] = \frac{1}{256}$... but this is impossible!
 - SB of AES: if $\delta_o = \delta_i = 0$ then $Pr[\delta_o|\delta_i] = 1$ else $Pr[\delta_o|\delta_i] \in \{0, \frac{2}{256}, \frac{4}{256}\}$
Two step solving process [Biryukov et al. 2010, Fouque et al. 2013]

Step 1: Abstract differential bytes $\delta B = B \oplus B'$ to booleans ΔB

- For each differential byte δB: $\Delta B = 0$ if $\delta B = 0$; $\Delta B = 1$ if $\delta B \in [1, 255]$
Two step solving process [Biryukov et al. 2010, Fouque et al. 2013]

Step 1: Abstract differential bytes $\delta B = B \oplus B'$ to booleans ΔB

- For each differential byte δB: $\Delta B = 0$ if $\delta B = 0$; $\Delta B = 1$ if $\delta B \in [1, 255]$
- Minimize the nb of boolean variables $\Delta X_i[j][k]$ and $\Delta K_i[j][3]$ set to 1:
 - If $\delta X_i[j][k] = \delta S X_i[j][k] = 0$ then $Pr[\delta S X_i[j][k]|\delta X_i[j][k]] = 1$
 - Otherwise $Pr[\delta S X_i[j][k]|\delta X_i[j][k]] \in \{0, \frac{2}{256}, \frac{4}{256}\}$
Two step solving process [Biryukov et al. 2010, Fouque et al. 2013]

Step 2: Concretize booleans to differential bytes

- If $\Delta B = 0$ then set δB to 0; otherwise search for $\delta B \in [1, 255]$
 - If not possible: Solution byte-inconsistent
 - If possible: Solution byte-consistent

\implies Maximize the probability $Pr[\delta X_r | \delta X, \delta K_0]$
Existing approaches

Biryukov et al. 2010:

- Branch & Bound for Step 1
 - $|K| = 128$: Several days of CPU time
 - $|K| = 192$: Several weeks of CPU time

Fouque et al. 2013:

- Graph traversal for Step 1
 - $|K| = 128$: 30mn of CPU time (on 12 cores) but 60 GB of memory
 - Not extended to $|K| = 192$ or 256

In both cases: Difficult and time-consuming programming work

- Checking the correctness of the program is not straightforward...
What about Constraint Programming (CP)?

Solving a problem with CP:

- Define the problem with a declarative language:
 - Variables (unknowns) and their domains
 - Constraints (relations between variables)
 - Optionally: Objective function to optimize

- Use generic engines to search for solutions

Using CP to compute related-key differentials:

- Less than 5 hours for most of instances
- Less than 15 hours for the hardest instance
- Prove inconsistency of a solution proposed by Biryukov et al. 2010
- New related-key differentials:
 - $|K| = 128$: $p = 2^{-79}$ (instead of 2^{-81}) for 4 rounds
 - $|K| = 192$: $p = 2^{-188}$ for 10 rounds
 - $|K| = 256$: $p = 2^{-146}$ (instead of 2^{-154}) for 14 rounds
Revisiting AES RKD Characteristics with CP

- Differential cryptanalysis of the AES
- **First CP model for Step 1**
- Second CP model for Step 1
- Third CP model for Step 1
- CP model for Step 2
- Results
- Conclusion
\[CP_{Basic} : \text{First CP model for Step 1} \]

For each round \(i \), for each row \(j \) and each column \(k \):

\[\Delta X[j][k], \Delta X_i[j][k], \Delta SX_i[j][k], \Delta R_i[j][k], \Delta M_i[j][k], \Delta K_i[j][k], \Delta SK_i[j][3] \]

Boolean variables \(\sim \) Domains = \{0, 1\}
CP_{Basic}: First CP model for Step 1

ARK performs XOR operations:

