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Abstract— Automated white-box testing is a major issue in
software engineering. In previous work, we introduced LTest, a
generic and integrated toolkit for automated white-box testing
of C programs. LTest supports a broad class of coverage criteria
in a unified way (through the label specification mechanism)
and covers most major parts of the testing process – including
coverage measurement, test generation and detection of infeasible
test objectives. However, the original version of LTest was unable
to handle several major classes of coverage criteria, such as
MCDC or dataflow criteria. Moreover, its practical applicability
remained barely assessed.

In this work, we present a significantly extended version of
LTest that supports almost all existing testing criteria, including
MCDC and some software security properties, through a native
support of recently proposed hyperlabels. We also provide a more
realistic view on the practical applicability of the extended tool,
with experiments assessing its efficiency and scalability on real-
world programs.

I. INTRODUCTION

Context. Automated white-box testing is a major topic in
software engineering [1], [2], [3], [4]. Along the years, many
tools have been proposed for supporting different parts of
the testing process. These tools explicitly or implicitly rely
on a code-coverage criterion (a.k.a. adequacy criterion or
testing criterion) [3], [4] to guide automation. Such a criterion
formally specifies what the test objectives are. These can then
be used to assess the quality of a test suite and to guide the
selection of additional test cases. In previous work [5], Bardin
et al. introduced LTest, a generic and integrated toolkit for
automated white-box testing of C programs. LTest is generic
in the sense that it handles a wide set of coverage criteria
in a unified way. It is also integrated in the sense that it
centralizes heterogeneous techniques to automatize most key
tasks in white-box testing. Indeed, in addition to test replay
and coverage measurement, the tool leverages a dedicated
version of Dynamic Symbolic Execution [6], [7] for providing
coverage-oriented test generation [8]. It also relies on static
analyses from the Frama-C [9] platform to provide efficient
detection of uncoverable test objectives [10].
Goals and Contributions. While the original version of
LTest already supported a large scope of criteria, it relied
on a specification mechanism whose expressiveness remained
limited with regard to some other exiting criteria. As a
consequence, LTest was unable to handle several classes of
criteria such as strong variants of MCDC, as well as criteria
based on data-flow analysis or path exploration. Yet, such
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criteria can be very important in practice. In particular, MCDC
coverage is mandated by the DO-178 standard that dictates
the development process of avionics software. On the other
hand, the practical applicability of the tool remained barely
illustrated and assessed, as [5] only reported preliminary results,
on small-scale benchmarks. The goals of the present work are
(1) to enable a better support of (almost) all existing criteria in
LTest, and (2) to provide a more realistic view on its practical
applicability, by studying its efficiency and scalability on real-
world code.

Test automation in LTest relies on annotating the tested code
with the considered test objectives using a generic (i.e. criterion
independent) test objective specification language: labels [8].
The limitations of this language prevent LTest from handling
criteria like MCDC or dataflow criteria. Very recently, we
have provided a conceptual extension of the label language,
called HTOL [11], that overcomes previous limitations of labels
and allows for encoding almost all criteria from the literature
(except strong mutations). HTOL can also be used to test
important software security properties. An additional goal of
this work is to provide a tool support for the HTOL language.

• As a first contribution of this paper, we report on
significant advances made in an extended version of LTest
that now offers a support for HTOL test objectives, and
detail the new technical capabilities of some of its modules.
We show how these new features can be exploited in
practice, by illustrating how one can use the new LTest
API to add support for new testing criteria.

• As a second contribution, we perform an experimental
study of efficiency and scalability of the new capabilities
of LTest. The experiments involve coverage measurement
and test generation. We consider test suites up to 10,000
tests and perform unit testing on C functions from real
world programs, including OpenSSL and SQLite.

These contributions make LTest a practical, universal and
extensible white-box testing toolkit, which is now released
with built-in support for 14 major coverage criteria. LTest
users can benefit from advanced techniques for automating
their practical testing tasks, whatever the approach they choose
for estimating coverage. Developers of new test automation
techniques can build them directly inside LTest, making them
immediately available in practice, no matter the way coverage
is defined.

Outline. Section II gives an overview of the original version
of LTest. Section III provides a practical presentation of HTOL,



defined in [11]. Section IV details the new technical capabilities
of LTest, lifted to most existing test criteria. Section V discusses
efficiency and scalability experiments. Finally, related work
and conclusion are discussed in Sections VI and VII.

