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Abstract
Directed fuzzing focuses on automatically testing specific
parts of the code by taking advantage of additional informa-
tion such as (partial) bug stack trace, patches or risky opera-
tions. Key applications include bug reproduction, patch test-
ing and static analysis report verification. Although directed
fuzzing has received a lot of attention recently, hard-to-detect
vulnerabilities such as Use-After-Free (UAF) are still not
well addressed, especially at the binary level. We propose
UAFUZZ, the first (binary-level) directed greybox fuzzer ded-
icated to UAF bugs. The technique features a fuzzing engine
tailored to UAF specifics, a lightweight code instrumentation
and an efficient bug triage step. Experimental evaluation for
bug reproduction on real cases demonstrates that UAFUZZ
significantly outperforms state-of-the-art directed fuzzers in
terms of fault detection rate, time to exposure and bug triag-
ing. UAFUZZ has also been proven effective in patch testing,
leading to the discovery of 30 new bugs (7 CVEs) in programs
such as Perl, GPAC and GNU Patch. Finally, we provide to
the community a large fuzzing benchmark dedicated to UAF,
built on both real codes and real bugs.

1 Introduction

Context. Finding bugs early is crucial in the vulnerability
management process. The recent rise of fuzzing [50, 53]
in both academia and industry, such as Microsoft’s Spring-
field [52] and Google’s OSS-FUZZ [14], shows its abil-
ity to find various types of bugs in real-world applications.
Coverage-based Greybox Fuzzing (CGF), such as AFL [1]
and LIBFUZZER [13], leverages code coverage information in
order to guide input generation toward new parts of the pro-
gram under test (PUT), exploring as many program states as
possible in the hope of triggering crashes. On the other hand,
Directed Greybox Fuzzing (DGF) [25, 28] aims to perform
stress testing on pre-selected potentially vulnerable target lo-
cations, with applications to different security contexts: (1)
bug reproduction [25,28,42,61], (2) patch testing [25,51,59]
or (3) static analysis report verification [31, 49]. Depending
on the application, target locations are originated from bug
stack traces, patches or static analysis reports.

We focus mainly on bug reproduction, which is the most
common practical application of DGF [25, 28, 42, 49, 74].
It consists in generating Proof-of-Concept (PoC) inputs of
disclosed vulnerabilities given bug report information. It is
especially needed since only 54.9% of usual bug reports can

be reproduced due to missing information and users’ privacy
violation [54]. Even with a PoC provided in the bug report,
developers may still need to consider all corner cases of the
bug in order to avoid regression bugs or incomplete fixes.
In this case, providing more bug-triggering inputs becomes
important to facilitate and accelerate the repair process. Bug
stack traces, sequences of function calls at the time a bug is
triggered, are widely used for guiding directed fuzzers [25,
28, 42, 49]. Running a code on a PoC input under profiling
tools like AddressSanitizer (ASan) [65] or VALGRIND [55]
will output such a bug stack trace.

Problem. Despite tremendous progress in the past few years
[5, 21, 23, 25, 28, 29, 39, 46, 47, 60, 62, 67, 73], current (di-
rected or not) greybox fuzzers still have a hard time finding
complex vulnerabilities such as Use-After-Free (UAF), non-
interference or flaky bugs [24], which require bug-triggering
paths satisfying very specific properties. For example, OSS-
FUZZ [14, 15] or recent greybox fuzzers [25, 62, 73] only
found a small number of UAF. Actually, RODE0DAY [16], a
continuous bug finding competition, recognizes that fuzzers
should aim to cover new bug classes like UAF in the fu-
ture [37], moving further from the widely-used LAVA [36]
bug corpora which only contains buffer overflows.

We focus on UAF bugs. They appear when a heap element
is used after having been freed. The numbers of UAF bugs has
increased in the National Vulnerability Database (NVD) [20].
They are currently identified as one of the most critical ex-
ploitable vulnerabilities due to the lack of mitigation tech-
niques compared to other types of bugs, and they may have
serious consequences such as data corruption, information
leaks and denial-of-service attacks.

Goal and challenges. We focus on the problem of designing
an efficient directed fuzzing method tailored for UAF. The
technique must also be able to work at binary-level (no source-
level instrumentation), as source codes of security-critical
programs are not always available or may rely partly on third-
party libraries. However, fuzzers targeting the detection of
UAF bugs confront themselves with the following challenges.
C1. Complexity – Exercising UAF bugs require to gener-

ate inputs triggering a sequence of 3 events – alloc,
free and use – on the same memory location, spanning
multiple functions of the PUT, where buffer overflows
only require a single out-of-bound memory access. This
combination of both temporal and spatial constraints is
extremely difficult to meet in practice;

C2. Silence – UAF bugs often have no observable effect,



Table 1: Summary of existing greybox fuzzing techniques.

AFL AFLGO HAWKEYE UAFUZZ
Directed fuzzing approach 7 3 3 3
Support binary 3 7 7 3
UAF bugs oriented 7 7 7 3
Fast instrumentation 3 7 7 3
UAF bugs triage 7 7 7 3

such as segmentation faults. In this case, fuzzers simply
observing crashing behaviors do not detect that a test
case triggered such a memory bug. Sadly, popular profil-
ing tools such as ASan or VALGRIND cannot be used in
a fuzzing context due to their high runtime overhead.

Actually, current state-of-the-art directed fuzzers, namely
AFLGO [25] and HAWKEYE [28], fail to address these chal-
lenges. First, they are too generic and therefore do not cope
with the specificities of UAF such as temporality – their guid-
ance metrics do not consider any notion of sequenceness.
Second, they are completely blind to UAF bugs, requiring
to send all the many generated seeds to a profiling tool for
an expensive extra check. Finally, current implementations
of source-based DGF fuzzers typically suffer from an expen-
sive instrumentation step [3], e.g., AFLGO spent nearly 2h
compiling and instrumenting cxxfilt (Binutils).

Proposal. We propose UAFUZZ, the first (binary-level) di-
rected greybox fuzzer tailored to UAF bugs. A quick compar-
ison of UAFUZZ with existing greybox fuzzers in terms of
UAF is presented in Table 1. While we follow mostly the
generic scheme of directed fuzzing, we carefully tune several
of its key components to the specifics of UAF:

• the distance metric favors shorter call chains leading
to the target functions that are more likely to include
both allocation and free functions – where sota directed
fuzzers rely on a generic CFG-based distance;

• seed selection is now based on a sequenceness-aware
target similarity metric – where sota directed fuzzers
rely at best on target coverage;

• our power schedule benefits from these new metrics, plus
another one called cut-edges favoring prefix paths more
likely to reach the whole target.

Finally, the bug triaging step piggy-backs on our previous
metrics to pre-identifies seeds as likely-bugs or not, sparing a
huge amount of queries to the profiling tool for confirmation
(VALGRIND in our implementation).

Contributions. Our contribution is the following:
• We design the first directed greybox fuzzing technique

tailored to UAF bugs (Section 4). Especially, we sys-
tematically revisit the three main ingredients of directed
fuzzing (selection heuristic, power schedule, input met-
rics) and specialize them to UAF. These improvements
are proven beneficial and complementary;

• We develop a toolchain [19] on top of the state-of-the-art
greybox fuzzer AFL [1] and the binary analysis plat-
form BINSEC [4], named UAFUZZ, implementing the
above method for UAF directed fuzzing over binary

codes (Section 5) and enjoying small overhead;
• We construct and openly release [18] the largest fuzzing

benchmark dedicated to UAF, comprising 30 real bugs
from 17 widely-used projects (including the few previ-
ous UAF bugs found by directed fuzzers), in the hope
of facilitating future UAF fuzzing evaluation;

• We evaluate our technique and tool in a bug reproduc-
tion setting (Section 6), demonstrating that UAFUZZ is
highly effective and significantly outperforms state-of-
the-art competitors: 2× faster in average to trigger bugs
(up to 43×), +34% more successful runs in average (up
to +300%) and 17× faster in triaging bugs (up to 130×,
with 99% spare checks);

• Finally, UAFUZZ is also proven effective in patch testing
(§6.7), leading to the discovery of 30 unknown bugs (11
UAFs, 7 CVEs) in projects like Perl, GPAC, MuPDF and
GNU Patch (including 4 buggy patches). So far, 17 have
been fixed.

UAFUZZ is the first directed greybox fuzzing approach tai-
lored to detecting UAF vulnerabilities (in binary) given only
bug stack traces. UAFUZZ outperforms existing directed
fuzzers on this class of vulnerabilities for bug reproduction
and encouraging results have been obtained as well on patch
testing. We believe that our approach may also be useful in
slightly related contexts, for example partial bug reports from
static analysis or other classes of vulnerabilities.

2 Background
Let us first clarify some notions used along the paper.

2.1 Use-After-Free

Execution. An execution is the complete sequence of states
executed by the program on an input. An execution trace
crashes when it ends with a visible error. The standard goal
of fuzzers is to find inputs leading to crashes, as crashes are
the first step toward exploitable vulnerabilities.

