
Symbolic deobfuscation:
from virtualized code back to the original?

(long version)

Jonathan Salwan1, Sébastien Bardin2, and Marie-Laure Potet3

1 Quarkslab, Paris, France
2 CEA, LIST, Univ. Paris-Saclay, France

3 Univ. Grenoble Alpes, F-38000 Grenoble, France
jsalwan@quarkslab.com, sebastien.bardin@cea.fr,

marie-laure.potet@univ-grenoble-alpes.fr

Abstract. Software protection has taken an important place during the
last decade in order to protect legit software against reverse engineering
or tampering. Virtualization is considered as one of the very best de-
fenses against such attacks. We present a generic approach based on
symbolic path exploration, taint and recompilation allowing to recover,
from a virtualized code, a devirtualized code semantically identical to
the original one and close in size. We define criteria and metrics to eval-
uate the relevance of the deobfuscated results in terms of correctness and
precision. Finally we propose an open-source setup allowing to evaluate
the proposed approach against several forms of virtualization.

1 Introduction

Context. The field of software protection has increasingly gained in impor-
tance with the growing need of protecting sensitive software assets, either for
pure security reasons (e.g., protecting security mechanisms) or for commercial
reasons (e.g., protecting licence checks in video games or video on demand). Vir-
tual machine (VM) based software protection (a.k.a. virtualization) is a modern
technique aiming at transforming an original binary code into a custom Instruc-
tion Set Architecture (ISA), which is then emulated by a custom interpreter.
Virtualization is considered as a very powerful defense against reverse engineer-
ing and tampering attacks, taking a central place during the last decade in the
software protection arsenal [24, 3–5].

Attacking virtualization. In the same time, researchers have published sev-
eral methods to analyze such protections. They can be partitioned into semi-
manual approaches [14, 17, 21], automated approaches [12, 18, 23, 25, 26] and pro-
gram synthesis [11, 29]. Semi-manual approaches consist in manually detecting
and understanding VM’s opcode handlers, and then, writing a dedicated disas-
sembler. They rely on the knowledge of the reverse engineer and they are time

? Work partially funded by ANR and PIA under grant ANR-15-IDEX-02.

consuming. Some classes of automated approaches aim at automatically recon-
structing the (non-virtualized) control flow of the original program, but they
require to detect some virtualization artefacts [12, 23] (virtual program counter,
dispatcher, etc.) – typically through some dedicated pattern matching. These
approaches must be adapted when new forms of virtualization are met. Finally,
another class of approaches [7, 25] tries to directly reconstruct the behaviors of
the initial code (before virtualization), based on trace analysis geared at elim-
inating the virtualization machinery. Such approaches aim to be agnostic with
respect to the different forms of virtualization. Yet, while the ultimate goal of
deobfuscation is to recover the original program, these approaches focus rather
on intermediate steps, such as identifying the Virtual Machine machinery or
simplifying traces.

Goal & challenges. While most works on devirtualization target malware de-
tection and control flow graph recovery, we focus here on sensitive function
protections (such as authentication), either for IP or integrity reasons, and we
consider the problem of fully recovering the original program behavior (expurged
from the VM machinery) and compiling back a new (devirtualized) version of
the original binary. We suppose we have access to the protected (virtualized)
function and we are interested in recovering the original non-obfuscated code,
or at least a program very close to it. We consider the following open questions:

– How can we characterize the relevance of the deobfuscated results?

– How much can such approaches be independent of the virtualization ma-
chinery and its protections?

– How can virtualization be hardened against such approaches?

Contribution. Our contributions are the following:

– We present a fully automatic and generic approach to devirtualization, based
on combining taint, symbolic execution and code simplification. We clearly
discuss limitations and guarantees of the proposed approach, and we demon-
strate the potential of the method by automatically solving (the non-jitted
part of) the Tigress Challenge in a completely automated manner.

– We design a strong experimental setup1 for the systematic assessment of the
qualities of our framework: well-defined questions & metrics, a delimited class
of programs (hash-like functions, integrity checks) and adequat measurement
besides code similarities (full correctness). We also propose a systematic
coverage of classic protections and their combinations.

– Finally, we propose an open-source framework based on the Triton API,
resulting in reproducible public results.

1 Solving the Tigress Challenge was presented at the French industrial conference
SSTIC’17 [19]. The work presented here adds a revisited description of the method,
a strong systematic experimental evaluation as well as new metrics to evaluate the
accuracy of the approach.