II. ORIGINAL VERSION OF LTEST

A. Main Features

Given a C program to be tested according to the test
objectives defined by a code coverage criterion, the LTest
toolkit [5] offers the following services:

Uncoverability detection tries to detect which of the test
objectives cannot be covered by any test datum (e.g. in
dead code). Its results are primarily used by the other two
services, but can also be exported for external use.
Coverage measurement replays an existing test suite and
reports which of the test objectives have been covered,
which have not and which are uncoverable.
Test generation creates a test suite tailored to cover as
many test objectives as possible. It can skip objectives
known to be uncoverable, or those already covered by a
given test suite in order to complete its coverage.

The following criteria are supported and can be combined
with each other: decision coverage (DC), function coverage
(FC), condition coverage (CC), multiple-condition coverage
(MCC), weak mutation (WM, operators AOR, ROR, COR,
ABS) and input domain partition (IDC). The analysis can be
restricted to certain functions in the code and additional test
objectives can be added manually in the code.

B. Specifying Test Objectives with Labels

The toolkit has been conceptually designed around the
notions of labels [8] and annotated programs, which provide
a specification mechanism for coverage criteria. Labels are
predicates attached to program statements. A program with
labels is called an annotated program. A label is covered if it
is reached by a test case execution and its predicate is satisfied.
Labels can simulate many common coverage criteria, from
decision or condition coverage to a substantial subset of weak
mutations, making it possible to handle them all in a unified
way. For each test objective defined by the criterion, a label is
added to the program under test, such that covering the label is
equivalent to covering the objective. The automatic insertion of
adequate labels for a given coverage criterion is performed by
a so-called labelling function. An example is given in Fig. 1.

s t a t e m e n t _ 1 ;
i f ( x==y && a<b )

{ . . . } ;
s t a t e m e n t _ 3 ;

→

s t a t e m e n t _ 1 ;
/ / l 1 : x==y && a<b
/ / l 2 : ! ( x==y && a<b )

i f ( x==y && a<b )
{ . . . } ;

s t a t e m e n t _ 3 ;

Fig. 1. Simulating decision coverage (DC) criterion with labels

Fig. 2. Overview of LTest Architecture

C. Internal Architecture

LTest comes as a series of four plugins of the Frama-C
[9] platform, mostly written in OCaml: LAnnotate, LReplay,
LUncov and LGenTest. These modules interact through shared
information made of the annotated program and a status
database mapping each label to its current status: covered,
uncoverable or uncovered. The whole architecture is depicted
in Figure 2. We provide hereafter the main clues about the
role of each module. The LTest code is open source (LGPL),
except the LGenTest module, and available online1.

LAnnotate acts as a front-end: it annotates the program
with labels according to the chosen criteria and creates the
status database. The module implements the idea of labelling
functions and provides one for each supported criterion. In
addition, users can extend the module by writing their own
labelling functions. To facilitate this task, LAnnotate provides
an API to easily insert labels into the code and to register
inserted labels in the shared status database.

Given an annotated program and its status database, the
LUncov module runs static analysis to identify uncoverable
labels and mark them as uncoverable in the database [10].

Provided with a test suite and an annotated program, the
LReplay module executes each test case in order to update the
label statuses in the status database. In addition, it computes
coverage statistics for the given test suite.

The LGenTest module provides the test generation service
of LTest, by implementing a flavour of Dynamic Symbolic
Execution (DSE) [6], [7] tailored to cover labels and called
DSE? [8]. The tool is based on a modified version of the

1http://micdel.fr/ltest.html



PathCrawler test generator [7]. LGenTest reads the status
database so that already-covered labels (i.e. by another test
suite) and uncoverable labels (detected by LUncov) are ignored.
LGenTest updates the status database recording the labels newly
covered by the tests it has generated.

III. A PRACTICAL INTRODUCTION TO HTOL

We recently introduced HTOL [11], a major extension of
the label language used in LTest. HTOL makes it possible
to emulate all white-box criteria defined in the Ammann and
Offutt’s book [4], except strong mutations. Compared to labels,
HTOL notably adds support for all the variants of the MCDC
criterion, call coverage and all the dataflow and path-based
criteria. Moreover, HTOL enables encoding test objectives to
find violations of important software security properties, such
as non-interference [12].

