
Generic and Effective Specification of
Structural Test Objectives?

Michaël Marcozzi, Mickaël Delahaye, Sébastien Bardin, Nikolai Kosmatov, Virgile Prevosto
CEA, LIST, Software Reliability Laboratory

91191 Gif-sur-Yvette, France
firstname.lastname@cea.fr

Abstract—A large amount of research has been carried out
to automate white-box testing. While a wide range of different
and sometimes heterogeneous code-coverage criteria have been
proposed, there exists no generic formalism to describe them
all, and available test automation tools usually support only a
small subset of them. We introduce a new specification language,
called HTOL (Hyperlabel Test Objectives Language), providing
a powerful generic mechanism to define a wide range of test
objectives. HTOL comes with a formal semantics, and can encode
all standard criteria but full mutations. Besides specification,
HTOL is appealing in the context of test automation as it allows
handling criteria in a unified way.

I. INTRODUCTION

Context. In current software engineering practice, testing [1],
[2], [3], [4] remains the primary approach to find bugs in a
piece of code. We focus here on white-box software testing,
in which the tester has access to the source code – as it is
the case for example in unit testing. Testing all the possible
program inputs being intractable in practice, the software
testing community has notably defined code-coverage criteria
(a.k.a. adequacy criteria or testing criteria) [3], [4], to select
an appropriate set of test inputs. In regulated domains such
as aeronautics, these coverage criteria are strict normative
requirements that the tester must satisfy before delivering the
software. In other domains, coverage criteria are recognized as
a good practice for testing, and a key ingredient of test-driven
development. A coverage criterion fundamentally specifies a
set of test requirements or objectives, which should be fulfilled
by the selected test inputs. Typical requirements include for
example covering all statements (statement coverage) or all
branches in the code (decision coverage). These requirements
are essential to an automated white-box testing process, as
they are used by testing tools to guide the selection of new test
cases, decide when testing should stop and assess the quality
of a test suite (i.e., a set of test cases including test inputs).
Problem. Dozens of code-coverage criteria have been pro-
posed in the literature [3], [4], from basic control-flow or data-
flow [5] criteria to mutations [6] and MCDC [7], offering
notably different ratios between testing thoroughness and
effort. However, from a technical standpoint, these criteria are
seen as very dissimilar bases for automation, so that most
testing tools are restricted to a very small subset of criteria
and that supporting a new criterion is time-consuming. Hence,

?Work partially funded by French ANR (grant ANR-12-INSE-0002).

the wide variety and deep sophistication of coverage criteria
in academic literature is barely exploited in practice, and
academic criteria have only a weak penetration into industry.

Goal and challenges. We intend to bridge the gap between
the potentialities offered by the huge body of academic work
on (code-)coverage criteria on one side, and their limited use
in the industry on the other side. In particular, we aim at
proposing a well-defined and unifying specification mechanism
for these criteria, enabling a clear separation of concerns
between the precise declaration of test requirements on one
side, and the automation of white-box testing on the other side.
This is a fruitful approach that has been successfully applied
for example with SQL for databases and with temporal logics
for model checking. This is also a challenging task as such
a mechanism should be, at the same time: (1) well-defined,
(2) expressive enough to encode test requirements from most
existing criteria, and (3) amenable to automation – coverage
evaluation, test generation and infeasible objective detection.

Proposal. We introduce hyperlabels, a generic specification
language for white-box test requirements. Technically, hyper-
labels are a major extension of labels previously proposed
by our team [8]. While labels can express a large range of
criteria [8] (including a large part WM’ of weak mutations
WM [9], and a weak variant of MCDC [10]), they are still
too limited in terms of expressiveness. For instance, labels
cannot express strong variants of MCDC [7] or most path
and dataflow criteria [5]. In contrast, hyperlabels are able to
encode all criteria from the literature [4] but full mutations
[6], [9].