The main features of our approach are summarized in Figure 1, in compar-
ison with others works. In particular we propose and discuss some notions of
correctness and completeness as well as a set of metrics illustrating the accuracy
of our approach. Fig. 1 will be explained in more details in Sec. 6.

manual Kinder[12] Coogan[7] Yadegari[26] Our approach
identify input required required required required required

understand vpc required required no no no
understand dispatcher required no no no no
understand bytecode required no no no no

output simplified CFG + simplified simplified simplified
CFG invariants trace CFG code

key techno. static analysis value-based taint, symbolic taint, symbolic
code slicing formula slicing

(abstract interp.) slicing instr. simplification formula simplification
code simplification

xp: type of code toy examples toys+malware toys+malware hash functions
xp: #samples 1 12 44 920

xp: evaluation metrics known invariants %simplification similarity size, correctness

Fig. 1: Position of our approach

Discussion. While our approach still shows limitations on the class of programs
that can be handled (cf. Section 5), the present work clearly demonstrates that
hash-like functions (typical of proprietary assets protected through obfuscation)
can be easily retrieved from their virtualized versions, challenging the common
knowledge that virtualization is the best defense against reversing – while it is
true for a human attacker, it does not hold anymore for an automated attacker
(unless the defender is ready to pay a high running time overhead with deep
nested virtualization). Hence, defenders must take great care of protecting the
VM machinery itself against semantic attacks.

Long version. This version adds a discussion on the (implicit) backward slicing
step performed at formula level (Section 3.3), and it also presents more detailed
statistics about the Tigress challenge (Tables 6 and 7 in Section 4.5), in order
to ease reproducibility and comparison of results.

2 Background: Virtualization and Reverse Engineering

2.1 Virtualization-based Software Protection

Virtualization-based software protections aim at encoding the original program
into a new binary code written in a custom Instruction Set Architecture (ISA)
shipped together with a custom Virtual Machine (VM). Such protections are of-
fered by several industrial and academic tools [24, 3–5]. Generally, it is composed
of 5 principal components, close to CPU design (Figure 2):

1. Fetch: Its role is to fetch, from the VM’s internal memory, the (virtual)
opcode to emulate, based on the value of a virtual program counter (vpc).

2. Decode: Its role is to decode the fetched opcode and its appropriate operands
to determine which ISA instruction will be executed.

3. Dispatch: Once the instruction is decoded, the dispatcher determines which
handler must be executed and sets up its context.

4. Handlers: They emulate virtual instructions by sequences of native instruc-
tions and update the internal context of VM, typically vpc.

5. Terminator: The terminator determines if the emulation is finished or not.
If not, the whole process is executed one more time.

Fetch Instruction

Decode Instruction

Dispatch

Handler 1Handler 2 Handler 3

Terminator

Fig. 2: Standard Virtual Machine Architecture

2.2 Example

Let us consider the C function of Listing 1.1 we want to virtualize it. Disassembly
of the VM’s bytecode is in comment in Listing 1.1. Once Listing 1.1 is compiled to
VM’s bytecode, it must be interpreted by the virtual machine itself. The sample
of code illustrated by Listing 1.2 could be this kind of VM. The VM is called with
an initial vpc pointing to the first opcode of the bytecode (e.g: the virtual address
of instruction mov r0, r9). Once the opcode has been fetched and decoded by
the VM, the dispatcher points to the appropriate handler to virtually execute the
instruction and then, the handler increments vpc to point on the next instruction
to execute and so on until the virtualized program terminate. As we can see, the
control flow of the original program is lost and replaced by a dispatcher pointing
on all VM’s handlers (here, only four instructions).

2.3 Manual De-virtualization

Manual devirtualization typically comes down to writing a disassembler for the
(unknown) virtual architecture under analysis. It consists of the following steps:

1. Identify that the obfuscated program is virtualized, and identify its input;
2. Identify each component of the virtual machine;
3. Understand how all these components are related to each other, especially

which handler corresponds to which bytecode, the associated semantics,
where operands are located and how they are specified;

4. Understand how vpc is orchestrated.

int func (int x) {
int a = x ;
int b = 2 ;
int c = a ∗ b ;
return c ;

}

/∗
∗∗ Bytecodes equiva lence :
∗∗
∗∗ 31 f f 00 09: mov r0 , r9
∗∗ 31 01 02 00: mov r1 , 2
∗∗ 44 00 00 01: mul r0 , r0 , r1
∗∗ 60: re t
∗/

Listing 1.1: A C function

void vm(ulong vpc , struct vmgpr∗ gpr) {
while (1) {

/∗ Fetch and Decode ∗/
struct opcode∗ i = decode (f e t c h (vpc)) ;
/∗ Dispatch ∗/
switch (i−>getType ()) {