Concretely, HTOL introduces five operators to combine (now
referred to as atomic) labels into hyperlabels, specifying more
complex test objectives:

Bindings B save the value of well-defined expression(s)
at the state at which an atomic label is covered;
Guard 〈 | ·〉 expresses a constraint over the binding
values of several atomic labels;
Sequence ·−→ requires atomic labels to be covered sequen-
tially by a single constrained test run;
Conjunction · and Disjunction + are the logical AND
and OR operators, for combining test objectives together.

We illustrate briefly these operators through two examples
of criteria encoding.

Example 1 (MCDC) We start with conjunction, bindings and
guards. Consider the following code snippet:

s t a t e m e n t _ 0 ;
/ / l o c _ 1
i f ( x==y && a<b ) { . . . } ;
s t a t e m e n t _ 2 ;

The (strong) MCDC criterion requires to demonstrate here
that each atomic condition c1 , x==y and c2 ,a<b alone can
influence the whole branch decision d , c1 ∧ c2. For c1, it
comes down to providing two tests where the truth value of c2
at loc1 remains the same, while values of c1 and d change. The
requirement for c2 is symmetric. This can be directly encoded
with hyperlabels h1 and h2 as follows:

l , (loc1, true)B {c1 ←[ x==y; c2 ← [ a<b; d ← [ x==y&&a<b}
l′ , (loc1, true)B {c′1 ←[ x==y; c′2 ← [ a<b; d ′ ← [ x==y&&a<b}
h1 , 〈l · l′ | c1 6= c′1 ∧ c2 = c′2 ∧ d 6= d ′〉
h2 , 〈l · l′ | c1 = c′1 ∧ c2 6= c′2 ∧ d 6= d ′〉

h1 requires that the test suite reaches loc1 twice (through
the · operator between labels l and l′), with one or two tests
The values taken by the atomic conditions and the decision
when loc1 is reached are bound (through B) to metavariables
c1, c2, d for the first execution and to c′1, c

′
2, d
′ for the second

one. Moreover, these recorded values must satisfy the guard

c1 6= c′1∧c2 = c′2∧d 6= d ′, meaning that c1 alone can influence
the decision. Similarly, h2 ensures the desired test objective
for c2.

Example 2 (all-defs) We illustrate now the sequence and
disjunction operators. Consider the following code snippet.

/∗ l o c _ 1 ∗ / a := x ;
i f ( . . . ) /∗ l o c _ 2 ∗ / r e s := x +1;
e l s e /∗ l o c _ 3 ∗ / r e s := x−1;

In order to meet the all-defs dataflow criterion for the
definition of variable a at line loc1, a test suite must cover
at least one of the two def-use paths from loc1 to loc2 and
to loc3. This objective is represented by the hyperlabel h ,
((loc1, true) −→ (loc2, true)) + ((loc1, true) −→ (loc3, true)).

IV. UPGRADING LTEST FOR WIDER CRITERION SUPPORT

We describe in this section how we have upgraded LTest
in order to support the whole HTOL specification language,
lifting LTest into an (almost) universal testing tool. Such an
upgrade requires major changes in the LAnnotate and LReplay
modules, to be able to instrument code with hyperlabels
and to measure hyperlabel coverage (as a function of label
coverage and coverability). Updates to the LGenTest and
LUncov modules are less necessary, as they can already be
used (in a suboptimal way) to find tests that will cover the
atomic labels composing the hyperlabels and to detect that
some of these atomic labels (hence the hyperlabels that are
built upon them) are uncoverable.

Experiments evaluating the upgrade of LTest are provided
in Section V. The source code of the upgraded LAnnotate and
LReplay modules is available on the companion website2.

A. Upgrading LAnnotate: Instrumenting Code with HTOL

Code annotation and status database format. As a first step
of the upgrade process for LAnnotate, we redesigned the output
format that it uses for annotating the code with (hyper)labels
and generating the (hyper)label status database. Figures 3 and
4 illustrate this new format, considering the same examples as
in Section III. From a given C source file, LAnnotate produces
two resulting files:
• a C file with the annotated code, containing specific

macros at the places where an atomic label should be put,
and which are no-ops by default.

• an .hyperlabel file, which represents the initial state
of the status database, where no hyperlabel has been
covered, hence no binding is associated to any label.

We detail in section IV-B how LReplay uses these files and
updates the information contained in the .hyperlabel file
when running a test suite.