- \(\forall j, k \in [0, 3]: XOR(\Delta X[j][k], \Delta K_0[j][k], \Delta X_0[j][k]) \)

- \(\forall i \in [0, r - 1], \forall j, k \in [0, 3]: XOR(\Delta M_i[j][k], \Delta K_{i+1}[j][k], \Delta X_{i+1}[j][k]) \)
CP\textsubscript{Basic}: First CP model for Step 1

XOR at the byte level: \(\delta B_1 \oplus \delta B_2 \oplus \delta B_3 = 0 \)

\[(\delta B_1, \delta B_2, \delta B_3) \in \{(0, 0, 0)\} \cup \{(0, x, x) \mid x \in [1, 255]\} \cup \{(x, 0, x) \mid x \in [1, 255]\} \cup \{(x, x, 0) \mid x \in [1, 255]\} \cup \{(x, y, z) \mid x, y, z \in [1, 255], x \neq y \neq z\}\]

XOR at the boolean level:

\[(\Delta B_1, \Delta B_2, \Delta B_3) \in \{(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)\}\]

Definition of the XOR(\(\Delta B_1, \Delta B_2, \Delta B_3\)) constraint:

\[\Delta B_1 + \Delta B_2 + \Delta B_3 \neq 1\]
$\textbf{CP}_{\text{Basic}}$: First CP model for Step 1

SubBytes does not introduce nor remove differences (because $B_i \oplus B_j = 0 \iff S(B_i) \oplus S(B_j) = 0$)

- $\forall i \in [0, r], \forall j, k \in [0, 3]: \Delta X_i[j][k] = \Delta SX_i[j][k]$
- $\forall i \in [0, r], \forall j \in [0, 3]: \Delta K_i[j][3] = \Delta SK_i[j][3]$
CP\(_{\text{Basic}}\): First CP model for Step 1

SR shifts bytes: \(\forall i \in [0, r - 1], \forall j, k \in [0, 3]: \)

\[
\Delta R_i[j][k] = \Delta SX_i[j][k + j\%4]
\]
CP_{Basic}: First CP model for Step 1

- MC multiplies each column by a fixed matrix
- Ensures the MDS property:
 \[
 \forall i \in [0, r - 1], \forall k \in [0, 3] \quad \sum_{j=0}^{3} \Delta R_i[j][k] + \Delta M_i[j][k] \in \{0, 5, 6, 7, 8\}
 \]
CP\textsubscript{Basic}: First CP model for Step 1

KS performs XOR, byte shifts, and SB operations

For AES-128: \(\forall i \in [0, r - 1], \forall j \in [0, 3]\) :

- **Column 0:**
 \[\text{XOR}(\Delta K_{i-1}[j][0], \Delta S K_{i-1}[(j + 1) \% 4][3], \Delta K_i[j][0])\]

- **Columns \(k \in [1, 3]\):**
 \[\text{XOR}(\Delta K_{i-1}[j][k], \Delta K_i[j][k - 1], \Delta K_i[j][k])\]
CP_{Basic}: First CP model for Step 1

Goal: Minimize the number of differences that pass through SubBytes:

\[
obj_{Step1} = \sum_{i=0}^{r-1} \sum_{j=0}^{3} (\Delta K_i[j][3] + \sum_{k=0}^{3} \Delta X_i[j][k])
\]

Ordering heuristics:
- First choose variables that occur in the objective function
BUT too many binary solutions that are NOT byte-consistent

Example: $r = 4$, $obj_{Step1} = 11 \rightsquigarrow$ 90 millions of Boolean solutions, none byte-consistent
Revisiting AES RKD Characteristics with CP

- Differential cryptanalysis of the AES
- First CP model for Step 1
- Second CP model for Step 1
- Third CP model for Step 1
- CP model for Step 2
- Results
- Conclusion
$CPEQ$: Second CP model for Step 1

What's wrong with CP_{Basic}?