Compared with similar previous attempts, hyperlabels try to
find a sweetspot between genericity, specialization to coverage
criteria and automation. Indeed, FQL [11] cannot encode
MCDC or WM’ but provides automatic test generation [12],
while temporal logics such as HyperLTL or HyperCTL* [13]
are so expressive that automation faces significant scalability
issues. Hyperlabels are both necessary and (almost) sufficient
for expressing all interesting coverage criteria, and they seem
to be amenable to efficient automation [14].

Contribution. The three main contributions of this paper are:
1. We introduce a novel taxonomy of coverage criteria (Sec-
tion III), orthogonal to both the standard classification [3]
and the one by Ammann and Offutt [4]. Our classification
is semantic, based on the nature of the reachability constraints

underlying a given criterion. This view is sufficient for clas-
sifying all existing criteria but full mutations, and yields new
insights into coverage criteria, emphasizing the complexity
gap between a given criterion and basic reachability. A visual
representation of this taxonomy is proposed, the cube of
coverage criteria.
2. We propose HTOL (Hyperlabel Test Objective Language),
a formal specification language for test objectives (Section IV)
based on hyperlabels. While labels reside in the cube origin,
our language adds new constructs for combining (atomic)
labels, allowing us to encode any criterion from the cube
taxonomy. We present the HTOL syntax and give a formal
semantics in terms of coverage. Finally, we give a few encod-
ings of criteria beyond labels.
3. As a first application of hyperlabels, and in order to
demonstrate their expressiveness, we provide in Section V a
list of encodings for almost all code coverage criteria defined
in the Ammann and Offutt book [4], including many criteria
beyond labels (cf. Fig. 6). The only missing criteria are strong
mutations and full weak mutations, yet a large subset of weak
mutations can be encoded [8].

Potential impact. Hyperlabels provide a lingua franca for
defining, extending and comparing criteria in a clearly doc-
umented way. It is also a specification language for writing
universal, extensible and interoperable testing tools, as we
already demonstrated in practice within the LTest tool [15],
[16], [14]. By making the whole variety and sophistication
of academic coverage criteria much more easily accessible in
practice, hyperlabels help bridging the gap between the rich
body of academic results in criterion-based testing and their
limited use in the industry.

II. BACKGROUND

A. Basics: Programs, Tests and Coverage

We give here a formal definition of coverage and coverage
criteria, following [8]. Given a program P over a vector
V of m input variables taking values in a domain D ,
D1 × · · · × Dm, a test datum t for P is a valuation of V ,
i.e. t ∈ D. A test suite TS ⊆ D is a finite set of test data.
A (finite) execution of P over some t, denoted P (t), is a
(finite) run σ , 〈(loc0, s0), . . . , (locn, sn)〉 where the loci
denote successive (control-)locations of P (≈ statements of
the programming language in which P is written) and the
si denote the successive internal states of P (≈ valuation
of all global and local variables and of all memory-allocated
structures) after the execution of each loci (loc0 refers to the
initial program state).

A test datum t reaches a location loc at step k with
internal state s, denoted t k

P (loc, s), if P (t) has the form
σ · (loc, s) · ρ where σ is a partial run of length k. When
focusing on reachability, we omit k and write t P (loc, s).

Given a test objective c, we write t P c if test datum
t covers c. We extend the notation for a test suite TS and
a set of test objectives C, writing TS P C when for any
c ∈ C, there exists t ∈ TS such that t P c. A (source-code

based) coverage criterion C is defined as a systematic way of
deriving a set of test objectives C = C(P) for any program
under test P . A test suite TS satisfies (or achieves) a coverage
criterion C if TS covers C(P). When there is no ambiguity,
we identify the coverage criterion C for a given program P
with the derived set of test objectives C = C(P).

These definitions are generic and leave the exact definition
of “covering” to the considered coverage criterion. A wide
variety of criteria have been proposed in the literature [2], [4],
[3]. For example, test objectives derived from the Decision
Coverage (DC) criterion are of the form c , (loc,cond)
or c , (loc,!cond), where cond is the condition of the
branching statement at location loc, and t P c if t reaches
a (loc, S) such that cond evaluates to true (resp. false) in S.