There can basically be two sets of macros in the annotated C
file. First, label corresponds to atomic labels and defines the
label predicate (1 for true in C), its identifying number as well
as the number, name and symbolic value of the metavariables.
Second, seq_label and seq_cond correspond to HTOL’s

2Companion website: http://icst17.marcozzi.net



i n t f unc
( i n t x , i n t y ,

i n t a , i n t b ) {
i f ( x==y && a<b )

re turn a ;
e l s e

re turn b ;
}

−→

# i f n d e f l a b e l
# d e f i n e l a b e l ( . . . ) do {} whi le ( 0 )
# e n d i f
i n t f unc
( i n t x , i n t y ,

i n t a , i n t b ) {
l a b e l ( 1 , 1 , 3 , " c1 " , x==y ,

" c2 " , a<b , " d " , x==y && a<b ) ;
l a b e l ( 1 , 2 , 3 , " c1p " , x==y ,

" c2p " , a<b , " dp " , x==y && a<b ) ;
i f ( x==y && a<b )

re turn a ;
e l s e

re turn b ; }

+

/ / L a b e l s
/ / id , coverage , n b _ b i n d i n g s , b i n d i n g s
1 , notcov , 3 , c1 , , c2 , , d , ,
2 , notcov , 3 , c1p , , c2p , , dp , ,
/ / Sequences
/ / H y p e r l a b e l s
/ / id , h y p e r l a b e l , c o v e r a g e
1 , < l 1 . l 2 | c1 != c1p && c2==c2p && d != dp > , no t c ov
2 , < l 1 . l 2 | c1==c1p && c2 != c2p && d != dp > , no t c ov

file.c file_annotated.c file.hyperlabel

Fig. 3. Files produced by LAnnotate when applied on a C file for the strong MCDC criterion

void fun ( ) {
i n t x = r e a d _ d a t a ( ) ;
i f ( r ead_cond ( ) )

re turn x +1;
e l s e

re turn x−1;
}

−→

# i f n d e f s e q _ l a b e l
# d e f i n e s e q _ l a b e l ( . . . ) do {} whi le ( 0 )
# e n d i f
vo id fun ( ) {
s e q _ l a b e l ( 1 , 1 , 1 , " t a g " , 0 ) ;
s e q _ l a b e l ( 1 , 2 , 1 , " t a g " , 0 ) ;
i n t x = r e a d _ d a t a ( ) ;
i f ( r ead_cond ( ) ) {

s e q _ l a b e l ( 1 , 1 , 2 , " t a g " , 0 ) ;
re turn x +1;

} e l s e {
s e q _ l a b e l ( 1 , 2 , 2 , " t a g " , 0 ) ;
re turn x−1; }

+

/ / L a b e l s
/ / Sequences
/ / id , coverage , n b _ b i n d i n g s , b i n d i n g s
1 , notcov , 0 ,
2 , notcov , 0 ,
/ / H y p e r l a b e l s
/ / id , h y p e r l a b e l , c o v e r a g e
1 , s1+s2 , no t c ov

file.c file_annotated.c file.hyperlabel

Fig. 4. Files produced by LAnnotate when applied on a C file for the all-defs criterion

sequences. Indeed, it should be noted that the syntax and
semantics of HTOL enables one to constrain the sequence
operator, i.e. to place a constraint on several steps of the
execution paths. This forces us to monitor what happens during
several consecutive statements. For example, the hyperlabel
(loc1, true)

loc2⇒!(a>0)−−−−−−−−→ (loc3, true) should be covered by an
execution traversing loc1 and loc3 without entering the loop
at loc2 in the following code:

/∗ l o c _ 1 ∗ / s t a t e m e n t _ 1
/∗ l o c _ 2 ∗ / w h i l e ( a > 0) { . . . }
/∗ l o c _ 3 ∗ / s t a t e m e n t _ 3

This is handled by LAnnotate in the following way:

# i f n d e f seq_cond
# d e f i n e s e q _ l a b e l ( . . . ) do {} w h i l e ( 0 )
# d e f i n e seq_cond ( . . . ) do {} w h i l e ( 0 )
# e n d i f
. . .
s e q _ l a b e l ( 1 , 1 , 1 , " s e q _ s e c t i o n 1 " , 0 ) ;
/∗ l o c _ 1 ∗ / s t a t e m e n t _ 1
seq_cond ( ! ( a > 0 ) , " s e q _ s e c t i o n 1 " ) ;
/∗ l o c _ 2 ∗ / w h i l e ( a > 0) { . . . }
s e q _ l a b e l ( 1 , 1 , 2 , " " , 0 ) ;
/∗ l o c _ 3 ∗ / s t a t e m e n t _ 3

seq_label corresponds to the atomic labels composing
the sequences and defines the label predicate, an identifying
number for the sequence, the rank occupied by the label in this
sequence, a tag name for the sequence section following the
label, as well as the number, name and symbolic value of the
metavariables. seq_cond corresponds to sequence conditions
and defines the symbolic value of the condition as well as
the tag name of the (constrained) sequence section. A single
seq_cond can thus constrain several sequence sections if

they share the same tag name. This is useful as many sequence
sections are often constrained by the same condition in practice.
API for developing hyperlabelling functions. As a second
step of the upgrade process for LAnnotate, we have redesigned
its API so that it can be used to create and store hyperlabeling
functions. Hyperlabelling functions are pieces of code dedicated
to the handling of a particular coverage criterion. Once
developed, they can be plugged into LAnnotate to provide
support for additional criteria. Practically, an hyperlabelling
function is responsible, for a given C source file received
as input, to generate the corresponding macro-annotated and
.hyperlabel files, populated with the test objectives defined
by the considered criterion.

The main primitives offered by the new LAnnotate API
for developing and registering hyperlabelling functions are
presented hereafter:

Registration Service
– Register a new hyperlabelling function.
– Fetch an hyperlabelling function by criterion name.
Code Annotation Service
(notably relying on the API of the Frama-C platform)
– Parse a C file into a standardized abstract syntax tree

(AST) and output such an AST as code in a file.
– Extract useful information out of some specific AST

nodes, using a visitor pattern.
– Extract the control-flow graph (CFG) from the AST

of a C file. Navigate this CFG and obtain syntactic
and semantic information about the navigated code.
These primitives are particularly useful for generating
adequate hyperlabels for criteria specifying complex



set of paths to be covered in the CFG.
– Insert a dedicated macro node for label and sequence

annotation before or after some specific AST nodes,
using a visitor pattern.

Status Database Creation Service
– Save a set of label definitions as a CSV file.
– Save a set of hyperlabel definitions into a file, following

the syntax of a LALR(1) grammar for HTOL.

Built-in hyperlabelling functions. The labelling functions
built in the original version LTest were adapted to this new
API, while new hyperbelling functions were developed for
some important criteria not encodable with labels. The current
version of LAnnotate is released with 14 built-in hyperllabeling
functions, for the following criteria: strong, masking and
weakened MCDC, all-definitions and all-uses coverage, weak
mutations, function and call coverage, condition, decision,
multiple condition and n-wise condition coverage, general
inactive clause coverage, input domain partition coverage.

B. Upgrading LReplay: measuring hyperlabel coverage

In this section, we show how LReplay has been redesigned
so that it can now play a given test suite and detect which
hyperlabels are covered.

Test harness. LTest provides a generic testing infrastructure
for playing a test suite and collecting test data. Each test case
must be encoded into a normalized test driver, i.e. a C file
responsible for preparing the test, calling the tested code, saving
the result and killing possibly looping tests (with a time-out).
Test suites generated by LGenTest are automatically encoded
into such test drivers. Once the tested code has been annotated
with labels and sequences by LAnnotate, LReplay can compile
and run it with the test driver and some instrumentation code.
This last code is a set of C macro definitions of the form

# d e f i n e l a b e l ( / ∗ some p a r a m e t e r s ∗ / )
c a l l _ l r e p l a y ( / ∗ same p a r a m e t e r s ∗ / )

which overwrite the label and sequence annotations in the
tested code so that, every time the test execution reaches an
annotation, the corresponding coverage info is sent to LReplay.

Computing hyperlabel coverage. Given the file_annotated.c
and file.hyperlabel files produced by LAnnotate as inputs, as
well as a set of test drivers, LReplay follows a three step
procedure:
normalization First, file.hyperlabel is parsed and each hyper-

label is transformed into its disjunctive normal form
(DNF) [11].

harvesting Second, test drivers are compiled with the in-
strumented code and run. Every atomic label and label
sequence covered during a test run is marked on-the-
fly in the file.hyperlabel file. LReplay also saves the
environment (values of metavariables) that instantiates
the label bindings at the coverage points.

consolidation Third, the label and sequence coverage in-
formation is propagated within every hyperlabel from
file.hyperlabel, in order to establish if the test suite

covers it or not. Hyperlabel coverage data is saved in
file.hyperlabel as well.