XOR constraints do not propagate equality relationships at the byte level

- For example, if $\delta a \oplus \delta b \oplus \delta c = 0$ and $\delta a \oplus \delta b \oplus \delta d = 0$ then $\delta c = \delta d$
- However, at the boolean level, we only propagate:
 \[\Delta A + \Delta B + \Delta C \neq 1 \text{ and } \Delta A + \Delta B + \Delta D \neq 1 \]

New variables and constraints to model byte equalities:

- For each couple of differential bytes $(\delta A, \delta B)$:
 - $EQ_{\delta A, \delta B} = 1$ if $\delta A = \delta B$
 - $EQ_{\delta A, \delta B} = 0$ if $\delta A \neq \delta B$
- Symmetry: $EQ_{\delta A, \delta B} = EQ_{\delta B, \delta A}$
- Transitivity: $EQ_{\delta A, \delta B} = EQ_{\delta B, \delta C} = 1 \Rightarrow EQ_{\delta A, \delta C} = 1$
- Relation with Δ variables:
 - $EQ_{\delta A, \delta B} = 1 \Rightarrow \Delta A = \Delta B$
 - $EQ_{\delta A, \delta B} = 0 \Rightarrow \Delta A + \Delta B \neq 0$
\textbf{CP}_{EQ}: Second CP model for Step 1

Definition of XOR in CP_{Basic}: $\Delta B_1 + \Delta B_2 + \Delta B_3 \neq 1$

Can we strengthen it by exploiting byte equalities? Yes, because:

- $\Delta B_1 = 0 \iff \delta B_2 = \delta B_3$
- $\Delta B_2 = 0 \iff \delta B_1 = \delta B_3$
- $\Delta B_3 = 0 \iff \delta B_1 = \delta B_2$

New definition of XOR:

$$\text{XOR}(\Delta B_1, \Delta B_2, \Delta B_3) \iff ((\Delta B_1 + \Delta B_2 + \Delta B_3 \neq 1) \\land \ (EQ_{\delta B_1, \delta B_2} = 1 - \Delta B_3) \land (EQ_{\delta B_1, \delta B_3} = 1 - \Delta B_2) \land (EQ_{\delta B_2, \delta B_3} = 1 - \Delta B_1))$$
CP\text{_EQ}: Second CP model for Step 1

MDS also holds when XORing different columns of δR and δM:

\[\forall i_1, i_2 \in [0, r - 1], \forall k_1, k_2 \in [0, 3], \text{the number of bytes equal to 0 in} \]

\[\delta R_{i_1}[j][k_1] \oplus \delta R_{i_2}[j][k_2] \text{ and } \delta M_{i_1}[j][k_1] \oplus \delta M_{i_2}[j][k_2] \in \{0, 1, 2, 3, 8\} \]

New constraints to ensure MDS: \(\forall i_1, i_2 \in [0, r - 1], \forall k_1, k_2 \in [0, 3] \)

\[\sum_{j=0}^{3} EQ_{\delta R_{i_1}[j][k_1], \delta R_{i_2}[j][k_2]} + EQ_{\delta M_{i_1}[j][k_1], \delta M_{i_2}[j][k_2]} \in \{0, 1, 2, 3, 8\} \]
CP_{EQ}: Second CP model for Step 1

KS (mainly) performs XOR operations:

- Column 0: $K_i[j][0] = K_{i-1}[j][0] \oplus SK_{i-1}[(j + 1)\%4][3]
- Columns $k \in [1, 3]$: $K_i[j][k] = K_i[j][k - 1] \oplus K_{i-1}[j][k]$

〜 Each byte of K_i is eq. to a XOR of bytes of K_0 and SK_{i-1}

Ex: $K_2[1][1] = K_2[1][0] \oplus K_1[1][1]$

Ex:

$$K_2[1][1] = K_2[1][0] \oplus K_1[1][1] = K_1[1][0] \oplus SK_1[2][3] \oplus K_1[1][0] \oplus K_0[1][1] = SK_1[2][3] \oplus K_0[1][1]$$