UAF bugs. Use-After-Free (UAF) bugs happen when derefer-
encing a pointer to a heap-allocated object which is no longer
valid (i.e., the pointer is dangling). Note that Double-Free
(DF) is a special case.

UAF-triggering conditions. Triggering a UAF bug requires
to find an input whose execution covers in sequence three
UAF events: an allocation (alloc), a free and a use (typically,
a dereference), all three referring to the same memory object,
as shown in Listing 1.
1 char *buf = (char *) malloc(BUF_SIZE);
2 free(buf); // pointer buf becomes dangling
3 ...
4 strncpy(buf, argv[1], BUF_SIZE -1); // Use-After-Free

Listing 1: Code snippet illustrating a UAF bug.

Furthermore, this last use generally does not make the ex-
ecution immediately crash, as a memory violation crashes a



process only when it accesses an address outside of the ad-
dress space of the process, which is unlikely with a dangling
pointer. Thus, UAF bugs go often unnoticed and are a good
vector of exploitation [45, 75].

2.2 Stack Traces and Bug Traces
By inspection of the state of a process we can extract a stack
trace, i.e. the list of the function calls active in that state. Stack
traces are easily obtained from a process when it crashes. As
they provide (partial) information about the sequence of pro-
gram locations leading to a crash, they are extremely valuable
for bug reproduction [25, 28, 42, 49].

Yet, as crashes caused by UAF bugs may happen long after
the UAF happened, standard stack traces usually do not help
in reproducing UAF bugs. Hopefully, profiling tools for dy-
namically detecting memory corruptions, such as ASan [65]
or VALGRIND [55], record the stack traces of all memory-
related events: when they detect that an object is used after
being freed, they actually report three stack traces (when the
object is allocated, when it is freed and when it is used after
being freed). We call such a sequence of three stack traces a
(UAF) bug trace. When we use a bug trace as an input to try
to reproduce the bug, we call such a bug trace a target.

// stack trace for the bad Use
==4440== Invalid read of size 1
==4440== at 0x40A8383: vfprintf (vfprintf.c:1632)
==4440== by 0x40A8670: buffered_vfprintf (vfprintf.c:2320)
==4440== by 0x40A62D0: vfprintf (vfprintf.c:1293)
==4440== by 0x80AA58A: error (elfcomm.c:43)
==4440== by 0x8085384: process_archive (readelf.c:19063)
==4440== by 0x8085A57: process_file (readelf.c:19242)
==4440== by 0x8085C6E: main (readelf.c:19318)

// stack trace for the Free
==4440== Address 0x421fdc8 is 0 bytes inside a block of size 86 free’d
==4440== at 0x402D358: free (in vgpreload_memcheck-x86-linux.so)
==4440== by 0x80857B4: process_archive (readelf.c:19178)
==4440== by 0x8085A57: process_file (readelf.c:19242)
==4440== by 0x8085C6E: main (readelf.c:19318)

// stack trace for the Alloc
==4440== Block was alloc’d at
==4440== at 0x402C17C: malloc (in vgpreload_memcheck-x86-linux.so)
==4440== by 0x80AC687: make_qualified_name (elfcomm.c:906)
==4440== by 0x80854BD: process_archive (readelf.c:19089)
==4440== by 0x8085A57: process_file (readelf.c:19242)
==4440== by 0x8085C6E: main (readelf.c:19318)

Figure 1: Bug trace of CVE-2018-20623 (UAF) produced by
VALGRIND.

2.3 Directed Greybox Fuzzing
Fuzzing [50, 53] consists in stressing a code under test
through massive input generation in order to find bugs. Re-
cent coverage-based greybox fuzzers (CGF) [1, 13] rely on
lightweight program analysis to guide the search – typically
through coverage-based feedback. Roughly speaking, a seed
(input) is favored (selected) when it reaches under-explored
parts of the code, and such favored seeds are then mutated
to create new seeds for the code to be executed on. CGF
is geared toward covering code in the large, in the hope of
finding unknown vulnerabilities.

On the other hand, directed greybox fuzzing (DGF) [25,28]
aims at reaching a pre-identified potentially buggy part of

the code from a target (e.g., patch, static analysis report),
as often and fast as possible. Directed fuzzers follow the
general principles and architecture as CGF, but adapt the key
components to their goal, essentially favoring seeds “closer”
to the target. Overall directed fuzzers1 are built upon three
main steps: (1) instrumentation (distance pre-computation),
(2) fuzzing (including seed selection, power schedule and seed
mutation) and (3) triage.

The standard core algorithm of DGF is presented in Algo-
rithm 1 (the parts we modify in UAFUZZ are in gray). Given
a program P, a set of initial seeds S0 and a target T , the algo-
rithm outputs a set of bug-triggering inputs S′. The fuzzing
queue S is initialized with the initial seeds in S0 (line 1).

1. DGF first performs a static analysis (e.g., target distance
computation for each basic block) and insert the instru-
mentation for dynamic coverage or distance information
(line 2);

2. The fuzzer then repeatedly mutates inputs s chosen from
the fuzzing queue S (line 4) until a timeout is reached.
An input is selected either if it is favored (i.e., believed
to be interesting) or with a small probablity α (line 5).
Subsequently, DGF assigns the energy (a.k.a, the number
M of mutants to be created) to the selected seed s (line 6).
Then, the fuzzer generates M new inputs by randomly
applying some predefined mutation operators on seed s
(line 8) and monitors their executions (line 9). If the gen-
erated mutant s′ crashes the program, it is added to the
set S′ of crashing inputs (line 11). Also, newly generated
mutants are added to the fuzzing queue2 (line 13);

3. Finally, DGF returns S′ as the set of bug-triggering inputs
(triage does nothing in standard DGF) (line 14).

Algorithm 1: Directed Greybox Fuzzing
Input : Program P; Initial seeds S0; Target locations T
Output : Bug-triggering seeds S′

1 S′ := /0; S := S0; . S: the fuzzing queue

2 P′← PREPROCESS(P, T ) ; . phase 1: Instrumentation

3 while timeout not exceeded do . phase 2: Fuzzing
4 for s ∈ S do
5 if IS_FAVORED(s) or rand()≤ α then

. seed selection, α: small probability

6 M := ASSIGN_ENERGY(s) ; . power schedule

7 for i ∈ 1 ... M do
8 s′ := mutate_input(s); . seed mutation
9 res := run(P′, s′, T );

10 if is_crash(res) then
11 S′ := S′ ∪ {s′}; . crashing inputs

12 else
13 S := S ∪ {s′};

14 S′ = TRIAGE(S, S′) ; . phase 3: Triage

15 return S′;

1And coverage-based fuzzers.
2This is a general view. In practice, seeds regarded as very uninteresting

are already discarded at this point.



AFLGO [25] was the first to propose a CFG-based dis-
tance to evaluate the proximity between a seed execution and
multiple targets, together with a simulated annealing-based
power schedule. HAWKEYE [28] keeps the CFG-based view
but improves its accuracy3, brings a seed selection heuristic
partly based on target coverage (seen as a set of locations)
and proposes adaptive mutations.

3 Motivation
The toy example in Listing 2 contains a UAF bug due to
a missing exit() call, a common root cause in such bugs
(e.g., CVE-2014-9296, CVE-2015-7199). The program reads
a file and copies its contents into a buffer buf. Specifically,
a memory chunk pointed at by p is allocated (line 12), then
p_alias and p become aliased (line 15). The memory pointed
by both pointers is freed in function bad_func (line 10). The
UAF bug occurs when the freed memory is dereferenced
again via p (line 19).
Bug-triggering conditions. The UAF bug is triggered iff the
first three bytes of the input are ‘AFU’. To quickly detect this
bug, fuzzers need to explore the right path through the if
part of conditional statements in lines 13, 5 and 18 in order
to cover in sequence the three UAF events alloc, free and
use respectively. It is worth noting that this UAF bug does
not make the program crash, hence existing greybox fuzzers
without sanitization will not detect this memory error.
Coverage-based Greybox Fuzzing. Starting with an empty
seed, AFL quickly generates 3 new inputs (e.g., ‘AAAA’,
‘FFFF’ and ‘UUUU’) triggering individually the 3 UAF events.
None of these seeds triggers the bug. As the probability of
generating an input starting with ‘AFU‘ from an empty seed
is extremely small, the coverage-guided mechanism is not
effective here in tracking a sequence of UAF events even
though each individual event is easily triggered.
Directed Greybox Fuzzing. Given a bug trace (14 – alloc,
17, 6, 3 – free, 19 – use) generated for example by ASan, DGF
prevents the fuzzer from exploring undesirable paths, e.g., the
else part at line 7 in function func, in case the condition
at line 5 is more complex. Still, directed fuzzers have their
own blind spots. For example, standard DGF seed selection
mechanisms favor a seed whose execution trace covers many
locations in targets, instead of trying to reach these locations
in a given order. For example, regarding a target (A, F, U),
standard DGF distances [25, 28] do not discriminate between
an input s1 covering a path A→ F →U and another input
s2 covering U → A→ F . The lack of ordering in exploring
target locations makes UAF bug detection very challenging
for existing directed fuzzers. Another example: the power
function proposed by HAWKEYE [28] may assign much en-
ergy to a seed whose trace does not reach the target function,
implying that it could get lost on the toy example in the else
part at line 7 in function func.