These steps are described in more details in the following.

Normalization. As stated in [11], any hyperlabel can be rewrit-
ten into an equivalent hyperlabel in DNF. Each test objective is
thus encoded as a disjunction of guarded conjunctions between
atomic labels and sequences. This form of hyperlabels is both
very convenient for coverage measurement and very common
in practice. In LReplay, the transformation is performed on
the fly, while parsing the file.hyperlabel file, using an attribute
grammar. Details about the transformation algorithm can be
found on the companion website.

Environment harvesting. Once hyperlabels in DNF have been
obtained, each test driver from the suite is run, and the coverage
information for basic labels, sequences and binding values is
collected in memory. Note that we need to store all possible
binding values encountered along the execution of a test, not
just the first one. While this is easy for atomic labels, sequences
must be treated with care, as there are some non deterministic
choices there. Namely, if the sequence includes a loop, its
starting point may occur at any of the nth loop steps, and
LReplay must maintain a whole set of partially executed
sequences before being able to choose the appropriate one.
Due to space limitations, we do not describe this point further,
as it is common in runtime monitoring. A detailed description
is nevertheless available on the companion website.

Consolidating coverage result. Once the coverage information
for basic labels, sequences and binding values is fully collected,
we can compute the whole hyperlabel-coverage information.
This is straightforward on DNF hyperlabels:
• atomic labels and sequences with no guard are covered

iff they have been covered in the harvesting step;
• a guarded conjunction is covered iff each of its label or

sequence has been marked as covered during harvesting
and there is at least one valid combination of the collected
binding values such that the guard condition is true;

• a disjunction is covered iff at least one of its components
is covered.

In practice, the tool tries every possible valid combination
of the collected binding values for every guarded conjunction,
until it finds one which makes the guard condition true or
proves that none exists (in which case the hyperlabel is not
covered by the test suite).

Optimizations. We first preprocess hyperlabels under consider-
ation in order to remove all unused metavariables appearing in
bindings. Then, during harvesting, we ensure that each binding
is recorded only once, avoiding duplicated values. Finally, we
perform conjunction and disjunction evaluation in a lazy way, in
order to avoid unnecessary combinatorial reasoning on guarded
conjunctions.

About complexity. The procedure presented so far runs in
worst-case exponential time, mainly because of three factors:
(1) normalization may yield an exponential-size hyperlabel,
(2) consolidation for guarded conjunctions may lead to checking



a number of solutions exponential in the size of the conjunction,
and (3) monitoring sequences of labels may include harvesting
a number of environments exponential in the length of the
considered run.

Yet, in practice, LReplay appears to perform well on existing
classes of testing criteria (cf. Section V-A). Here are a few
explanations. First, common testing criteria are naturally in
DNF. Second, the critical parameters indicated above are
strongly limitated in existing criteria: conjunctions of length 2;
sequences of length 2 or without bindings; small domains of
metavariables (boolean). In that setting, complexity becomes
polynomial.

C. Exploiting LGenTest and LUncov Capabilities with HTOL

LGenTest provides a test generation mechanism aimed at
covering test objectives encoded as labels in the tested code.
However, in HTOL, the test objectives are encoded using a
more refined process. A set of secondary objectives are first
encoded by original labels. The primary objectives are then
obtained by further constraining these secondary objectives,
using the HTOL operators. In order to generate tests for HTOL-
encoded objectives, LGenTest can be used, with no change,
on the secondary objectives. Such an approach is suboptimal,
as tests covering the secondary objectives do not necessarily
satisfy the primary ones. However, generating tests in this
way remains relevant, as tests covering the primary objectives
must always first satisfy the secondary ones. As an example,
the GACC variant of the MCDC criterion can be encoded
with labels only, while the CACC and RACC variants require
constraining the same labels with conjunctions and guards.
The test suites generated by LGenTest for GACC (or even
for a weaker but less demanding criterion such as CC) can
be naturally used for trying to cover CACC and RACC. We
provide experiments evaluating this approach in Section V-B.