/∗ Handlers ∗/
case ADD /∗ 0x21 ∗/ :

gpr−>r [i−>dst] = i−>op1 + i−>op2 ;
vpc += 4 ; break ;

case MOV /∗ 0x31 ∗/ :
gpr−>r [i−>dst] = i−>op1 ;
vpc += 4 ; break ;

case MUL /∗ 0x44 ∗/ :
gpr−>r [i−>dst] = i−>op1 ∗ i−>op2 ;
vpc += 4 ; break ;

case RET /∗ 0x60 ∗/ :
vpc += 1 ; return ;

}}}

Listing 1.2: Example of VM

Once all these points have been addressed, we can easily create a specific
disassembler targeted to the virtual architecture. Yet, solving each step is time
consuming and may be heavily influenced by the reverse engineer expertise, the
design of the virtual machine (e.g: which kind of dispatcher, of operands, etc.)
and the level of obfuscation implemented to hide the virtual machine itself.

Discussion. Recovering 100% of the original binary code is impossible in gen-
eral, that is why devirtualization aims at proposing a binary code as close as
possible to the original one. Here, we seek to provide a semantically equivalent
code expurged from the components of the virtual machine (devirtualized code).
In other words, starting from the code in Listing 1.2, we want to derive a code
semantically equivalent and close (in size) to the code in Listing 1.1.

3 Our Approach

We rely on the key intuition that an obfuscated trace T ′ (from the obfuscated
code P ′) combines original instructions from the original code P (the trace T
corresponding to T ′ in the original code) and instructions of the virtual machine
VM such that T ′ , T + VM(T). If we are able to distinguish between these
two subsequences of instructions T and VM(T), we then are able to reconstruct
one path of the original program P from a trace T ′. By repeating this operation
to cover all paths of the virtualized program, we will be able to reconstruct the
original program P – in case the original code has a finite number of executable
paths, which is the case in many practical situations involving IP protection.

3.1 Overview

The main steps of our approach, sketched in Fig. 3, are the following ones:

Step 0: Identify input.
Step 1: On a trace, isolate pertinent instructions using a dynamic taint analysis.
Step 2: Build a symbolic representation of these tainted instructions.
Step 3: Perform a path coverage analysis to reach new tainted paths.
Step 4: Reconstruct a program from the resulting traces and compile it to

obtain a devirtualized version of the original code.

In our approach, Step-0 (identifying input) must still be done manually, in a
traditional way. By input we include all kinds of external interactions depending
on the user, such as environment variables, program arguments and system calls
(e.g. read, recv, etc.). Analysts will typically rely on tools such as IDA or
debuggers for this step.

Virtualized
Binary Code

+ seed

Tainted
Sub-trace (x86)

Step 1 Generalized sub-trace as
Symbolic Expressions

(AST)

Step 2

Step 3
Path Coverage

(new seed)

Set of
sub-traces

(AST)
LLVM IR Devirtualized

Binary Code

Step 4
Deobfuscated Binary

Construction

Optimizations
and

CFG reconstruction

Fig. 3: Schematized Approach

Our approach is based on the tool suite Triton [20] which provides several
advanced classes to improve dynamic binary analysis, in particular a concolic
execution engine, a SMT symbolic representation and a taint analysis engine.

Dynamic Symbolic Execution. (DSE) [22, 9, 10] (a.k.a. concolic execution)
is a technique that interprets program variables as symbolic variables along
an execution. During a program execution, the DSE engine builds arithmetic
expressions representing data operations and logical expressions characterizing
path constraints along the execution path. These constraints can then be solved
automatically by a constraint solver [27] (typically, SMT solver) in order to
obtain new input data covering new paths of the program. Conversely to pure
symbolic execution, DSE can reduce the complexity of these expressions by using
concrete values from the program execution (“concretization” [10]).

Dynamic Taint Analysis. (DTA) [6, 28] aims to detect which data and in-
structions along an execution depend on user input. We consider direct tainting.
Regarding the code in Listing 1.3 where user input is denoted by input, we start
by tainting the input at line 1. Then, according to the instruction semantics, the
taint is spread into rax at line 1, then rcx at line 3 and rdi at line 4. To re-
sume, using a taint analysis, we know that instructions at line 1, 3, and 4 are in
interaction with user input, while other lines are not.

1 . mov rax , input
2 . mov rcx , 1
3 . add rcx , rax
4 . mov rdi , rcx

Listing 1.3: x86 ASM sample

Taint can be combined with symbolic execution in order to explore all paths
depending on inputs, resulting in input values covering these paths.