B. Criterion Encoding with Labels

In previous work, we have introduced labels [8], a code
annotation language to encode concrete test objectives, and
shown that several common coverage criteria can be simulated
by label coverage, i.e. given a program P and a criterion C,
the concrete test objectives instantiated from C for P can
always be encoded using labels. As our main contribution is
a major extension of labels into hyperlabels, we recall here
basic results about labels.

Labels. Given a program P , a label ` ∈ LabsP is a pair
(loc, ϕ) where loc is a location of P and ϕ is a predicate over
the internal state at loc, that is, such that: (1) ϕ contains
only variables and expressions (using in the same language as
P) defined at location loc in P , and (2) ϕ contains no side-
effect expressions. There can be several labels defined at a
single location, which can possibly share the same predicate.
More concretely, our labels can be compared to labels in the
C language, decorated with a pure C expression.

We say that a test datum t covers a label ` , (loc, ϕ) in P ,
denoted t L P `, if there is a state s such that t reaches (loc, s)
(i.e. t P (loc, s)) and s satisfies ϕ. An annotated program
is a pair 〈P,L〉 where P is a program and L ⊆ LabsP is a set
of labels for P . Given an annotated program 〈P,L〉, we say
that a test suite TS satisfies the label coverage criterion (LC)
for 〈P,L〉, denoted TS L 〈P,L〉 LC, if TS covers every label
of L (i.e. ∀` ∈ L : ∃t ∈ TS : t L P `).

Criterion Encoding. Label coverage simulates a coverage
criterion C if any program P can be automatically annotated
with a set of labels L in such a way that any test suite TS satis-
fies LC for 〈P,L〉 if and only if TS covers all the concrete test
objectives instantiated from C for P . We call annotation (or
labeling) function such a procedure automatically adding test
objectives into a given program for a given coverage criterion.

It is shown in [8] that label coverage can notably simu-
late basic-block coverage (BBC), branch coverage (BC) and
decision coverage (DC), function coverage (FC), condition
coverage (CC), decision condition coverage (DCC), multi-
ple condition coverage (MCC) as well as the side-effect-
free fragment of weak mutations (WM’). The encoding of
GACC can also be deduced from [10]. Figure 1 illustrates the

simulation of some criteria with labels on sample code – that
is, the resulting annotated code automatically produced by the
corresponding annotation functions.

statement_1;
if(x==y && a<b)

{...};
statement_3;

→

statement_1;
//! l1: x==y
//! l2: x!=y
//! l3: a<b
//! l4: a>=b
if(x==y && a<b)

{...};
statement_3;

statement_1;
//! l1: x==y && a<b
//! l2: x!=y && a<b
//! l3: x==y && a>=b
//! l4: x!=y && a>=b
if(x==y && a<b)

{...};
statement_3;

Condition
Coverage (CC)

Multiple Conditon
Coverage (MCC)

Fig. 1. Encoding of standard test requirements with labels (from [8])

The main benefit of labels is to unify the treatment of test
requirements belonging to different classes of coverage criteria
in a transparent way, thanks to the automatic insertion of labels
in the program under test.
Limits. A label can only express the requirement that an
assertion at a single location in the code must be covered by a
single test execution. This is not expressive enough to encode
the test objectives coming from path-based criteria, data-flow
criteria, strong variants of MCDC or full mutations.
Our goal. In this work, we aim at extending the expressive
power of labels towards all criteria defined in [4] (except WM
and strong mutations SM). The proposed extension should
preserve the automation capabilities of labels.

III. A NEW TAXONOMY: THE CUBE

We propose a new taxonomy for code coverage criteria,
based on the semantics of the associated reachability problem1.
We take standard reachability constraints as a basis, and
consider three orthogonal extensions:
Basis location-based reachability, constraining a single pro-

gram location and a single test execution at a time,
Ext1 reachability constraints relating several executions of the

same program (hyperproperties [17]),
Ext2 reachability constraints along a whole execution path

(safety [18]),
Ext3 reachability constraints involving choices between sev-

eral objectives.
The basis corresponds to criteria that can be encoded with

labels. Extensions 1, 2 and 3 can be seen as three euclidean
axes that spawn from the basis and add new capabilities to
labels along three orthogonal directions. This gives birth to
a visual representation of our taxonomy as a cube, depicted
in Figure 2, where all coverage criteria (but full mutations)
can be arranged on one of the cube vertices, depending on
the expressiveness of its associated reachability constraints.
Intuitively, strong mutation falls outside the cube because it
relates two executions on two programs, the program under
test and the mutant. Yet, we can classify test objectives
corresponding to the violation of security properties such as
non-interference (cf. Example 4, Section IV-B).