LUncov is able to detect labels that are not coverable, as
they may be part of a dead portion of code or because their
predicate might be infeasible. Such information can be directly
propagated by LReplay to prune out uncoverable hyperlabels,
using the following rules: a binding is uncoverable if the bound
label is uncoverable, a sequence is uncoverable if at least one
label is uncoverable, a (guarded) conjunction is uncoverable if
at least one conjunct is uncoverable, a (guarded) disjunction
is uncoverable if all the disjuncts are uncoverable. Again,
such an approach is suboptimal, as several cases of hyperlabel
uncoverability will never be detected in this way, such as
infeasible guard or sequence predicates.

V. EXPERIMENTAL EVALUATION

A. Assessing LAnnotate and LReplay

Objective. In this section, we want to assess the efficiency
of the newly redesigned LAnnotate and LReplay modules for
unit testing. More precisely, we seek to answer the following
research question: how do LAnnotate and LReplay scale with
large test suites on criteria using hyperlabel operators?

Protocol. We consider 13 C functions split up into 3 groups:

• 5 functions, mainly from Siemens [13], Verisec [14] &
MediaBench [15], as already used in [8];

• 5 functions from OpenSSL 1.0.2 [16], a 250 kloc open-
source application. We focus on modules of about 1 kloc.

• 3 functions from SQLite 3.13 [17], a 215 kloc open-source
application. We focus on modules of a few kloc.

The C files automatically annotated with HTOL test objectives
are available on the companion website.

A set of up to 10,000 test cases is randomly generated
for each C function. Our tool is successively run with an
increasing number of these unit test cases, also available from
the companion website. Each tool run is repeated 7 times. First,
tests are executed without measurement (baseline). Then, we
measure coverage for the CC and GACC criteria encodable in
labels (used as a witness). Finally, we measure coverage for the
CACC, RACC, FCC and all-defs criteria, which involve the
five operators from hyperlabels. All experiments are performed
under Ubuntu Linux 14.04 on an Intel Core i7-4712HQ CPU
at 2.30GHz, with 16GB of RAM.
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Fig. 5. Scalability of Coverage Measurement



Results and discussion. Detailed results are on the companion
website. Figure 5 plots, for each criterion and the baseline (no-
cov), the mean measurement time for all programs, as a function
of the test suite size. We can notice that: (1) the measurement
time grows linearly with the number of test cases, (2) the time
overhead is very reasonable for all criteria but all-defs (between
1.1x and 2x), and still not so high for all-defs (between 2x
and 4x), and (3) these results hold on the three benchmarks,
regardless of program size. Note that all-defs yields a tangible
time overhead on some programs, due to the higher number
of test objectives that are defined. However, many objectives
are trivial or redundant, which could be detected using some
static analysis techniques in an optimized version of the tool.

Conclusion. These results indicate that upgraded versions of
LAnnotate and LReplay provide both practically applicable
and (almost) criterion-independent testing capabilities. The
measurement time for criteria beyond labels is acceptable and
remains linear with the size of the test suite. Moreover, as
our tool implementation can be further optimized, there is still
room for a strong reduction of coverage measurement time,
when using the approach in an industrial context.

B. Assessing LGenTest

Objective. We want to assess whether LGenTest can be
efficient even for criteria beyond labels. More precisely, we
address in this section the following research question: can
the label-directed generation of LGenTest provide sufficient
coverage for criteria that cannot be encoded with labels only?

Protocol. We consider here two versions of the MCDC
criterion non encodable in labels: CACC and RACC. For
each of the 5 functions in the first group defined at Section
V-A, LGenTest is first called to produce test suites for the CC,
MCC and GACC criteria encodable in labels. LReplay is then
used to measure the coverage achieved for the criteria CACC
and RACC by these test suites as well as by witness test suites
built by random test generation.
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Fig. 6. Coverage of Label-Directed vs. Random Test Generation for CACC
and RACC criteria

Results and discussion. Figure 6 shows the total coverage.
Label-directed generation provides a significantly better cover-
age level than random generation. This is particularly the case
with MCC and GACC based generation, as those criteria are

stronger than CC. The RACC-coverage obtained on a program
with GACC-directed generation ranges between 61% and 94%,
with an average of 72%, while for random testing, this number
ranges between 29% and 81%, with an average of 53%.