3.2 Step 1 - Dynamic Taint Analysis

The first step aims at separating those instructions which are part of the vir-
tual machine internal process from those which are part of the original program
behavior. In order to do that, we taint every input of the virtualized function.
Running a first execution with a random seed, we get as a result a subtrace
of tainted instructions. We call these instructions: pertinent instructions. They
represent all interactions with the inputs of the program, as non-tainted instruc-
tions have always the same effect on the original program behavior. At this step,
the original program behaviors are represented by the subtrace of pertinent in-
structions. But this subtrace cannot be directly executed, because some values
are missing, typically the initial values of registers.

3.3 Step 2 - A Symbolic Representation

The second step abstracts the pertinent instruction subtrace in terms of a sym-
bolic expression for two goals: (1) prepare DSE exploration, (2) recompile the
expression to obtain an executable trace. In symbolic expressions, all tainted val-
ues are symbolized while all un-tainted values are concretized. In other words,
our symbolic expressions do not contain any operation related to the virtual
machine processing (the machinery itself does not depend on the user) but only
operations related to the original program.

×

+ +

1 2 x ⊕

6 3

×

3 +

x 5

Fig. 4: Concretization of non tainted expressions

In order to better understand what Step 2 does, let us consider the function
illustrated in Listing 1.4. Variable x is tainted as well as symbolized and the

expression associated to variable var8 is illustrated on the left of Figure 4 (gray
nodes are tainted data). Then, once we concretize all un-tainted nodes, the
expression becomes the one illustrated on the right. This mechanism typically
allows to remove the VM machinery.

int f (int x) {
int var1 = 1 ;
int var2 = 2 ;
int var3 = var1 + var2 ;
int var4 = 6 ;
int var5 = 3 ;
int var6 = var4 ˆ var5 ;
int var7 = x + var6 ;
int var8 = var3 ∗ var7 ;
return var8 ;

}
Listing 1.4: Sample of C code

A note on formula-level backward slicing. As it is common in symbolic
execution, the symbolic representation is first computed in a forward manner
along the path (see [15, Figure 2] for the basic algorithm), then all logical oper-
ations and definitions affecting neither the final result nor the followed path are
removed from the symbolic expression (formula slicing, a.k.a. formula pruning
– see for example [16]). This turns out to perform on the formula the equivalent
of a backward slicing code analysis from the program output.

3.4 Step 3 - Path Coverage

At this step we are able to devirtualize one path. To reconstruct the whole
program behavior, we successively devirtualize reachable tainted paths. To do
so, we perform path coverage [10] on tainted branches with DSE. At the end,
we get as a result a path tree which represents the different paths of the original
program (Figure 5). Path tree is obtained by introducing if-then-else construction
from two traces t1 and t2 with a same prefix followed by a condition C in t1 and
¬C in t2.

3.5 Step 4 - Generate a New Binary Version

At this step we have all information to reconstruct a new binary code: (1) a
symbolic representation of each path; (2) a path tree combining all reachable
paths. In order to produce a binary code we transform our symbolic path tree
into the LLVM IR to obtain a LLVM Abstract Tree (AST in Fig. 3) and compile

ϕ1

ϕ2 ϕ3

ϕ4

ϕ5ϕ6

ϕ7 ϕ7

ϕ4

ϕ5

ϕ7

ϕ6

ϕ7

Fig. 5: Path Tree

ϕ1

ϕ2 ϕ3

ϕ4

ϕ5 ϕ6

ϕ7

Fig. 6: A Reconstructed CFG

it. In particular we benefit from all LLVM (code level) optimizations2 to par-
tially rebuild a simplified Control Flow Graph (Figure 6). Note that moving on
LLVM allows us to compile the devirtualized program to another architecture.
For instance, it is possible to devirtualize a x86 function and to devirtualize it
to an ARM architecture.

3.6 Guarantees: About Correctness and Completeness

Let P be the obfuscated program and P ? the extracted program. We want to
guarantee that P and P ? behave equivalently for each input. We decompose this
property into two sub-properties:

- local correctness: for a given input i, P and P ? behave equivalently,
- completeness: local correctness is established for each input.

While local correctness can often be guaranteed, depending on properties of
each step (see Figure 7), completeness is lost in general as it requires full path
exploration of the virtualized program. Interestingly enough, it can be recovered
in the case of programs with a small number of paths, which is the case for many
typical hash or crypto functions.

Step Component flaw threats on P ?

1 taint undertainting incorrect
overtainting too large

2 path predicate under-approximated incomplete
over-approximated incorrect

3 path exploration incomplete incomplete

4 code optimization incorrect incorrect
incomplete too large

Fig. 7: Impact of each components on the overall approach

2 Such as simplifycfg and instcombine.

3.7 Implementation

We develop a script3 implementing our method. The Triton library [20] is in
charge of everything related to the DSE and the taint engine. We also use
Arybo [8] to move from the Triton representation to the LLVM-IR [13] and
the LLVM front-end to compile the new binary code. The Triton DSE engine
is standard [10, 22]: paths are explored in a depth-first search manner, memory
accesses are concretized à la DART [10] (resulting in incorrect concretization)
[15], logical formulas are expressed in the theory of bitvectors and sent to the
Z3 SMT solver. Triton is engineered with care and is able to handle execution
traces counting several dozen millions of instructions.