3Possibly at the price of both higher pre-computation costs due to more
precise static analysis and runtime overhead due to complex seed metrics.

1 int *p, *p_alias;
2 char buf[10];
3 void bad_func(int *p) {free(p);} /* exit() is missing */
4 void func() {
5 if (buf[1] == ’F’)
6 bad_func(p);
7 else /* lots more code ... */
8 }
9 int main (int argc , char *argv[]) {

10 int f = open(argv[1], O_RDONLY);
11 read(f, buf, 10);
12 p = malloc(sizeof(int));
13 if (buf[0] == ’A’){
14 p_alias = malloc(sizeof(int));
15 p = p_alias;
16 }
17 func();
18 if (buf[2] == ’U’)
19 *p = 1;
20 return 0;
21 }

Listing 2: Motivating example.

A glimpse at UAFUZZ. We rely in particular on modifying
the seed selection heuristic w.r.t. the number of targets covered
by an execution trace (§4.2) and bringing target ordering-
aware seed metrics to DGF (§4.3).

On the toy example, UAFUZZ generates inputs to progress
towards the expected target sequences. For example, in the
same fuzzing queue containing 4 inputs, the mutant ‘AFAA’,
generated by mutating the seed ‘AAAA’, is discarded by AFL
as it does not increase code coverage. However, since it has
maximum value of target similarity metric score (i.e., 4 targets
including lines 14, 17, 6, 3) compared to all 4 previous inputs
in the queue (their scores are 0 or 2), this mutant is selected by
UAFUZZ for subsequent fuzzing campaigns. By continuing to
fuzz ‘AFAA’, UAFUZZ eventually produces a bug-triggering
input, e.g., ‘AFUA’.

Evaluation. AFLGO (source-level) cannot detect the UAF
bug within 2 hours45, while UAFUZZ (binary-level) is able
to trigger it within 20 minutes. Also, UAFUZZ sends a single
input to VALGRIND for confirmation (the right PoC input),
while AFLGO sends 120 inputs.

4 The UAFUZZ Approach
UAFUZZ is made out of several components encompassing
seed selection (§4.2), input metrics (§4.3), power schedule
(§4.4), and seed triage (§4.5). Before detailing these aspects,
let us start with an overview of the approach.

Binary

Targets

CG

CFGs

Computation UAF-based Distance

Cut-edge Coverage

Target Similarity

Input Metrics

Seed
Selection

Power
Schedule

UAF
Triage

UAF bugs

Instrumentation Fuzzing Triage

Figure 2: Overview of UAFUZZ.

4AFL-QEMU did not succeed either.
5HAWKEYE is not available and thus could not be tested.



We aim to find an input fulfilling both control-flow (tempo-
ral) and runtime (spatial) conditions to trigger the UAF bug.
We solve this problem by bringing UAF characteristics into
DGF in order to generate more potential inputs reaching tar-
gets in sequence w.r.t. the UAF expected bug trace. Figure 2
depicts the general picture. Especially:

• We propose three dynamic seed metrics specialized for
UAF vulnerabilities detection. The distance metric ap-
proximates how close a seed is to all target locations
(§4.3), and takes into account the need for the seed exe-
cution trace to cover the three UAF events in order. The
cut-edge coverage metric (§4.4.1) measures the ability of
a seed to take the correct decision at important decision
nodes. Finally, the target similarity metric concretely as-
sesses how many targets a seed execution trace covers at
runtime (§4.2.2);

• Our seed selection strategy (§4.2) favors seeds covering
more targets at runtime. The power scheduler determin-
ing the energy for each selected seed based on its metric
scores during the fuzzing process is detailed in §4.4;

• Finally, we take advantage of our previous metrics to
pre-identify likely-PoC inputs that are sent to a profiling
tool (here VALGRIND) for bug confirmation, avoiding
many useless checks ( §4.5).

4.1 Bug Trace Flattening
A bug trace (§2.2) is a sequence of stack traces, i.e. it is a large
object not fit for the lightweight instrumentation required by
greybox fuzzing. The most valuable information that we need
to extract from a bug trace is the sequence of basic blocks
(and functions) that were traversed, which is an easier object
to work with. We call this extraction bug trace flattening.

The operation works as follows. First, each of the three
stack-traces is seen as a path in a call tree; we thus merge all
the stack traces to re-create that tree. Some of the nodes in
the tree have several children; we make sure that the children
are ordered according to the ordering of the UAF events (i.e.
the child coming from the alloc event comes before the child
coming from the free event). Figure 3 shows an example of
tree for the bug trace given in Figure 1.

Finally, we perform a preorder traversal of this tree to get a

0: 0x8085C6E
(main)

1: 0x8085A57
(process_file)

2: 0x80854BD
(process_archive)

3: 0x80AC687
(make_qualified_name)

4: 0x80857B4
(process_archive)

5: 0x8085384
(process_archive)

6: 0x80AA58A
(error)

Figure 3: Reconstructed tree from CVE-2018-20623 (bug
trace from Figure 1). The preorder traversal of this tree is
simply 0→ 1→ 2→ 3(nalloc)→ 4(n f ree)→ 5→ 6(nuse).

sequence of target locations (and their associated functions),
which we will use in the following algorithms.

4.2 Seed Selection based on Target Similarity
Fuzzers generate a large number of inputs so that smartly
selecting the seed from the fuzzing queue to be mutated in
the next fuzzing campaign is crucial for effectiveness. Our
seed selection algorithm is based on two insights. First, we
should prioritize seeds that are most similar to the target
bug trace, as the goal of a directed fuzzer is to find bugs
covering the target bug trace. Second, target similarity should
take ordering (a.k.a. sequenceness) into account, as traces
covering sequentially a number of locations in the target bug
trace are closer to the target than traces covering the same
locations in an arbitrary order.

4.2.1 Seed Selection
Definition 1. A max-reaching input is an input s whose ex-
ecution trace is the most similar to the target bug trace T so
far, where most similar means “having the highest value as
compared by a target similarity metric t(s,T )”.

Algorithm 2: IS_FAVORED

Input : A seed s
Output : true if s is favored, otherwise false

1 global tmax = 0; . maximum target similar metric score
2 if t(s)≥ tmax then tmax = t(s); return true; . update tmax
3 else if new_cov(s) then return true; . increase coverage
4 else return false;

We mostly select and mutate max-reaching inputs during
the fuzzing process. Nevertheless, we also need to improve
code coverage, thus UAFUZZ also selects inputs that cover
new paths, with a small probability α (Algorithm 1). In our
experiments, the probability of selecting the remaining inputs
in the fuzzing queue that are less favored is 1% like AFL [1].

4.2.2 Target Similarity Metrics
A target similarity metric t(s,T ) measures the similarity be-
tween the execution of a seed s and the target UAF bug trace
T . We define 4 such metrics, based on whether we consider
ordering of the covered targets in the bug trace (P), or not (B)
– P stands for Prefix, B for Bag; and whether we consider the
full trace, or only the three UAF events (3T ):
• Target prefix tP(s,T ): locations in T covered in sequence

by executing s until first divergence;
• UAF prefix t3T P(s,T ): UAF events of T covered in se-

quence by executing s until first divergence;
• Target bag tB(s,T ): locations in T covered by executing s;
• UAF bag t3T B(s,T ): UAF events of T covered by s.

For example, using Listing 2, the 4 metric values of a seed s
‘ABUA’ w.r.t. the UAF bug trace T are:
tP(s,T ) = 2, t3PT (s,T ) = 1, tB(s,T ) = 3 and t3T B(s,T ) = 2.

These 4 metrics have different degrees of precision. A
metric t is said more precise than a metric t ′ if, for any two



seeds s1 and s2: t(s1,T ) ≥ t(s2,T ) ⇒ t ′(s1,T ) ≥ t ′(s2,T ).
Figure 4 compares our 4 metrics w.r.t their relative precision.

Prefix (P)

UAF Prefix (3TP) Bag (B)

UAF Bag (3TB)

Figure 4: Precision lattice for Target Similarity Metrics

4.2.3 Combining Target Similarity Metrics

Using a precise metric such as P allows to better assess pro-
gression towards the goal. In particular, P can distinguish
seeds that match the target bug trace from those that do not,
while other metrics cannot. On the other hand, a less precise
metric provides information that precise metrics do not have.
For instance, P does not measure any difference between
traces whose suffix would match the target bug trace, but who
would diverge from the target trace on the first locations (like
‘UUU’ and ‘UFU’ on Listing 2), while B can.