Conclusion. Combining the upgraded versions of LAnnotate
and LReplay with LGenTest provides a full-featured testing tool,
that handles both coverage measurement and test generation.
Our initial experiments indicate that automatic test generation
for HTOL is feasible with LGenTest (at least for small
programs): LTest provides an acceptable coverage ratio for
criteria beyond labels (on average 19% better than random
testing on tested programs for CACC and RACC criteria).

VI. RELATED WORK

A large number of automatic testing tools are available.
However, they often offer a limited scope of services (test
coverage measurement or automatic test generation) and are
restricted to few coverage criteria. On the contrary, LTest is an
integrated and generic toolkit for automated white-box testing.

Coverage measurement tools. Code coverage is used exten-
sively in the industry. As a result, there exists a lot of tools
that embed some sort of coverage measurement. For instance,
in 2007, a survey [18] found ten tools for programs written
in the C language: Bullseye [19], CodeTEST, Dynamic [20],
eXVantage, Gcov (part of GCC) [21], Intel Code Coverage
Tool [22], Parasoft [23], Rational PurifyPlus [24], Semantic
Designs [25], TCAT [26]. To this date, there are even more
tools, such as COVTOOL [27], LDRAcover [28], and Testwell
CTC++ [29]. As a rule of thumb, these tools support a limited
number of test criteria in a hard-coded, non-generic manner.
Table I summarizes implemented criteria for some popular
tools. However, to be fair, these code coverage tools also aim
at causing as little overhead as possible. In contrast, as a first
step, we only aim at getting a reasonable overhead.

Test generation tools. Many test generation tools only handle
basic coverage criteria, such as bounded path coverage or
decision coverage. Three interesting exceptions to be compared
with our work are Fshell [30], FAJITA [31] and Apex [32].

Fshell enables encoding code coverage criteria into an
extended form of regular expressions, whose alphabet is
composed of elements from the control-flow graph of the
tested program. It then takes advantage of an off-the-shelf
model-checker to automatically generate a test suite satisfying
such a specification. The scope of criteria that can be encoded
in FShell is incomparable with the one offered by LTest, but
the tool cannot encode neither MCDC nor weak mutations.

The FAJITA tool proposes to encode a testing criterion as a
set of disjoint boolean constraints, which partition the input
space of the tested program. These constraints are then solved
using a SAT solver to build a test suite satisfying the criterion.
The paper demonstrates how basic white-box criteria (statement,
branch and path coverage) can be handled in this way.

As our tool, Apex also relies on dynamic symbolic execution,
but adds additional predicates to the path conditions, where
LTest annotates the code itself. However, LTest makes use of



Tool name BBC FC DC CC DCC GACC MCDC MCC BP Other

Gcov X X X 0/19

Bullseye X X 0/19

Parasoft X X X X X X 0/19

Semantic Designs X X 0/19

Testwell CTC++ X X X X 0/19

Original LTest [5] X X X X X X X 4/19

Extended LTest X X X X X X X X X 18/19

TABLE I
SUPPORT OF WHITE-BOX COVERAGE CRITERIA [4] IN COVERAGE MEASUREMENT TOOLS

a DSE tailored to labels, which strongly limits the overhead
observed with Apex.

VII. CONCLUSION

LTest has been briefly introduced two years ago as a toolkit
for white-box testing. It could have been presented as a coherent
combination of various advanced techniques within a testing
tool, able to automate most aspects of testing, for various
classes of coverage criteria. In this work, we have described
a major conceptual upgrade of the core design of LTest and
provided a deeper insight into its practical applicability.

The extended capabilities of the code instrumentation and
coverage measurement modules make LTest able to handle all
existing white-box criteria but strong mutations, and to do it in
a generic way. Any technique for test automation built in LTest
(like DSE or static analysis) is thus immediately available for
all criteria. At the same time, genericness makes it easy to
add support for new criteria (such as test objectives detecting
violations of common security properties). Any additional
criterion will also immediately benefit for free from all test
automation features of LTest.

This paper also provides a bunch of useful information on
how LTest is actually implemented, together with its last source
code. Furthermore, it details several experiments showing the
scalability and efficiency of the tool on real-world code. These
elements constitute a strong hint at the practical applicability
of the tool, both for developers and users.

In future work, we intend to push the genericness and
practical applicability of the tool even further. First, by upgrad-
ing LGenTest and LAnnotate for optimal test generation and
uncoverability detection with HTOL. Second, by implementing
support for security property testing. Finally, by developing
the emerging interest for the tool in the industrial world.
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