1More precisely: the reachability problem of the test requirements associ-
ated to the coverage criterion.

BBC, BC
CC, GACC
WM’, FC,...

CACC, RACC,...

all-uses,
Path-based

criteria

Call
Coverage

Security
Non-interference

Violations

all-defs

?

?

safety

disjunction

hyperprop
labels

Fig. 2. The “cube” taxonomy of coverage criteria

This taxonomy is interesting in several respects. First, it
is semantic, in the sense that it refers to the reachability
problems underlying the test requirements rather than to the
artifact which the test requirements are drawn from. In that
sense it represents progress toward abstraction compared to
the older taxonomies [4], [3], the one of [4] being already
more abstract than [3]. Second, it is very concise (only three
basic parameters) and yet almost comprehensive, yielding new
insights on criteria, through their distance to basic reachability.
Interestingly, while many criteria require two extensions, we
do not know of any criterion involving the three extensions.
More generally, no criterion seems to use a disjunction of
constraints over several executions of the same program.

IV. HYPERLABELS

The previous section shows that our semantic taxonomy is
suitable to represent the whole set of coverage criteria we
are interested in. Since labels correspond to basic reachability
constraints, we seek to extend them in the three directions of
axes in order to build a universal test requirement description
language. We detail here the principle, syntax and semantics
of the proposed HTOL language.

A. Principles

HTOL is based on labels [8] (referred to as atomic now) to
which we add five constructions, namely: bindings, sequences,
guards, conjunctions and disjunctions. By combining these
operators over atomic labels, one builds new objectives to be
covered, which we call hyperlabels.
• Bindings ` B {v1 ←[e1; . . .} store in meta-variable(s)
v1, . . . the value of well-defined expression(s) e1, . . . at
the state at which atomic label ` is covered;

• Sequence `1
φ−→ `2 requires two atomic labels `1 and `2 to

be covered sequentially by a single test run, constraining
the whole path section between them by φ;

• Conjunction h1 · h2 requires two hyperlabels h1, h2 to
be covered by (possibly distinct) test cases, enabling to
express hyperproperties about sets of tests;

• Disjunction h1 + h2 requires covering at least one of
hyperlabels h1, h2. This enables to simulate criteria in-
volving disjunctions of objectives;

• Guard 〈h | ψ〉 expresses a constraint ψ over meta-
variables observed (at different locations and/or during
distinct executions) when covering labels underlying h.

B. Simple Examples

We present here a first few examples of criterion encodings
using hyperlabels. They are presented in an informal way, a
formal semantics of hyperlabels being given in Section IV-C.

Example 1 (MCDC) We start with conjunction, bindings and
guards. Consider the following code snippet:
statement_0;
// loc_1
if (x==y && a<b) {...};
statement_2;

The (strong) MCDC criterion requires demonstrating that
each atomic condition c1 , x==y and c2 ,a<b alone can
influence the whole branch decision d , c1 ∧ c2. For c1, it
comes down to providing two tests where the truth value of c2
at loc1 remains the same, while values of c1 and d change. The
requirement for c2 is symmetric. This can be directly encoded
with hyperlabels h1 and h2 as follows:

l , (loc1, d)B {c1 ←[x==y; c2 ←[a<b}
l′ , (loc1,¬d)B {c′1 ← [x==y; c′2 ← [a<b}
h1 , 〈l · l′ | c1 6= c′1 ∧ c2 = c′2〉
h2 , 〈l · l′ | c1 = c′1 ∧ c2 6= c′2〉

h1 requires that the test suite reaches loc1 twice (through
the · operator) with different values for decision d. Values
taken by c1 and c2 when loc1 is reached are bound (through
B) to metavariables c1, c2 (first execution) and c′1, c

′
2 (second

one). These recorded values must then satisfy the guard c1 6=
c′1∧c2 = c′2, meaning that c1 alone can influence the decision.
Similarly, h2 ensures the desired test objective for c2.