Regarding the discussion in Section 3.6, we can state that our implementation
is correct on programs without any user-dependent memory access, and that it
is even complete if those programs have a small number of paths (say, less than
100). While very restrictive, these conditions do hold for many typical hash-like
functions, representative of proprietary assets protected through obfuscation.

4 Experiments

In order to evaluate our approach we proceed in two steps. First we carry out
a set of systematic controlled experiments in order to precisely evaluate the
key properties of our method (Sections 4.1 to 4.4). Second we address a real
life deobfuscation challenge (Tigress Challenge) in order to check whether our
approach can address uncontrolled obfuscated programs (Section 4.5). Code,
benchmarks and more detailed results are available online4. We propose the
three following evaluation criteria for our deobfuscation technique:

C1: Precision,
C2: Efficiency,
C3: Robustness w.r.t. the protection.

4.1 Controlled Experiment: Setup

Our test bench is composed of 20 hash algorithms comprising 10 well-known
hash functionsand 10 homemade ones taken from the Tigress Challenge5 (see
Table 1). The proposed functions are typically composed of a statically-bounded
loop and contains one or two execution paths. These programs are typical of the
kinds of assets the defender might want to protect in a code.

In order to protect these 20 samples, we choose the open-use binary protector
Tigress6, a diversifying virtualizer/obfuscator for the C language that supports
many novel defenses against both static and dynamic reverse engineering and

3 https://github.com/JonathanSalwan/Tigress protection/blob/master/solve-vm.py
4 https://github.com/JonathanSalwan/Tigress protection
5 Thanks to Christian Collberg for having provided us the original source codes.
6 http://tigress.cs.arizona.edu

Hash Loops Binary Size (inst) # executable paths
Adler-32 X 78 1
CityHash X 175 1

Collberg-0001-0 X 167 1
Collberg-0001-1 × 177 2
Collberg-0001-2 × 223 1
Collberg-0001-3 X 195 1
Collberg-0001-4 X 183 1
Collberg-0004-0 × 210 2
Collberg-0004-1 × 143 1
Collberg-0004-2 X 219 2
Collberg-0004-3 X 171 1
Collberg-0004-4 X 274 1

Fowler-Noll-Vo Hash (FNV1a) × 110 1
Jenkins X 79 1

JodyHash X 90 1
MD5 X 314 1

SpiHash X 362 1
SpookyHash X 426 1

SuperFastHash X 144 1
Xxhash X 182 1

Table 1: List of virtualized hash functions for our benchmark

devirtualization attacks. Then, we select all virtualization-related binary protec-
tions (46) and apply each of them on each of the 20 samples, yielding a total
benchmark of 920 protected codes (see Table 2). The goal is then to retrieve an
equivalent and devirtualized version of each protected code. All these tests are
applied on a Dell XPS 13 laptop with a Intel i7-6560U CPU, 16GB of RAM and
8GB of SWAP on a SSD.

Protecticons Options
Anti Branch Analysis goto2push, goto2call, branchFuns
Max Merge Length 0, 10, 20, 30

Bogus Function 0, 1, 2, 3
Kind of Operands stack, registers
Opaque to VPC true, false

Bogus Loop Iterations 0, 1, 2, 3
Super Operator Ratio 0, 0.2, 0.4, 0.6, 0.8, 1.0

Random Opcodes true, false
Duplicate Opcodes 0, 1, 2, 3

Dispatcher binary, direct, call, interpolation, indirect, switch, ifnest, linear
Encode Byte Array true, false

Obfuscate Decode Byte Array true, false
Nested VMs 1, 2, 3

Table 2: Tigress Protections

4.2 Precision (C1)

The C1 criterion aims to determine two points 1. correctness: is the deobfus-
cated code semantically equivalent to the original code? 2. conciseness: is the
size of the deobfuscated code similar to the size of the original code?

Metrics used: Regarding correctness, after applying our approach we test over
4,000 integer inputs (the 1000 smallest integers, the 1000 largest ones, 2000 ran-
dom others) whether the two corresponding output (obfuscated and deobfus-
cated) are identical or not. If yes, we consider the deobfuscated code as semanti-
cally equivalent. We also manually check 50 samples taken at random. Regarding
conciseness, we consider the number of instructions before and after protections,
and then after devirtualization.