To take benefit from both precise and imprecise metrics,
we combine them using a lexicographical order. Hence, the
P-3TP-B metric is defined as:

tP−3TP−B(s,T ), 〈tP(s,T ), t3T P(s,T ), tB(s,T )〉

This combination favors first seeds that cover the most
locations in the prefix, then (in case of tie) those reaching the
most number of UAF events in sequence, and finally (in case
of tie) those that reach the most locations in the target. Based
on preliminary investigation, we default to P-3TP-B for seed
selection in UAFUZZ.

4.3 UAF-based Distance
One of the main component of directed greybox fuzzers is the
computation of a seed distance, which is an evaluation of a
distance from the execution trace of a seed s to the target. The
main heuristic here is that if the execution trace of s is close
to the target, then s is close to an input that would cover the
target, which makes s an interesting seed. In existing directed
greybox fuzzers [2, 28], the seed distance is computed to a
target which is a single location or a set of locations. This
is not appropriate for the reproduction of UAF bugs, that
must go through 3 different locations in sequence. Thus, we
propose to modify the seed distance computation to take into
account the need to reach the locations in order.

4.3.1 Zoom: Background on Seed Distances

Existing directed greybox fuzzers [2,28] compute the distance
d(s,T ) from a seed s to a target T as follows.
AFLGO’s seed distance [2]. The seed distance d(s,T ) is
defined as the (arithmetic) mean of the basic-block distances
db(m,T ), for each basic block m in the execution trace of s.

The basic-block distance db(m,T ) is defined using the
length of the intra-procedural shortest path from m to the ba-
sic block of a “call” instruction, using the CFG of the function
containing m; and the length of the inter-procedural shortest
path from the function containing m to the target functions Tf
(in our case, Tf is the function where the use event happens),
using the call graph.

HAWKEYE’s enhancement [28]. The main factor in this
seed distance computation is computing distance between
functions in the call graph. To compute this, AFLGO uses
the original call graph with every edge having weight 1.
HAWKEYE improves this computation by proposing the aug-
mented adjacent-function distance (AAFD), which changes
the edge weight from a caller function fa and a callee fb to
wHawkeye( fa, fb). The idea is to favor edges in the call graph
where the callee can be called in a variety of situations, i.e.
appear several times at different locations.

4.3.2 Our UAF-based Seed Distance

Previous seed distances [2, 28] do not account for any order
among the target locations, while it is essential for UAF.
We address this issue by modifying the distance between
functions in the call graph to favor paths that sequentially go
through the three UAF events alloc, free and use of the bug
trace. This is done by decreasing the weight of the edges in
the call graph that are likely to be between these events, using
lightweight static analysis.

This analysis first computes Ralloc,R f ree, and Ruse, i.e., the
sets of functions that can call respectively the alloc, free, or
use function in the bug trace – the use function is the one
where the use event happens. Then, we consider each call edge
between fa and fb as indicating a direction: either downward
( fa executes, then calls fb), or upward ( fb is called, then fa
is executed). Using this we compute, for each direction, how
many events in sequence can be covered by going through
the edge in that direction. For instance, if fa ∈ Ralloc and
fb ∈ R f ree∩Ruse, then taking the fa→ fb call edge possibly
allows to cover the three UAF events in sequence. To find
double free, we also include, in this computation, call edges
that allow to reach two free events in sequence.

Then, we favor a call edge from fa to fb by decreasing
its weight, based on how many events in sequence the edge
allows to cover. In our experiments, we use the following
ΘUAF( fa, fb) function, with a value of β = 0.25:

ΘUAF( fa, fb) ,

β if fa → fb covers more than
2 UAF events in sequence

1 otherwise

Figure 5 presents an example of call graph with edges
favored using the above ΘUAF function.

Finally, we combine our edge weight modification with
that of HAWKEYE:

wUAFuzz( fa, fb), wHawkeye( fa, fb).ΘUAF( fa, fb)
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Figure 5: Example of a call graph. Favored edges are in red.

Like AFLGO, we favor the shortest path leading to the tar-
gets, since it is more likely to involve only a small number of
control flow constraints, making it easier to cover by fuzzing.
Our distance-based technique therefore considers both call-
ing relations in general, via wHawkeye, and calling relations
covering UAF events in sequence, via ΘUAF .

4.4 Power Schedule
Coverage-guided fuzzers employ a power schedule (or en-
ergy assignment) to determine the number of extra inputs to
generate from a selected input, which is called the energy of
the seed. It measures how long we should spend fuzzing a
particular seed. While AFL [1] mainly uses execution trace
characteristics such as trace size, execution speed of the PUT
and time added to the fuzzing queue for seed energy allo-
cation, recent work [26, 48, 62] including both directed and
coverage-guided fuzzing propose different power schedules.
AFLGO employs simulated annealing to assign more energy
for seeds closer to target locations (using the seed distance),
while HAWKEYE accounts for both shorter and longer traces
leading to the targets via a power schedule based on trace
distance and similarity at function level.

We propose here a new power schedule using the intuitions
that we should assign more energy to seeds in these cases:
• seeds that are closer (using the seed distance, Section 4.3.2);
• seeds that are more similar to the target (using the target
similarity, Section 4.2.2);
• seeds that make better decisions at critical code junctions.

We define hereafter a new metric to evaluate the latter case.

4.4.1 Cut-edge Coverage Metric

To track progress of a seed during the fuzzing process, a
fine-grained approach would consist in instrumenting the exe-
cution to compare the similarity of the execution trace of the
current seed with the target bug trace, at the basic block level.
But this method would slow down the fuzzing process due to
high runtime overhead, especially for large programs. A more
coarse-grained approach, on the other hand, is to measure the
similarity at function level as proposed in HAWKEYE [28].
However, a callee can occur multiple times from different lo-
cations of single caller. Also, reaching a target function does
not mean reaching the target basic blocks in this function.

Thus, we propose the lightweight cut-edge coverage metric,
hitting a middle ground between the two aforementioned
approaches by measuring progress at the edge level but on

the critical decision nodes only.

Algorithm 3: Accumulating cut edges
Input : Program P; dynamic calling tree T of a bug trace
Output : Set of cut edges Ecut

1 Ecut ← /0;
2 nodes← flatten(T );
3 for n ∈ nodes ∧ pn the node before n in T do
4 if n. f unc == pn. f unc then
5 ce← calculate_cut_edges(n. f unc, pn.bb, n.bb);

6 else if pn is a call to n. f unc then
7 ce← calculate_cut_edges(n. f unc, n. f unc.entry_bb, n.bb);

8 Ecut ← Ecut ∪ ce;

9 return Ecut ;

Algorithm 4: calculate_cut_edges inside a function
Input : A function f ; Two basic blocks bbsource and bbsink in f
Output : Set of cut edges ce

1 ce← /0;
2 c f g← get_CFG( f );
3 decision_nodes← {dn : ∃ a path bbsource→∗ dn→∗ bbsink in c f g}
4 for dn ∈ decision_nodes do
5 outgoing_edges← get_outgoing_edges(c f g, dn);
6 for edge ∈ outgoing_edges do
7 if reachable(c f g, edge, bbsink) then
8 ce← ce∪{edge};

9 return ce;

Definition 2. A cut edge between two basic blocks source
and sink is an outgoing edge of a decision node so that there
exists a path starting from source, going through this edge
and reaching sink. A non-cut edge is an edge which is not a
cut-edge, i.e. for which there is no path from source to sink
that go through this edge.

Algorithm 3 shows how cut/non-cut edges are identified in
UAFUZZ given a tested binary program and an expected UAF
bug trace. The main idea is to identify and accumulate the
cut edges between all consecutive nodes in the (flattened) bug
trace. For instance in the bug trace of Figure 3, we would first
compute the cut edges between 0 and 1, then those between 1
and 2, etc. As the bug trace is a sequence of stack traces, most
of the locations in the trace are “call” events, and we compute
the cut edge from the function entry point to the call event in
that function. However, because of the flattening, sometimes
we have to compute the cut edges between different points in
the same function (e.g. if in the bug trace the same function
is calling alloc and free, we would have to compute the edge
from the call to alloc to the call to free).

Algorithm 4 describes how cut-edges are computed inside a
single function. First we have to collect the decision nodes, i.e.
conditional jumps between the source and sink basic blocks.
This can be achieved using a simple data-flow analysis. For
each outgoing edge of the decision node, we check whether
they allow to reach the sink basic block; those that can are
cut edges, and the others are non-cut edges. Note that this



program analysis is intra-procedural, so that we do not need
construct an inter-procedural CFG.

Our heuristic is that an input exercising more cut edges and
fewer non-cut edges is more likely to cover more locations of
the target. Let Ecut(T ) be the set of all cut edges of a program
given the expected UAF bug trace T . We define the cut-edge
score es(s,T ) of seed s as

es(s,T ), ∑
e∈Ecut (T )

b(log2 hit(e)+1)c−δ∗ ∑
e/∈Ecut (T )

b(log2 hit(e)+1)c

where hit(e) denotes the number of times an edge e is exer-
cised, and δ ∈ (0,1) is the weight penalizing seeds covering
non-cut edges. In our main experiments, we use δ = 0.5 ac-
cording to our preliminary experiments. To deal with the path
explosion induced by loops, we use bucketing [1]: the hit
count is bucketized to small powers of two.