New constraints:

- Pre-compute sets $V_{i,j,k}$ such that $\delta K_i[j][k] = \bigoplus_{\delta B \in V_{i,j,k}} \delta B$
- Introduce set variables $S_{i,j,k}$ and post the following constraints:
 - $S_{i,j,k} = \{\delta B \in V_{i,j,k} \mid \Delta B = 1\}$
 - If $S_{i,j,k} = \emptyset$ then $\Delta K_i[j][k] = 0$
 - If $S_{i,j,k} = \{\delta B\}$ then $EQ_{\delta K_i[j][k], \delta B} = 1$
 - If $S_{i,j,k} = \{\delta B_1, \delta B_2\}$ then $XOR(\Delta B_1, \Delta B_2, \Delta K_i[j][k])$
 - If $\exists i', j', k'$ s.t. $S_{i,j,k} = S_{i', j', k'}$ then $EQ_{\delta K_i[j][k], \delta K_{i'}[j'][k']} = 1$
Revisiting AES RKD Characteristics with CP

- Differential cryptanalysis of the AES
- First CP model for Step 1
- Second CP model for Step 1
- Third CP model for Step 1
- CP model for Step 2
- Results
- Conclusion

\[CP_{XOR} : \text{Third CP model for Step 1} \]

Key Schedule Modeling

- Generate all possible equations from the key schedule with 2 or 3 XORs: sets called \(\text{XOReq} \)
- All those equations could be generated from the original equations with 2 or 3 XORs
- for AES-128, 1104 equations; for AES-192, 1696 equations; for AES-256, 1256 equations;
- Keep all the constraints of \(CP_{EQ} \) and add the following constraints:
 \[\forall (\delta B_1 \oplus \delta B_2 \oplus \delta B_3 = 0) \in \text{XOReq}: \]
 \[EQ_{\delta B_1, \delta B_2} = 1 - \Delta B_3 \land (EQ_{\delta B_1, \delta B_3} = 1 - \Delta B_2) \land (EQ_{\delta B_2, \delta B_3} = 1 - \Delta B_1) \]
 \[\forall (\delta B_1 \oplus \delta B_2 \oplus \delta B_3 \oplus \delta B_4 = 0) \in \text{XOReq}: \]
 \[EQ_{\delta B_1, \delta B_2} = EQ_{\delta B_3, \delta B_4} \land EQ_{\delta B_1, \delta B_3} = EQ_{\delta B_2, \delta B_4} \land EQ_{\delta B_1, \delta B_4} = EQ_{\delta B_2, \delta B_3} \]
Revisiting AES RKD Characteristics with CP

- Differential cryptanalysis of the AES
- First CP model for Step 1
- Second CP model for Step 1
- Third CP model for Step 1
- CP model for Step 2

- Results
- Conclusion
CP model for Step 2

1. Initialize Obj_{Step1} to 1
2. Step 1: Search for all boolean solutions
3. For each boolean solution of Step 1 for values of ΔX_i and of $\Delta K_i[j][3]$
 - Step 2: Search for byte values that maximize $Pr[\delta X_r|\delta X, \delta K_0]$
 (or detect inconsistency and set Pr to 0)
 \implies Let Pr_{max} be the largest probability wrt all boolean solutions of Step 1
4. If $Pr_{max} < 2^{-6(Obj_{Step1}+1)}$ then increment Obj_{Step1} and go to (2)
 Otherwise, return Pr_{max}
CP model for Step 2

- For each boolean variable ΔB: Integer variable δB
 - If $\Delta B = 0$ in the Step 1 solution then: $D(\delta B) = \{0\}$
 - Otherwise: $D(\delta B) = [1, 255]$