Example 2 (Call coverage) Let us continue by showing the
interest of the disjunction operator. Consider the following
code snippet where f and g are two functions.
int f() {
if (...) { /* loc_1 */ g(); }
if (...) { /* loc_2 */ g(); }}

The function call coverage criterion (FCC) requires a test
case going from f to g, i.e. passing either through loc1 or
loc2. This is exactly represented by hyperlabel h3 below:

h3 , (loc1, true) + (loc2, true)

Example 3 (all-uses) We illustrate now the sequence opera-
tor ·−→. Consider the following code snippet.
/* loc_1 */ a := x;
if (...) /* loc_2 */ res := x+1;
else /* loc_3 */ res := x-1;

In order to meet the all-uses dataflow criterion for the
definition of variable a at line loc1, a test suite must cover the
two def-use paths from loc1 to loc2 and to loc3. These two
objectives are represented by hyperlabels h4 , (loc1, true) −→
(loc2, true) and h5 , (loc1, true) −→ (loc3, true).

Example 4 (Non-interference) Last, we present a more de-
manding example that involves bindings, sequences and
guards. Non-interference is a strict security policy model
which prescribes that information does not flow between

sensitive data (high) towards non-sensitive data (low). This
is a typical example of hypersafety property [17], [13]. Hy-
perlabels can express the violation of such a property in a
straighforward manner. Consider the code snippet below.
int flowcontrol(int high, int low) {

// loc_1
...
// loc_2
return res; }

Non-interference is violated here if and only if two execu-
tions with the same low input exhibit different output (res)
– because it would mean that a difference in the high input
is observable. This can be encoded with hyperlabel h6:

l1 , (loc1, true)B {lo ← [low} → (loc2, true)B {r ← [res}
l2 , (loc1, true)B {lo′ ← [low} → (loc2, true)B {r ′ ← [res}
h6 , 〈l1 · l2 | lo = lo′ ∧ r 6= r′〉

C. Formal Definition

Syntax. The syntax is given in Figure 3, where:
• ` , (loc, ϕ) ∈ LabsP is an atomic label.
• B ∈ Bindingsloc is a partial mapping between arbitrary

metavariable names v ∈ HVars and well-defined expres-
sions e at the program location loc;

• l, l1, · · · , li, · · · , ln are atomic labels with bindings;
• φi is a predicate over the metavariable names defined

in the bindings of labels l1, . . . , li, over the current
program location pc (≈ program counter) and over the
variable names defined in all program locations that can
be executed in a path going from loci to loci+1.

• h, h1, h2 ∈ HypsP are hyperlabels;
• ψ is a predicate over the set nm(h) of h-visible names

(i.e. metavariable names guaranteed to be recorded by
h’s bindings), defined as follows:

nm(`BB) , all the names defined in B

nm([l1
φ1−→ · · · ln]) , nm(l1) ∪ · · · ∪ nm(ln)

nm(〈h | ψ〉) , nm(h)

nm(h1 · h2) , nm(h1) ∪ nm(h2)

nm(h1 + h2) , nm(h1) ∩ nm(h2);

h ::= l label

| [l1
φ1−−→ {li

φi−−→ }* ln] sequence of labels
| 〈h | ψ〉 guarded hyperlabel
| h1 · h2 conjunction of hyperlabels
| h1 + h2 disjunction of hyperlabels

l ::= ` BB atomic label with bindings

B ::= {v1 ← [e1; . . .} bindings

Fig. 3: Syntax of Hyperlabels

Well-formed hyperlabels. In general, a name can be bound
multiple times in a single hyperlabel, which would result in

ambiguities when evaluating guards. To prevent this issue, we
only consider well-formed hyperlabels, as defined by the wf(·)
predicate in Figure 4.