4.4.2 Energy Assignment

We propose a power schedule function that assigns energy
to a seed using a combination of the three metrics that we
have proposed: the prefix target similarity metric tP(s,T )
(Section 4.2.2), the UAF-based seed distance d(s,T ) (Sec-
tion 4.3.2), and the cut-edge coverage metric es(s,T ) (Sec-
tion 4.4.1). The idea of our power schedule is to assign energy
to a seed s proportionally to the number of targets covered
in sequence tP(s,T ), with a corrective factor based on seed
distance d and cut-edge coverage es. Indeed, our power func-
tion (corresponding to ASSIGN_ENERGY in Algorithm 1) is
defined as:

p(s,T ) , (1+ tP(s,T )) × ẽs(s,T ) × (1− d̃s(s,T ))

Because their actual value is not as meaningful as the length
of the covered prefix, but they allow to rank the seeds, we
apply a min-max normalization [2] to get a normalized seed
distance (d̃s(s,T )) and normalized cut-edge score (ẽs(s,T )).
For example, d̃s(s,T ) =

ds(s,T )−minD
maxD−minD where minD, maxD de-

note the minimum and maximum value of seed distance so
far. Note that both metric scores are in (0, 1), i.e. can only
reduce the assigned energy when their score is bad.

4.5 Postprocess and Bug Triage
Since UAF bugs are often silent, all seeds generated by a
directed fuzzer must a priori be sent to a bug triager (typi-
cally, a profiling tool such as VALGRIND) in order to confirm
whether they are bug triggering input or not. Yet, this can be
extremely expensive as fuzzers generate a huge amount of
seeds and bug triagers are expensive.

Fortunately, the target similarity metric allows UAFUZZ to
compute the sequence of covered targets of each fuzzed input
at runtime. This information is available for free for each seed
once it has been created and executed. We capitalize on it
in order to pre-identify likely-bug triggering seeds, i.e. seeds
that indeed cover the three UAF events in sequence. Then,
the bug triager is run only over these pre-identified seeds, the
other ones being simply discarded – potentially saving a huge

amount of time in bug triaging.

5 Implementation
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Figure 6: Overview of UAFUZZ workflow.

We implement our results in a UAF-oriented binary-level
directed fuzzer named UAFUZZ. Figure 6 depicts an overview
of the main components of UAFUZZ. The input of the over-
all system are a set of initial seeds, the PUT in binary and
target locations extracted from the bug trace. The output is
a set of unique bug-triggering inputs. The prototype is built
upon AFL 2.52b [1] and QEMU 2.10.0 for fuzzing, and the
binary analysis platform BINSEC [4] for (lightweight) static
analysis. These two components share information such as
target locations, time budget and fuzzing status.

6 Experimental Evaluation
6.1 Research Questions
To evaluate the effectiveness and efficiency of our approach,
we investigate four principal research questions:
RQ1. UAF Bug-reproducing Ability Can UAFUZZ outper-

form other directed fuzzing techniques in terms of UAF
bug reproduction in executables?

RQ2. UAF Overhead How does UAFUZZ compare to other
directed fuzzing approaches w.r.t. instrumentation time
and runtime overheads?

RQ3. UAF Triage How much does UAFUZZ reduce the
number of inputs to be sent to the bug triage step?

RQ4. Individual Contribution How much does each UA-
FUZZ component contribute to the overall results?

We will also evaluate UAFUZZ in the context of patch testing,
another important application of directed fuzzing [25, 28, 59].

6.2 Evaluation Setup
Evaluation Fuzzers. We aim to compare UAFUZZ with state-
of-the-art directed fuzzers, namely AFLGO [2] and HAWK-
EYE [28], using AFL-QEMU as a baseline (binary-level
coverage-based fuzzing). Unfortunately, both AFLGO and
HAWKEYE work on source code, and while AFLGO is open
source, HAWKEYE is not available. Hence, we implemented
binary-level versions of AFLGO and HAWKEYE, coined as



AFLGOB and HAWKEYEB. We closely follow the original
papers, and, for AFLGO, use the source code as a reference.
AFLGOB and HAWKEYEB are implemented on top of AFL-
QEMU, following the generic architecture of UAFUZZ but
with dedicated distance, seed selection and power schedule
mechanisms. Table 2 summarizes our different fuzzer imple-
mentations and a comparison with their original counterparts.

Table 2: Overview of main techniques of greybox fuzzers.
Our own implementations are marked with ?.

Fuzzer Directed Binary? Distance Seed Selection Power Schedule Mutation
AFL-QEMU 7 3 – AFL AFL AFL

AFLGO 3 7 CFG-based ∼ AFL Annealing ∼ AFL
AFLGOB? 3 3 ∼ AFLGO ∼ AFLGO ∼ AFLGO ∼ AFLGO

HAWKEYE 3 7 AAFD distance-based Trace fairness Adaptive
HAWKEYEB? 3 3 ∼ HAWKEYE ∼ HAWKEYE ≈ HAWKEYE ∼ AFLGO

UAFUZZ? 3 3 UAF-based Targets-based UAF-based ∼ AFLGO

We evaluate the implementation of AFLGOB (Appendix B,
Appendix) and find it very close to the original AFLGO after
accounting for emulation overhead.

UAF Fuzzing Benchmark. The standard UAF micro bench-
mark Juliet Test Suite [56] for static analyzers is too simple
for fuzzing. No macro benchmark actually assesses the effec-
tiveness of UAF detectors – the widely used LAVA [36] only
contains buffer overflows. Thus, we construct a new UAF
benchmark according to the following rationale:

1. The subjects are real-world popular and fairly large
security-critical programs;

2. The benchmark includes UAF bugs found by existing
fuzzers from the fuzzing litterature [1, 26, 28, 40] or
collected from NVD [20]. Especially, we include all
UAF bugs found by directed fuzzers;

3. The bug report provides detailed information (e.g., buggy
version and the stack trace), so that we can identify target
locations for fuzzers.

In summary, we have 13 known UAF vulnerabilities (2 from
directed fuzzers) over 11 real-world C programs whose sizes
vary from 26 Kb to 3.8 Mb. Furthermore, selected programs
range from image processing to data archiving, video pro-
cessing and web development. Our benchmark is therefore
representative of different UAF vulnerabilities of real-world
programs. Table 3 presents our evaluation benchmark.

Evaluation Configurations. We follow the recommenda-
tions for fuzzing evaluations [43] and use the same fuzzing
configurations and hardware resources for all experiments.
Experiments are conducted 10 times with a time budget de-
pending on the PUT. We use as input seed either an empty
file or existing valid files provided by developers. We do not
use any token dictionary. All experiments were carried out
on an Intel Xeon CPU E3-1505M v6 @ 3.00GHz CPU with
32GB RAM and Ubuntu 16.04 64-bit.

6.3 UAF Bug-reproducing Ability (RQ1)

Protocol. We compare the different fuzzers on our 13 UAF
vulnerabilities using Time-to-Exposure (TTE), i.e. the time

Table 3: Overview of our evaluation benchmark

Bug ID Program Bug #Targets
Project Size Type Crash in trace

giflib-bug-74 GIFLIB 59 Kb DF 7 7
CVE-2018-11496 lrzip 581 Kb UAF 7 12
yasm-issue-91 yasm 1.4 Mb UAF 7 19
CVE-2016-4487 Binutils 3.8 Mb UAF 3 7
CVE-2018-11416 jpegoptim 62 Kb DF 7 5
mjs-issue-78 mjs 255 Kb UAF 7 19
mjs-issue-73 mjs 254 Kb UAF 7 28

CVE-2018-10685 lrzip 576 Kb UAF 7 7
CVE-2019-6455 Recutils 604 Kb DF 7 15
CVE-2017-10686 NASM 1.8 Mb UAF 3 10

gifsicle-issue-122 Gifsicle 374 Kb DF 7 11
CVE-2016-3189 bzip2 26 Kb UAF 3 5
CVE-2016-20623 Binutils 1.0 Mb UAF 7 7
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Figure 7: Summary of fuzzing performance (RQ1)

elapsed until first bug-triggering input, and number of success
runs in which a fuzzer triggers the bug. In case a fuzzer cannot
detect the bug within the time budget, the run’s TTE is set
to the time budget. Following existing work [25, 28], we use
the Vargha-Delaney statistic (Â12) metric [69] 6 to assess the
confidence that one tool outperforms another. Code coverage
is not relevant for directed fuzzers.
Results. Figure 7 presents a consolidated view of the results
(total success runs and TTE – we denote by µTTE the average
TTE observed for each sample over 10 runs). Appendix A
contains additional information about consolidated Vargha-
Delaney statistics (Table 4).