Results: Table 3 gives an average of ratios (in term of number of instructions)
between the original code and the obfuscated one, and also between the original
code and the deobfuscated one. This table demonstrates that 1. after applying
our approach, we are able to reconstruct valid binaries (in term of correctness)
for 100% of our samples; 2. after applying protections, the sizes of binaries and
traces are considerably increased and after applying our approach we reconstruct
binaries sometimes slightly smaller than the original ones. This phenomenon is
due to the fact that we concretize everything not related to the user input (Step
2), including initialisation and set up. Manual inspections also reveal that when
the original code does not contain any loop, the recovered code exhibits almost
the same CFG as the original code.

Original Obfuscated Deobfuscated
min: 78 min: 468 min: 48

Binary max: 426 max: 5,424 max: 557
Size avg: 196 avg: 1,205 avg: 119

min: 92 min: 1,349 min: 48
Trace max: 9,743 max: 47,927,795 max: 557
Size avg: 726 avg: 229,168 avg: 143

(a) Sizes

Original → Original →
Obfuscated Deobfuscated

Correctness 100%
min: x3.3 min: x0.1

Binary Size max: x14.0 max: x2.8
avg: x6 avg: x0.71

min: x17 min: x0.05
Trace Size max: x1252 max: x0.9

avg: x424 avg: x0.39

(b) Size ratios

Table 3: Size and correctness (920 samples)

Conclusion: Our approach does allow to recover semantically-equivalent de-
virtualized codes in all cases, with sizes very close to those of the original codes
(even slightly smaller in average, despite loop unrolling), thus drastically de-
creasing the size of the protected code. Interestingly, our devirtualized codes
have also simpler execution traces than the original codes.

4.3 Effectiveness (C2)

The C2 criterion aims at determining the effectiveness of our approach in terms
of absolute time (required amount of resources) and also in trend (scalability).

Metrics used: We took measure at each step of our analysis and at each 10,000
instructions handled. These metric results can be found in detail in Table 9
(Appendix) and its Obfuscated (trace size) and Time columns.

Results: Figure 8 is the time-step of our approach on the 920 samples. About
80% of samples take less than 5 seconds to be deobfuscated. The most difficult
example takes about 1h10 for approximatively 48 millions of instructions (MD5
with two levels of virtualization).

<1s

43.0%

1 to 5s

37.8%

5 to 20s

9.2%
20 to 100s

5.7%
>100s

4.3%

Fig. 8: Time-step (920 samples)

0 0.5 1 1.5 2 2.5 3

·105

0

5

10

15

20

25

30

Number of Instructions

T
im

e
(s
ec
o
n
d
s)

Time of Analysis per Executed Instructions

Fig. 9: Time w.r.t. number of instr.
(all protections, MD5 algo.)

According to these results, we can see that the time taken by our analysis
is linear w.r.t. the number of instructions on the obfuscated traces (size of the
execution tree). If we focus on the MD5 example7 and draw a dot at each 10,000
instructions handled and then for each protections, we get as a result Figure 9.
Each dotted curve of this figure is one of the 46 protections used for our bench-
mark and each dot is a measure at each 10,000 instructions step. We can clearly
see that curves possess a linear aspect.

Conclusion: Our approach has a linear time of analysis according to the num-
ber of explored instructions (execution tree), meaning that our approach does
not add complexity w.r.t. standard DSE exploration. The more the protection
integrates instructions in the binary the more our analysis will take time and
RAM consuming but only with a constant evolution. Regarding our samples, we
managed to devirtualize lot of them very quickly (only few seconds), and even
for the hardest examples we were able to solve them in a short time on common
hardware.

7 MD5 is one of the most involving examples in our benchmark.

4.4 Influence of Protections (C3)

This criterion aims at identifying whether certain specific protections do impact
the analysis more than other protections (correctness, conciseness or perfor-
mances), and if yes, how much.

Metrics Used: We consider the conciseness metrics, i.e. the number of instruc-
tions during the executions of the obfuscated binaries, the deobfuscated binaries
and the original ones. We use them on the 46 different protections applied on
the same hash algorithm, and then for all hash algorithms.

Results: According to Table 9 in appendix (Deobfuscated column), we can
clearly answer that the conciseness is the same whatever protection is applied.
We get the same result for each one of these protected binary codes. Protec-
tions do not influence the number of instructions recovered for all the 20 hash
algorithms tested. As an example, Figure 10 illustrates the influence of different
dispatchers analyzed on the MD5 example and we can clearly see that the number
of instructions recovered is identical whatever dispatcher is applied. Moreover,
previous results in Section 4.3 (Figure 9) have already demonstrated that all
considered protections have an effect on efficiency directly proportional to the
increase they involve on the trace size.