∀i, j, i 6= j ⇒ vi 6= vj

wf(`B {v1 ← e1; ...; vn ← en})
wf(h)

wf(〈h | ψ〉)

∀i, j, i 6= j ⇒ nm(li) ∩ nm(lj) = ∅

wf([l1
φ1−−→ · · · ln])

wf(h1) wf(h2) nm(l1) ∩ nm(l2) = ∅
wf(h1 · h2)

wf(h1) wf(h2) nm(l1) = nm(l2)

wf(h1 + h2)

Fig. 4: Well-formed hyperlabels

In particular, on well-formed hyperlabels, nm is compatible
with distributivity of · and +. For instance, if we have wf(h)
with h , h1 · (h2 + h3), then, with h′ , (h1 · h2) + (h1 · h3),
we have wf(h′) and nm(h) = nm(h′).
Semantics. HTOL is given a semantics in terms of coverage
and execution traces, as was done for atomic labels [8]. This
kind of semantics is not tied to syntactic elements of the
program under test, allowing for example to express WM’.

A primary requirement for covering hyperlabels is to capture
execution states into the variables defined in bindings. For
that, we introduce the notion of environment. An environment
E ∈ Envs is a partial mapping between names and values, that
is, Envs , HVars 9 Values. Given an execution state s at the
program location loc and some bindings B ∈ Bindingsloc , the
evaluation of B at state s, denoted JBKs, is an environment
E ∈ Envs such that E(v) = val iff B(v) evaluates to val
considering the execution state s.

We can now define hyperlabel coverage. A test suite TS
covers a hyperlabel h ∈ HypsP , denoted TS H P h, if there
exists some environment E ∈ Envs such that the pair 〈TS , E〉
covers h, denoted 〈TS , E〉 H P h, defined by the inference
rules of Figure 5. An annotated program is a pair 〈P,H〉
where P is a program and H ⊆ HypsP is a set of hyperlabels
for P . Given an annotated program 〈P,H〉, we say that a test
suite TS satisfies the hyperlabel coverage criterion (HLC)
for 〈P,H〉, denoted TS H 〈P,H〉 HLC, if the test suite TS

covers every hyperlabel from H (i.e. ∀h ∈ H,TS H P h).
The criterion simulation introduced for labels [8] is general-

ized to hyperlabels. Hyperlabel coverage simulates a coverage
criterion C if any program P can be automatically annotated
with a set of hyperlabels H , so that, for any test suite TS,
TS satisfies HLC for 〈P,H〉 iff TS fulfills all the concrete
test objectives instantiated from C for P .
Disjunctive Normal Form. Any well-formed hyperlabel h
can be rewritten into a disjunctive normal form (DNF), i.e a
coverage-equivalent hyperlabel hdnf arranged as a disjunction
hdnf , c1 + · · · + ci + · · · + cn of guarded conjunctions
ci , 〈lsi1 · . . . · lsip | ψ(Blsi1 , · · · , Blsip)〉 over atomic labels or
sequences. The equivalence between h and hdnf is stated as

∀ TS ⊆ D, ∀ E ∈ Envs, 〈TS , E〉 H P h⇔ 〈TS , E〉 H P hdnf .

The main advantage of DNF is that checking whether a test
suite covers hdnf is relatively easy: we just have to find a ci
for which all atomic labels or sequences lsij are covered and
ψ holds for the corresponding bindings.

D. Advanced Example: Data-Flow on Array Cells

Standard data-flow criteria, like all-uses, can be refined to
consider the definition and use of single array cells. Encoding
such test objectives is complex as it requires constraining
dynamic information. For example, in the following code,
the path from loc1 to loc3 is a valid definition-use-path iff
i = k 6= j, which cannot be known statically:

int foo(int i,int j,int k){
/* loc_1 */ a[i] = x;
/* loc_2 */ a[j] = y;
/* loc_3 */ z = a[k] + 1; }