Figure 7 (and Table 4) show that UAFUZZ clearly outper-
forms the other fuzzers both in total success runs (vs. 2nd best
AFLGOB: +34% in total, up to +300%) and in TTE (vs. 2nd
best AFLGOB, total: 2.0×, avg: 6.7×, max: 43×). In some
specific cases,UAFUZZ saves roughly 10,000s of TTE over
AFLGOB or goes from 0/10 successes to 7/10. The Â12 value
of UAFUZZ against other fuzzers is also significantly above
the conventional large effect size 0.71 [69], as shown in Ta-
ble 4 (vs. 2nd best AFLGOB, avg: 0.78, median: 0.80, min:
0.52).

UAFUZZ significantly outperforms state-of-the-art di-
rected fuzzers in terms of UAF bugs reproduction with a
high confidence level.

Note that performance of AFLGOB and HAWKEYEB
w.r.t. their original source-level counterparts are represen-
tative (cf. Appendix B).

6Value between 0 and 1, the higher the better. Values above the conven-
tionally large effect size of 0.71 are considered highly relevant [69].
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6.4 UAF Overhead (RQ2)

Protocol. We are interested in both (1) instrumentation-time
overhead and (2) runtime overhead. For (1), we simply com-
pute the total instrumentation time of UAFUZZ and we com-
pare it to the instrumentation time of AFLGO. For (2), we
compute the total number of executions per second of UA-
FUZZ and compare it AFL-QEMU taken as a baseline.

Results. Consolidated results for both instrumentation-time
and runtime overhead are presented in Figure 8 (number of
executions per second is replaced by the total number of ex-
ecutions performed in the same time budget). This figure
shows that UAFUZZ is an order of magnitude faster than the
state-of-the-art source-based directed fuzzer AFLGO in the
instrumentation phase, and has almost the same total num-
ber of executions per second as AFL-QEMU. Appendix C
contains additional results with detailed instrumentation time
(Figure 12) and runtime statistics (Figure 14), as well as instru-
mentation time for AFLGOB and HAWKEYEB (Figure 13).

UAFUZZ enjoys both a lightweight instrumentation time
and a minimal runtime overhead.

6.5 UAF Triage (RQ3)

Protocol. We consider the total number of triaging inputs
(number of inputs sent to the triaging step), the triaging inputs
rate TIR (ratio between the total number of generated inputs
and those sent to triaging) and the total triaging time (time
spent within the triaging step). Since other fuzzers cannot
identify inputs reaching targets during the fuzzing process,
we conservatively analyze all inputs generated by the these
fuzzers in the bug triage step (TIR = 1).

Results. Consolidated results are presented in Figure 9, de-
tailed results in Appendix D, Table 6 and Figure 15.
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Figure 10: Impact of each components (RQ4)

• The TIR of UAFUZZ is 9.2% in total (avg: 7.25%, me-
dian: 3.14%, best: 0.24%, worst: 30.22%) – sparing up
to 99.76% of input seeds for confirmation, and is always
less than 9% except for sample mjs;

• Figure 15 shows that UAFUZZ spends the smallest
amount of time in bug triage, i.e. 75s (avg: 6s, min: 1s,
max: 24s) for a total speedup of 17× over AFLGOB
(max: 130×, avg: 39×).

UAFUZZ reduces a large portion (i.e., more than 90%) of
triaging inputs in the post-processing phase. Subsequently,
UAFUZZ only spends several seconds in this step, win-
ning an order of magnitude compared to standard directed
fuzzers.

6.6 Individual Contribution (RQ4)
Protocol. We compare four different versions of our proto-
type, representing a continuum between AFLGO and UA-
FUZZ: (1) the basic AFLGO represented by AFLGOB, (2)
AFLGOB–ss adds our seed selection metric to AFLGOB,
(3) AFLGOB–ds adds the UAF-based function distance to
AFLGOB–ss, and finally (4) UAFUZZ adds our dedicated
power schedule to AFLGOB–ds. We consider the previ-
ous RQ1 metrics: number of success runs, TTE and Vargha-
Delaney. Our goal is to assess whether or not these technical
improvements do lead to fuzzing performance improvements.
Results. Consolidated results for success runs and TTE are
represented in Figure 10. Appendix E includes detailed results
plus Vargha-Delaney metric (Table 7).

As summarized in Figure 10, we can observe that each new
component does improve both TTE and number of success
runs, leading indeed to fuzzing improvement. Detailed results
in Table 7 with Â12 values show the same clear trend.

The UAF-based distance computation, the power schedul-
ing and the seed selection heuristic individually contribute
to improve fuzzing performance, and combining them
yield even further improvements, demonstrating their in-
terest and complementarity.

6.7 Patch Testing & Zero-days
Patch testing. The idea is to use bug stack traces of known
UAF bugs to guide testing on the patched version of the PUT



– instead of the buggy version as in bug reproduction. The
benefit from the bug hunting point of view [17] is both to try
finding buggy or incomplete patches and to focus testing on
a priori fragile parts of the code, possibly discovering bugs
unrelated to the patch itself.
How to. We follow bug hunting practice [17]. Starting from
the recent publicly disclosed UAF bugs of open source pro-
grams, we manually identify addresses of relevant call in-
structions in the reported bug stack traces since the code has
been evolved. We focus mainly on 3 widely-used programs
that have been well fuzzed and maintained by the developers,
namely GNU patch, GPAC and Perl 5 (737K lines of C code
and 5 known bug traces in total). We also consider 3 other
codes: MuPDF, Boolector and fontforge (+1,196Kloc).
Results. Overall UAFUZZ has found and reported 30 new
bugs, including 11 new UAF bugs and 7 new CVE (details
in Appendix F, Table 8). At this time, 17 bugs have been fixed
by the vendors. Interestingly, the bugs found in GNU patch
(Appendix F) and GPAC were actually buggy patches.

UAFUZZ has been proven effective in a patch testing
setting, allowing to find 30 new bugs (incl. 7 new CVE) in
6 widely-used programs.

6.8 Threats to Validity
Implementation. Our prototype is implemented as part of
the binary-level code analysis framework BINSEC [34, 35],
whose efficiency and robustness have been demonstrated in
prior large scale studies on both adversarial code and managed
code [22,33,63], and on top of the popular fuzzer AFL-QEMU.
Effectiveness and correctness of UAFUZZ have been assessed
on several bug traces from real programs, as well as on small
samples from the Juliet Test Suite. All reported UAF bugs
have been manually checked.
Benchmark. Our benchmark is built on both real codes and
real bugs, and encompass several bugs found by recent fuzzing
techniques of well-known open source codes (including all
UAF bugs found by directed fuzzers).
Competitors. We consider the best state-of-the-art techniques
in directed fuzzing, namely AFLGO [25] and HAWKEYE [28].
Unfortunately, HAWKEYE is not available and AFLGO works
on source code only. Thus, we re-implement these technolo-
gies in our own framework. We followed the available infor-
mation (article, source code if any) as close as possible, and
did our best to get precise implementations. They have both
been checked on real programs and small samples, and the
comparison against AFLGO source (Appendix B) and our
own AFLGOB implementation is conclusive.

7 Related Work
Directed Greybox Fuzzing. AFLGO [25] and HAWK-
EYE [28] have already been discussed. LOLLY [49] pro-
vides a lightweight instrumentation to measure the sequence

basic block coverage of inputs, yet, at the price of a large
runtime overhead. SEEDEDFUZZ [71] seeks to generate a set
of initial seeds that improves directed fuzzing performance.
SEMFUZZ [74] leverages vulnerability-related texts such as
CVE reports to guide fuzzing. 1DVUL [59] discovers 1-day
vulnerabilities via binary patches.

UAFUZZ is the first directed fuzzer tailored to UAF bugs,
and one of the very few [59] able to handle binary code.
Coverage-based Greybox Fuzzing. AFL [1] is the seminal
coverage-guided greybox fuzzer. Substantial efforts have been
conducted in the last few years to improve over it [26, 40, 46].
Also, many efforts have been fruitfully invested in combining
fuzzing with other approaches, such as static analysis [40,47],
dynamic taint analysis [29, 30, 62], symbolic execution [58,
67, 76] or machine learning [41, 66].

Recently, UAFL [70] - another independent research effort
on the same problem, specialized coverage-guided fuzzing to
detect UAFs by finding operation sequences potentially violat-
ing a typestate property and then guiding the fuzzing process
to trigger property violations. However, this approach relies
heavily on the static analysis of source code, therefore is not
applicable at binary-level.

Our technique is orthogonal to all these improvements, they
could be reused within UAFUZZ as is.
UAF Detection. Precise static UAF detection is difficult.
GUEB [12] is the only binary-level static analyzer for UAF.
The technique can be combined with dynamic symbolic ex-
ecution to generate PoC inputs [38], yet with scalability is-
sues. On the other hand, several UAF source-level static de-
tectors exist, based on abstract interpretation [32], pointer
analysis [72], pattern matching [57], model checking [44] or
demand-driven pointer analysis [68]. A common weakness of
all static detectors is their inability to infer triggering input –
they rather prove their absence.