D
isp
at
ch
er
:
bi
na
ry

D
isp
at
ch
er
:
di
re
ct

D
isp
at
ch
er
:
ca
ll

D
isp
at
ch
er
:
in
te
rp
ol
at
io
n

D
isp
at
ch
er
:
in
di
re
ct

D
isp
at
ch
er
:
sw
itc
h

D
isp
at
ch
er
:
ifn
es
t

D
isp
at
ch
er
:
lin
ea
r

100

1,000

10,000

100,000

N
u
m
b
er

of
ex
ec
u
te
d
in
st
ru
ct
io
n
s

Obfuscated Trace Deobfuscated trace Original trace

Fig. 10: Influence of dispatchers on our
analysis

B
in
ar
y-
0

B
in
ar
y-
1

B
in
ar
y-
2

B
in
ar
y-
3

B
in
ar
y-
4

100

101

102

103

104

T
im

e
(s
)

Level 0000
Level 0001
Level 0002
Level 0003
Level 0004

Fig. 11: Time to solve each Tigress chal-
lenge

Conclusion: Our approach, in term of precision, is not influenced by the chosen
protections and our outputs are identical whatever the protections applied. Yet,
as already shown, the protection can influence the analysis time and make the
analysis intractable. The previous section shows that such a protection can be
effective only if it implies a large runtime overhead - which can be a severe
problem on some applications. For example regarding the MD5 example, the
execution overhead is 10x with 1 level of VM, 100x with 2 and 6800x with 3.

Discussion on each protection In order to really understand why our ap-
proach works on such protections, we open a discussion for each category of
them.

Complicated VM machinery (opaque vpc, dispatchers, etc.): These pro-
tections are mainly introduced to slowdown a static analysis. Yet, using a dy-
namic taint analysis (Step 1 of Section 3.2), we are able to distinguish which
instructions are dedicated to the virtual machine and which instructions emu-
late the original behavior of the program (pertinent instructions). The virtual
machine’s subexpressions are then eliminated through concretization in Step 2
(see Section 3.3).

Duplicate Opcodes: This protection makes the VM more complicated to un-
derstand by a human, but it does not prevent its exploration (Steps 1 to 3). In
our experiments, duplicated opcodes are identified and merged together because
of code-level (compiler) optimizations (Step 4) together with the normalization
induced by the transformation to symbolic expressions (Step 2).

Nested VM: As already discussed, nesting VMs does not impact the precision
but the performance of our method. Hence the defender can indeed prevent
the attack, but it comes at a high cost as the running time overhead for the
defender is directly proportional to the analysis time overhead for the attacker.
As an example, we are able to solve up to 2 nested levels with our setup machine
(16GB of RAM), but we solve 3 nested levels using an Amazon EC2 instance.

4.5 Case Study: The Tigress Challenge

We have chosen the Tigress Challenge as a case study to demonstrate that
our approach works even in presence of strong combinations of protections. The
challenge8 consists of 35 virtual machines with different levels of obfuscation (Ta-
ble 4). All challenges are identical: there is a virtualized hash function f(x) x′

where x is an integer and the goal is to recover, as close as possible, the original
hash algorithm (all algorithms are custom). According to their challenge status,
only challenge 0000 had been previously solved and October 28th, 2016 we pub-
lished 9 a solution for challenges 0000 to 0004 with a presentation at SSTIC

8 http://tigress.cs.arizona.edu/challenges.html#current
9 http://tigress.cs.arizona.edu/index.htm

2017 [19] (each challenge contains 5 binaries, resulting in 25 virtual machine
codes). We do not analyze jitted binaries (0005 and 0006) as jit is not currently
supported by our implementation.

Challenge Description Difficulty Web Status Our Status

0000 One level of virtualization, random dispatch. 1 Solved Solved

0001 One level of virtualization, superoperators, split instruction handlers. 2 Open Solved

0002 One level of virtualization, bogus functions, implicit flow. 3 Open Solved

0003 One level of virtualization, instruction handlers obfuscated with arithmetic 2 Open Solved
encoding, virtualized function is split and the split parts merged.

0004 Two levels of virtualization, implicit flow. 4 Open Solved

0005 One level of virtualization, one level of jitting, implicit flow. 4 Open Open†

0006 Two levels of jitting, implicit flow. 4 Open Open†

†: Jit not supported by our script.