With hyperlabels, we just add bindings to the atomic labels
to save the values of i, k and use the guard and → operators
to enforce the required relationship. Encoding for the previous
example is given below, with pc the current line of code:
l3 , (loc1, true) l4 , (loc3, true)

h7 , 〈l3 B {v1 ← [i}
pc=loc2
⇒j 6=v1−−−−−→ l4 B {v2 ←[k} | v1 = v2〉

V. EXTENSIVE CRITERIA ENCODING

As a first application of hyperlabels, we perform an ex-
tensive literature review and we try to encode all coverage
criteria with hyperlabels. Especially, we have been able to
encode all criteria from the Ammann and Offutt book [4],
but strong mutations and full weak mutations. Indeed, these
two criteria really require the ability to run tests on variants
of the original program, whereas HTOL does not modify the
code itself. These results are summarized in Fig. 6, where we
also specify which criteria can be expressed by atomic labels
alone, and the required hyperlabel operators otherwise.

Interestingly, many criteria fall beyond the scope of atomic
labels, and many also require combining two or three HTOL
operators. This is a strong a posteriori evidence that the lan-
guage of hyperlabels is both necessary and (almost) sufficient
to encode state-of-the-art coverage criteria. Detailed encodings
are available on the companion website2.

VI. RELATED WORK

The FQL language. The Fshell Query Language (FQL) by
Holzer et al. [11] for test suite specification represents the
closest work to ours. FQL enables encoding code coverage
criteria into an extended form of regular expressions, whose
alphabet is composed of elements from the control-flow graph
of the tested program. The scope of criteria that can be en-
coded in FQL is incomparable with the one offered by HTOL,
as FQL handles complex safety-based test requirements but no
hyperproperty-based requirement. Moreover, FQL is limited to
syntactic elements of the program under analysis. As a con-
sequence, FQL cannot encode neither MCDC nor WM’. Yet,

2Companion website: http://icst17.marcozzi.net

LABEL

t ∈ TS t k
P 〈loc, s〉 s � ϕ E ⊇ JBKs

t k
E 〈loc, ϕ〉BB 〈TS , E〉 H P 〈loc, ϕ〉BB

GUARD

〈TS , E〉 H P h E � ψ
〈TS , E〉 H P 〈h | ψ〉

CONJUNCTION

〈TS , E〉 H P h1 〈TS , E〉 H P h2

〈TS , E〉 H P h1 · h2

DISJUNCTION LEFT

〈TS , E〉 H P h1

〈TS , E〉 H P h1 + h2

DISJUNCTION RIGHT

〈TS , E〉 H P h2

〈TS , E〉 H P h1 + h2

SEQUENCE

t ∈ TS ∀i ∈ [1, n] , t ki
E li ∀i ∈ [1, n− 1] , ki < ki+1

∀i ∈ [1, n− 1] , ∀j ∈]ki, ki+1[, (locj , sj) = P (t)j ∧ φi(E , locj , sj)

〈TS , E〉 H P [l1
φ1−→ l2

φ2−→ . . .
φn−1−−−→ ln]

Naming convention: TS test suite; E hyperlabel environment; h, h1, h2 hyperlabels; ψ hyperlabel guard predicate; n positive integer (n > 1); l1, . . . , ln atomic labels with

bindings; t test datum; k, k1, . . . , kn execution step numbers; locj , loc program locations; sj , s execution states; P (t)j the j-th step of the program run P (t) of P on t;

φ1, . . . , φn−1 predicates over sequences of labels; ϕ label predicate; B hyperlabel bindings.

Fig. 5. Inference rules for hyperlabel semantics

Encodable by See section

la
be

ls hyperlabels or reference

using or website
φ−→ |ψ〉 · +

Control-flow graph coverage
Statement, Basic-Block, Branch X [8]
Path coverage:

EPC, PPC, CRTC, CPC, SPC • website
Simple Round Trip coverage • • website

Call-graph coverage
Function coverage (all nodes) X [8]
Call coverage (all edges) • IV-B
Data-flow coverage
All Definitions (all-defs) • • website