Dynamic UAF detectors mainly rely on heavyweight in-
strumentation [9, 27, 55] and result in high runtime overhead,
even more for closed source programs. ASan [65] performs
lightweight instrumentation, but at source level only.
UAF Fuzzing Benchmark. While the Juliet Test Suite [56]
(CWE-415, CWE-416)7 contains only too small programs,
popular fuzzing benchmarks [7, 11, 16, 36, 64] comprise only
very few UAF bugs. Moreover, many of these benchmarks
contain either artificial bugs [7, 16, 36, 64] or artificial pro-
grams [56].

Merging our evaluation benchmark (known UAF) and our
new UAF bugs, we provide the largest fuzzing benchmark
dedicated to UAF – 17 real codes and 30 real bugs

8 Conclusion
UAFUZZ is the first directed greybox fuzzing approach tai-
lored to detecting UAF vulnerabilities (in binary) given only
the bug stack trace. UAFUZZ outperforms existing directed
fuzzers, both in terms of time to bug exposure and number of

7Juliet is mostly used for the evaluation of C/C++ static analysis tools.



successful runs. UAFUZZ has been proven effective in both
bug reproduction and patch testing. We release the source
code of UAFUZZ and the UAF fuzzing benchmark at:

https://github.com/strongcourage/uafuzz
https://github.com/strongcourage/uafbench
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A UAF Bug-reproducing Ability (RQ1)
We present in this section additional results regarding RQ1
including more detailed experimental reports.
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Experimental results. Table 4 summarizes the fuzzing per-
formance of 4 binary-based fuzzers against our benchmark by
providing the total number of covered paths, the total number
of success runs and the max/min/average/median values of
Factor and Â12. Table 5 compares our fuzzer UAFUZZ with
several variants of directed fuzzers AFLGO.

Table 4: Summary of bug reproduction of UAFUZZ compared
to other fuzzers against our fuzzing benchmark. Statistically
significant results Â12 ≥ 0.71 are marked as bold.

Fuzzer Total
Avg Paths

Success
Runs

Factor Â12
Mdn Avg Min Max Mdn Avg Min Max

AFL-QEMU 10.6K 85 (+40%) 2.01 6.66 0.60 46.63 0.82 0.78 0.29 1.00
AFLGOB 11.1K 89 (+34%) 1.96 6.73 0.96 43.34 0.80 0.78 0.52 1.00

HAWKEYEB 7.3K 67 (+78%) 2.90 8.96 1.21 64.29 0.88 0.86 0.56 1.00
UAFUZZ 8.2K 119 – – – – – – – –

Table 5: Bug reproduction of AFLGO against our bench-
mark except CVE-2017-10686 due to compilation issues of
AFLGO. Numbers in red are the best µTTEs.

Bug ID AFLGO (source) AFLGOF (source) AFLGOB UAFUZZ
Runs µTTE(s) Runs µTTE(s) Runs µTTE(s) Runs µTTE(s)

giflib-bug-74 10 62 10 281 9 478 10 209
CVE-2018-11496 10 2 10 38 10 22 10 14
yasm-issue-91 10 307 8 2935 8 2427 10 56
CVE-2016-4487 10 676 10 1386 6 2427 6 2110
CVE-2018-11416 10 78 7 1219 10 303 10 235
mjs-issue-78 10 1417 3 9706 4 8755 9 4197
mjs-issue-73 9 5207 3 34210 0 10800 7 4881

CVE-2018-10685 10 74 9 1072 9 305 10 156
CVE-2019-6455 5 1090 0 20296 5 1213 10 438

gifsicle-issue-122 8 4161 7 25881 6 9811 7 9853
CVE-2016-3189 10 72 10 206 10 158 10 141
CVE-2018-20623 10 177 10 1329 9 3169 10 128

Total Success Runs 112 87 86 109
Total µTTE (h) 3.7 27.4 10.1 6.2

B Regarding implementations of AFLGOB
and HAWKEYEB

Comparison between AFLGOB and source-based
AFLGO. We want to evaluate how close our implementation
of AFLGOB is from the original AFLGO, in order to assess
the degree of confidence we can have in our results – we do
not do it for HAWKEYEB as HAWKEYE is not available.

AFLGO unsurprisingly performs better than AFLGOB and
UAFUZZ (Figure 11, Table 5 in Appendix). This is largely
due to the emulation runtime overhead of QEMU, a well-
documented fact. Still, surprisingly enough, UAFUZZ can
find the bugs faster than AFLGO in 4 samples, demonstrating
its efficiency.

Yet, more interestingly, Figure 11 also shows that once em-
ulation overhead 8 is taken into account (yielding AFLGOF ,
the expected binary-level performance of AFLGO), then
AFLGOB is in line with AFLGOF (and even shows better
TTE) – UAFUZZ even significantly outperforms AFLGOF .

8We estimate for each sample an overhead factor f by comparing the
number of executions per second in both AFL and AFL-QEMU, then multi-
ply the computation time of AFLGO by f – f varies from 2.05 to 22.5 in
our samples.
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Figure 11: Summary of fuzzing performance of 4 fuzzers
against our benchmark, except CVE-2017-10686 due to com-
pilation issues of AFLGO.

Performance of AFLGOB is in line with the original
AFLGO once QEMU overhead is taken into account,
allowing a fair comparison with UAFUZZ. UAFUZZ
nonetheless performs relatively well on UAF compared
with the source-based directed fuzzer AFLGO, demon-
strating the benefit of our original fuzzing mechanisms.

About performance of HAWKEYEB in RQ1. HAWKEYEB
performs significantly worse than AFLGOB and UAFUZZ
in §6.3. We cannot compare HAWKEYEB with HAWKEYE
as HAWKEYE is not available. Still, we investigate that issue
and found that this is mostly due to a large runtime over-
head spent calculating the target similarity metric. Indeed,
according to the HAWKEYE original paper [28], this compu-
tation involves some quadratic computation over the total
number of functions in the code under test. On our samples
this number quickly becomes important (up to 772) while the
number of targets (UAFUZZ) remains small (up to 28). A
few examples: CVE-2017-10686: 772 functions vs 10 tar-
gets; gifsicle-issue-122: 516 functions vs 11 targets;
mjs-issue-78: 450 functions vs 19 targets. Hence, we can
conclude that on our samples the performance of HAWKEYEB
are in line with what is expected from HAWKEYE algorithm.

C UAF Overhead (RQ2)
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Figure 12: Average instrumentation time in seconds (except
CVE-2017-10686 due to compilation issues of AFLGO).

Additional data. We first provide additional results for RQ2.
Figures 12 and 13 compare the average instrumentation time
between, respectively, UAFUZZ and the source-based directed



fuzzer AFLGO; and UAFUZZ and the two binary-based di-
rected fuzzers AFLGOB and HAWKEYEB. Figure 14 shows
the total execution done of AFL-QEMU and UAFUZZ for
each subject in our benchmark.

Detailed results. We now discuss experimental results re-
garding overhead in more depth than what was done in §6.4.

• Figures 8 and 12 show that UAFUZZ is an order of
magnitude faster than the state-of-the-art source-based
directed fuzzer AFLGO in the instrumentation phase
(14.7× faster in total). For example, UAFUZZ spends
only 23s (i.e., 64× less than AFLGO) in processing the
large program readelf of Binutils;

• Figures 8 and 14 show that UAFUZZ has almost the
same total number of executions per second as AFL-
QEMU (-4% in total, -12% in average), meaning that
its overhead is negligible.

• Figure 13 shows that HAWKEYEB is sometimes sig-
nificantly slower than UAFUZZ (2×). This is mainly
because of the cost of target function trace closure calcu-
lation on large examples with many functions (cf. §6.3).
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Figure 13: Average instrumentation time in seconds.

gif
lib

-bu
g-7

4

CVE
-20

18-
114

96

yas
m-i

ssu
e-9

1

CVE
-20

16-
448

7

CVE
-20

18-
114

16

mjs
-is

sue
-78

mjs
-is

sue
-73

CVE
-20

18-
106

85

CVE
-20

19-
645

5

CVE
-20

17-
106

86

gif
sic

le-
iss

ue-
122

CVE
-20

16-
318

9

CVE
-20

18-
206

23

103

104

To
ta

lE
xe

cu
tio

ns
(K

)

AFL-QEMU UAFUZZ

Figure 14: Total executions done in all runs.

D UAF Triage (RQ3)
We provide additional results for RQ3: Figure 15 and Table 6
show the average triaging time and number of triaging inputs
(including TIR values for UAFUZZ) of 4 fuzzers against our
benchmark.

E Individual Contribution (RQ4)
We provide additional results for RQ4. Table 7 shows
the fuzzing performance of 2 AFLGOB-based variants
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Figure 15: Average triaging time in seconds.

Table 6: Average number of triaging inputs of 4 fuzzers
against our tested subjects. For UAFUZZ, the TIR values
are in parentheses.