- For each byte A on which SB is applied: Integer variable P_A
 $\sim \text{ Base 2 logarithm of } \Pr(\delta SA|\delta A)$
 - If $\Delta A = \Delta SA = 0$ then: $D(P_A) = \{0\}$ because $\Pr(0|0) = 1$
 - Otherwise: $D(P_A) = \{-7, -6\}$ because $\Pr(\delta SA|\delta A) \in \{\frac{2}{256}, \frac{4}{256}\}$

- Objective function: Maximize $\text{obj}_{\text{Step 2}} = \sum_{A \text{ on which SB is applied}} P_A$
Table constraint related to SB:
For each byte A on which SB is applied:

$$(\delta A, \delta SA, P_A) \in \{(X, Y, P) | \exists (B_1, B_2) \in [0, 255] \times [0, 255], X = B_1 \oplus B_2, Y = S(B_1) \oplus S(B_2), P = \log_2(\Pr(Y|X))\}$$

Constraints related to KS, ARK, SR, and MC:

$\xrightarrow{\sim}$ Straightforward definition with table constraints
Diff. Crypt. Step 1 (1) Step 1 (2) Step 1 (3) Step 2 Results Conclusion

Extension to AES-192 and AES-256

Update constraints related to KeySchedule:

- Step 1: XOR constraints combined with byte shifts
- Step 2: XOR constraints combined with byte shifts + SubBytes on some columns
Extension to AES-192 and AES-256

Update constraints related to KeySchedule:

- Step 1: XOR constraints combined with byte shifts
- Step 2: XOR constraints combined with byte shifts + SubBytes on some columns
Revisiting AES RKD Characteristics with CP

- Differential cryptanalysis of the AES
- First CP model for Step 1
- Second CP model for Step 1
- Third CP model for Step 1
- CP model for Step 2

- Results
- Conclusion
Experimental setup

Languages and Solvers

- CP models for Step 1 implemented in MiniZinc
 - Benchmark for the 2016 MiniZinc Challenge
 - Best results are obtained with Picat-Sat
- The CP model for Step 2 is defined in Choco 3 (Java CP library)

Time to solve the hardest instances

- Less than 5 hours for all instances EXCEPT AES-128-5
- AES-128-5 solved in 15 hours
Experimental Results: time (in seconds)
Experimental Results: Nb of solutions

<table>
<thead>
<tr>
<th></th>
<th>AES-128</th>
<th></th>
<th>AES-192</th>
<th></th>
<th>AES-256</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Opt bound</td>
<td></td>
<td>5</td>
<td>12</td>
<td>17</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Nb sol bin</td>
<td></td>
<td>2</td>
<td>1</td>
<td>103</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>Nb sol byte</td>
<td></td>
<td>2</td>
<td>1</td>
<td>27</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>Best p</td>
<td></td>
<td>2^{-31}</td>
<td>2^{-75}</td>
<td>2^{-105}</td>
<td>2^{-6}</td>
<td>2^{-24}</td>
</tr>
</tbody>
</table>
Revisiting AES RKD Characteristics with CP

- Differential cryptanalysis of the AES
- First CP model for Step 1
- Second CP model for Step 1
- Third CP model for Step 1
- CP model for Step 2
- Results

Conclusion
Conclusion (1/2): Better RK Diff Characteristics

<table>
<thead>
<tr>
<th>Attack</th>
<th>Nb rounds</th>
<th>Nb keys</th>
<th>Data</th>
<th>Time</th>
<th>Memory</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>RK rectangle</td>
<td>10</td>
<td>64</td>
<td>2^{124}</td>
<td>2^{183}</td>
<td>N/A</td>
<td>[Kim et al. 07]</td>
</tr>
<tr>
<td>RK amplified boomerang</td>
<td>12</td>
<td>4</td>
<td>2^{123}</td>
<td>2^{176}</td>
<td>2^{152}</td>
<td>[Biryukov et al. 09]</td>
</tr>
<tr>
<td>RK distinguisher</td>
<td>10</td>
<td>2^{80}</td>
<td>2^{108*}</td>
<td>2^{108*}</td>
<td>-</td>
<td>CP</td>
</tr>
<tr>
<td>basic RK differential</td>
<td>10</td>
<td>2^{44}</td>
<td>2^{156}</td>
<td>2^{156}</td>
<td>2^{65}</td>
<td>CP</td>
</tr>
</tbody>
</table>

Table: * means for each key.