+ array cell definitions • • • as in IV-D
All Uses (all-uses) • IV-B

+ array cell definitions • • IV-D
All Def-Use Paths (all-du-paths) • website

+ array cell definitions • • as in IV-D
Logic expression coverage
BBC, CC, DCC, MCC X [8]
MCDC variants:

GACC, GICC X [8],website
CACC, RACC, RICC • • IV-B,website

DNF-based criteria:
IC, UTPC X website
CUTPNFPPC • • website

Mutation coverage
Side-effect-free Weak Mut. X [8]
(Full) Weak Mut., Strong Mut. not encodable

X: expressible by atomic labels •: required hyperlabel operators

Fig. 6. Simulation of criteria from [4]

FQL offers the ability to encode, in a standardized way, generic
coverage criteria (independently of any concrete program),
where HTOL encodes concrete test objectives (i.e. particular
instantiations of coverage criteria for given programs).

HyperLTL and HyperCTL*. Hyperproperties [17] are prop-
erties over several traces of a system. Clarkson et al. [13] have
introduced HyperLTL and HyperCTL*, which are extensions
of temporal logics for hyperproperties, as well as an associated
model-checking algorithm. This work makes no reference to
test criterion encoding, but the proposed languages could be
used to encode criteria like MCDC. However, the complexity
results and first experiments [13] indicate that the approach
faces strong scalability limits. HTOL being a priori less
generic (yet, sufficient in practice), it is likely to be more
amenable to efficient automation.

VII. CONCLUSIONS

To sum up, HTOL proposes a unified framework for de-
scribing and comparing most existing test coverage criteria.
This enables in particular implementing generic tools that can
be used for a wide range of criteria. As a first application, a
universal testing tool relying on HTOL is proposed in [14].
Future work includes an efficient lifting of automatic test
generation technologies to HTOL.

REFERENCES

[1] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing,
3rd ed. Wiley, 2011.

[2] A. P. Mathur, Foundations of Software Testing. Addison-Wesley, 2008.
[3] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage

and adequacy,” ACM Comput. Surv., vol. 29, no. 4, 1997.
[4] P. Ammann and J. Offutt, Introduction to Software Testing, 1st ed.

Cambridge University Press, 2008.
[5] J. W. Laski and B. Korel, “A data flow oriented program testing strategy,”

IEEE Trans. Software Eng., vol. 9, no. 3, 1983.
[6] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data

selection: Help for the practicing programmer,” Computer, 1978.
[7] J. J. Chilenski and S. P. Miller, “Applicability of modified condition/deci-

sion coverage to software testing,” Software Engineering Journal, 1994.
[8] S. Bardin, N. Kosmatov, and F. Cheynier, “Efficient leveraging of

symbolic execution to advanced coverage criteria,” in ICST, 2014.
[9] W. E. Howden, “Weak mutation testing and completeness of test sets,”

IEEE Trans. Software Eng., vol. 8, no. 4, 1982.
[10] R. Pandita, T. Xie, N. Tillmann, and J. de Halleux, “Guided test

generation for coverage criteria,” in ICSM, 2010.
[11] A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith, “How did you

specify your test suite,” in ASE, 2010.
[12] ——-, “Fshell: Systematic test case generation for dynamic analysis and

measurement,” in CAV, 2008.
[13] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe,

and C. Sánchez, “Temporal logics for hyperproperties,” in POST, 2014.
[14] M. Marcozzi, S. Bardin, M. Delahaye, N. Kosmatov, and V. Prevosto,

“Taming Coverage Criteria Heterogeneity with LTest” in ICST, 2017.
[15] S. Bardin, O. Chebaro, M. Delahaye, and N. Kosmatov, “An all-in-one

toolkit for automated white-box testing,” in TAP. Springer, 2014.
[16] S. Bardin, M. Delahaye, R. David, N. Kosmatov, M. Papadakis, Y. L.

Traon, and J. Marion, “Sound and quasi-complete detection of infeasible
test requirements,” in ICST, 2015.

[17] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” J. Comput.
Secur., vol. 18, no. 6, 2010.

[18] Z. Manna, The Temporal Logic of Reactive and Concurrent Systems
Specification. Springer, 1992.