Bug ID AFL-QEMU AFLGOB HAWKEYEB UAFUZZ

giflib-bug-74 200.9 177.0 139.9 10.0 (5.31%)
CVE-2018-11496 409.6 351.7 332.5 5.4 (4.08%)
yasm-issue-91 2115.3 2023.0 326.6 37.4 (2.72%)
CVE-2016-4487 933.1 1367.2 900.2 2.5 (0.24%)
CVE-2018-11416 21.5 21.0 21.0 1.0 (4.76%)
mjs-issue-78 1226.9 1537.8 734.6 262.3 (30.22%)
mjs-issue-73 1505.6 1375.9 745.6 252.2 (29.25%)

CVE-2018-10685 414.2 402.1 328.9 12.6 (3.14%)
CVE-2019-6455 243.2 238.1 211.1 6.9 (1.57%)
CVE-2017-10686 2416.9 2517.0 1765.2 214.3 (8.96%)

gifsicle-issue-122 405.0 431.7 378.5 3.3 (0.86%)
CVE-2016-3189 377.9 764.7 126.4 7.1 (1.69%)
CVE-2018-20623 804.0 724.2 625.1 5.4 (1.39 %)

Total 11.1K 11.9K 6.6K 820 (7.25%)

Table 7: Bug reproduction on 4 fuzzers against our bench-
mark. Â12A and Â12U denote the Vargha-Delaney values of
AFLGOB and UAFUZZ. Statistically significant results for
Â12 (e.g., Â12A ≤ 0.29 or Â12U ≥ 0.71) are in bold.

Fuzzers AFLGOB AFLGOB–ss AFLGOB–ds UAFUZZ

Total Success Runs 89 105 (+18.0%) 111 (+24.7%) 119 (+33.7%)
Total µTTE (h) 15.6 12.3 11.1 9.0
Average Â12A – 0.29 0.37 0.22
Average Â12U 0.78 0.54 0.64 –

AFLGOB–ss and AFLGOB–ds compared to AFLGOB and
our tool UAFUZZ against our benchmark.

F Patch Testing & Zero-days
We provide additional results for patch testing (Table 8), as
well as a detailed discussion on the GNU Patch buggy
patch.

Zoom: GNU Patch buggy patch. We use
CVE-2018-6952 [6] to demonstrate the effectiveness
of UAFUZZ in exposing unknown UAF vulnerabilities. GNU
patch [10] takes a patch file containing a list of differences
and applies them to the original file. Listing 3 shows the
code fragment of CVE-2018-6952 which is a double free
in the latest version 2.7.6 of GNU patch. Interestingly, by
using the stack trace of this CVE as shown in Figure 16,
UAFUZZ successfully discovered an incomplete bug fix [8]
CVE-2019-20633 in the latest commit 76e7758, with a slight
difference of the bug stack trace (i.e., the call of savebuf()



1 File: src/patch.c
2 int main (int argc , char **argv) {...
3 while (0 < (got_hunk = another_hunk (diff_type , reverse

))) { /* Apply each hunk of patch */ ... }
4 ...}
5

6 File: src/pch.c
7 int another_hunk (enum diff difftype , bool rev) { ...
8 while (p_end >= 0) {
9 if (p_end == p_efake) p_end = p_bfake;

10 else free(p_line[p_end]); /* Free and Use event */
11 p_end --;
12 } ...
13 while (p_end < p_max) { ...
14 switch(*buf) { ...
15 case ’+’: case ’!’: /* Our bug CVE-2019-20633 */ ...
16 p_line[p_end] = savebuf (s, chars_read); ...
17 case ’ ’: /* CVE-2018-6952 */ ...
18 p_line[p_end] = savebuf (s, chars_read); ...
19 ...}
20 ...}
21 ... }
22

23 File: src/util.c
24 /* Allocate a unique area for a string. */
25 char *savebuf (char const *s, size_t size) { ...
26 rv = malloc (size); /* Alloc event */ ...
27 memcpy (rv, s, size);
28 return rv;
29 }

Listing 3: Code fragment of GNU patch pertaining to the
UAF vulnerability CVE-2018-6952.

in another_hunk()).
Technically, GNU patch takes an input patch file containing

multiple hunks (line 3) that are split into multiple strings us-

==330== Invalid free() / delete / delete[] / realloc()
==330== at 0x402D358: free (in vgpreload_memcheck-x86-linux.so)
==330== by 0x8052E11: another_hunk (pch.c:1185)
==330== by 0x804C06C: main (patch.c:396)
==330== Address 0x4283540 is 0 bytes inside a block of size 2 free’d
==330== at 0x402D358: free (in vgpreload_memcheck-x86-linux.so)
==330== by 0x8052E11: another_hunk (pch.c:1185)
==330== by 0x804C06C: main (patch.c:396)
==330== Block was alloc’d at
==330== at 0x402C17C: malloc (in vgpreload_memcheck-x86-linux.so)
==330== by 0x805A821: savebuf (util.c:861)
==330== by 0x805423C: another_hunk (pch.c:1504)
==330== by 0x804C06C: main (patch.c:396)

Figure 16: The bug trace of CVE-2018-6952 produced by
VALGRIND.

ing special characters as delimiter via *buf in the switch case
(line 14). GNU patch then reads and parses each string stored
in p_line that is dynamically allocated on the memory using
malloc() in savebuf() (line 26) until the last line of this
hunk has been processed. Otherwise, GNU patch deallocates
the most recently processed string using free() (line 10). Our
reported bug and CVE-2018-6952 share the same free and use
event, but have a different stack trace leading to the same alloc
event. Actually, while the PoC input generated by UAFUZZ
contains two characters ‘!’, the PoC of CVE-2018-6952 does
not contain this character, consequently the case in line 16
was previously uncovered, and thus this CVE had been in-
completely fixed. This case study shows the importance of
producing different unique bug-triggering inputs to favor the
repair process and help complete bug fixing.

Table 8: Summary of zero-day vulnerabilities reported by our fuzzer.

Program Code Size Version (Commit) Bug ID Vulnerability Type Crash Vulnerable Function Status CVE

GPAC 545K

0.7.1 (987169b) #1269 User after free 7 gf_m2ts_process_pmt Fixed CVE-2019-20628
0.8.0 (56eaea8) #1440-1 User after free 7 gf_isom_box_del Fixed CVE-2020-11558
0.8.0 (56eaea8) #1440-2 User after free 7 gf_isom_box_del Fixed Pending
0.8.0 (56eaea8) #1440-3 User after free 7 gf_isom_box_del Fixed Pending
0.8.0 (5b37b21) #1427 User after free 3 gf_m2ts_process_pmt
0.7.1 (987169b) #1263 NULL pointer dereference 3 ilst_item_Read Fixed
0.7.1 (987169b) #1264 Heap buffer overflow 3 gf_m2ts_process_pmt Fixed CVE-2019-20629
0.7.1 (987169b) #1265 Invalid read 3 gf_m2ts_process_pmt Fixed
0.7.1 (987169b) #1266 Invalid read 3 gf_m2ts_process_pmt Fixed
0.7.1 (987169b) #1267 NULL pointer dereference 3 gf_m2ts_process_pmt Fixed
0.7.1 (987169b) #1268 Heap buffer overflow 3 BS_ReadByte Fixed CVE-2019-20630
0.7.1 (987169b) #1270 Invalid read 3 gf_list_count Fixed CVE-2019-20631
0.7.1 (987169b) #1271 Invalid read 3 gf_odf_delete_descriptor Fixed CVE-2019-20632
0.8.0 (5b37b21) #1445 Heap buffer overflow 3 gf_bs_read_data Fixed
0.8.0 (5b37b21) #1446 Stack buffer overflow 3 gf_m2ts_get_adaptation_field Fixed

GNU patch 7K
2.7.6 (76e7758) #56683 Double free 3 another_hunk Confirmed CVE-2019-20633
2.7.6 (76e7758) #56681 Assertion failure 3 pch_swap Confirmed
2.7.6 (76e7758) #56684 Memory leak 7 xmalloc Confirmed

Perl 5 184K

5.31.3 (a3c7756) #134324 Use after free 3 S_reg Confirmed
5.31.3 (a3c7756) #134326 Use after free 3 Perl_regnext Fixed
5.31.3 (a3c7756) #134329 User after free 3 Perl_regnext Fixed
5.31.3 (a3c7756) #134322 NULL pointer dereference 3 do_clean_named_objs Confirmed
5.31.3 (a3c7756) #134325 Heap buffer overflow 3 S_reg Fixed
5.31.3 (a3c7756) #134327 Invalid read 3 S_regmatch Fixed
5.31.3 (a3c7756) #134328 Invalid read 3 S_regmatch Fixed
5.31.3 (45f8e7b) #134342 Invalid read 3 Perl_mro_isa_changed_in Confirmed

MuPDF 539K 1.16.1 (6566de7) #702253 Use after free 7 fz_drop_band_writer Fixed
Boolector 79K 3.2.1 (3249ae0 ) #90 NULL pointer dereference 3 set_last_occurrence_of_symbols Confirmed

fontforge 578K 20200314 (1604c74) #4266 Use after free 3 SFDGetBitmapChar
20200314 (1604c74) #4267 NULL pointer dereference 3 SFDGetBitmapChar
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