<table>
<thead>
<tr>
<th>Attack</th>
<th>Nb rounds</th>
<th>Nb keys</th>
<th>Data</th>
<th>Time</th>
<th>Memory</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>RK boomerang</td>
<td>14</td>
<td>4</td>
<td>$2^{99,5}$</td>
<td>$2^{99,5}$</td>
<td>2^{77}</td>
<td>[Biryukov et al. 09]</td>
</tr>
<tr>
<td>RK distinguisher</td>
<td>14</td>
<td>2^{35}</td>
<td>2^{119*}</td>
<td>2^{119*}</td>
<td>-</td>
<td>[Biryukov et al. 09]</td>
</tr>
<tr>
<td>basic RK differential</td>
<td>14</td>
<td>2^{35}</td>
<td>2^{131}</td>
<td>2^{131}</td>
<td>2^{65}</td>
<td>[Biryukov et al. 09]</td>
</tr>
<tr>
<td>q-multicollisions</td>
<td>14</td>
<td>2^q</td>
<td>2^q</td>
<td>$q^{2^{67}}$</td>
<td>-</td>
<td>[Biryukov et al. 09]</td>
</tr>
<tr>
<td>RK distinguisher</td>
<td>14</td>
<td>2^{32}</td>
<td>2^{114*}</td>
<td>2^{114*}</td>
<td>-</td>
<td>CP</td>
</tr>
<tr>
<td>basic RK differential</td>
<td>14</td>
<td>2^{32}</td>
<td>2^{125}</td>
<td>2^{125}</td>
<td>2^{65}</td>
<td>CP</td>
</tr>
<tr>
<td>q-multicollisions</td>
<td>14</td>
<td>2^q</td>
<td>2^q</td>
<td>$q^{2^{66}}$</td>
<td>-</td>
<td>CP</td>
</tr>
</tbody>
</table>
Conclusion (2/2): go further?

First Results for Rijndael

<table>
<thead>
<tr>
<th>block sizes</th>
<th>128</th>
<th>160</th>
<th>Key sizes</th>
<th>192</th>
<th>224</th>
<th>256</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>5, 2^{-105}</td>
<td>8, 2^{-144}</td>
<td>10, 2^{-176}</td>
<td>13, 2^{-217}</td>
<td>14, 2^{-146}</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>4, 2^{-106}</td>
<td>6, 2^{-138}</td>
<td>9, 2^{-177}</td>
<td>10, 2^{-202}</td>
<td>11, 2^{-198}</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>3, 2^{-54}</td>
<td>5, 2^{-112}</td>
<td>7, 2^{-153}</td>
<td>10, 2^{-222}</td>
<td>9, 2^{-173}</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>3, 2^{-54}</td>
<td>4, 2^{-122}</td>
<td>6, 2^{-160}</td>
<td>7, 2^{-161}</td>
<td>9, 2^{-222}</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>3, 2^{-54}</td>
<td>4, 2^{-121}</td>
<td>5, 2^{-142}</td>
<td>7, 2^{-207}</td>
<td>7, 2^{-172}</td>
<td></td>
</tr>
</tbody>
</table>

Declarative framework for Cryptanalysis?

CP models describe problems, not how to solve them:

- Easier to define and check than a full program
 € Better solutions than [Biryukov et al. 2009] and [Fouque et al. 2013]

- Models are defined with the MiniZinc language:
 € We can use different CP solvers to solve them
Thanks for Your Attention!

Questions?