Table 4: Tigress Challenge (each challenge contains 5 virtual machines)

We have been able to automatically solve all the aforementioned open chal-
lenges in a correct, precise and efficient way, demonstrating that the good results
observed in our controlled experiments extend to the uncontrolled case. Correc-
tion has been checked with random testing and manual inspection. Figure 11
illustrates the time and memory consumption for each challenge – again time
and memory consumption are proportional to the number of instruction exe-
cuted. The hardest challenge family is 0004 with two levels of virtualization. For
instance, challenge 0004-3 contains 140 millions of instructions, reduced to 320
in 2 hours (see Tables 5, 6 and 7). Additional details can be found in [19].

Tigress challenges
VM-0 VM-1 VM-2 VM-3 VM-4

0000 3.85s 9.20s 3.27s 4.26s 1.58s

0001 1.26s 1.42s 3.27s 2.49s 1.74s

0002 6.58s 2.02s 2.63s 4.85s 3.82s

0003 45.6s 11.3s 8.84s 4.84s 21.6s

0004 361s 315s 588s 8049s 1680s

Table 5: Time (in seconds) to solve Tigress Challenge

5 Discussion

We first summarize limitations of our approach, together with possible mitiga-
tions. Then we discuss how our technique can be defended against.

Tigress challenges
VM-0 VM-1 VM-2 VM-3 VM-4

0000 x0.85 x1.09 x0.73 x0.89 x1.4

0001 x0.41 x0.60 x0.26 x0.22 x0.53

0002 x0.29 x0.28 x0.51 x1.40 x0.42

0003 x1.10 x1.17 x1.57 x0.46 x0.44

0004 x0.81 x0.38 x0.70 x0.37 x0.53

Table 6: Ratio (size) original → deobfuscated

Tigress challenges
VM-0 VM-1 VM-2 VM-3 VM-4

0000 675 → 242 754 → 309 838 → 275 668 → 245 792 → 343

0001 11690 → 257 11864 → 283 16506 → 266 13721 → 247 11585 → 284

0002 1356 → 257 1742 → 260 1717 → 274 1399 → 310 1345 → 279

0003 10135 → 534 9996 → 354 17812 → 396 6039 → 276 10504 → 312

0004 10776 → 337 5980 → 249 6304 → 327 6773 → 258 11480 → 338

Table 7: From obfuscated to deobfuscated in term of number of instructons

5.1 Limits and mitigations

The main limitation of our method is that it is mostly geared at programs with
a small number of paths. In case of a too high number of paths, large parts
of the original code may be lost, yielding an incomplete recovery. Yet, we are
considering here executable paths rather than syntactic paths in the CFG, and
we already made the case that hash and other cryptographic functions often
have only very few paths – only one path in the case of timing-attack resistant
implementations.

Also our current implementation is limited to programs without any user-
dependent memory access. This limitation can be partly removed by using a more
symbolic handling of memory accesses in DSE [15], yet the tainting process will
have to be updated too. Since we absolutely want to avoid undertainting (see
Figure 7, Section 3.6), dynamic tainting will have to be complemented with some
form of range information. Note that we require only direct tainting, limiting
the undertainting effect.

Another class of limitations arises from programs using features beyond the
scope of our symbolic reasoning, such as multithreading, intensive floating-point
arithmetic reasoning, self-modification, system calls, etc. Extending to these con-
structs is hard in general as it may require significant advances in symbolic
reasoning. Note, however, that there are some recent progress in floating-point
arithmetic reasoning, and that (simple) self-modification can be handled quite
directly in DSE [1]. Moreover, regarding system calls, adequate modelling of the
environment could be useful here – not that much a research question, but a
clearly manpower-intensive task. Finally, while completeness is clearly out of

scope here, local correctness can still be enforced in many cases by relying on
the concretization part of DSE.

Note also that while bounded loops and non-recursive function calls are han-
dled, they are currently recovered as inlined or unrolled code, yielding a potential
blowup of the size of the devirtualized code. It would be interesting to have a
postprocessing step trying to rebuild these high-level abstractions.

5.2 Potential defenses

Protecting the VM by attacking our steps. As usual, deobfuscation ap-
proaches may be broken by attacking their weaknesses. It is actually a never-
ending cat-and-mouse game. Figure 7 (Section 3.6) gives a good idea of the kind
of attacks our method can suffer from. As the first step of our approach reposes
on a taint analysis aiming at isolating pertinent instructions, a simple defense
could be to spread the taint into VM’s components like decoder or dispatcher.
The more the taint is interlaced with VM components, the less our approach
will be precise, as tainted data are symbolized. Especially if we symbolize vpc

our path exploration step will run into the well-known path explosion problem.
We can also imagine a defense based on hash functions over jump conditions
(e.g: if (hash(x) == 0x1234)) which will break constraint solvers during path
exploration. Precise dynamic tainting and more robust crypto-oriented solvers
are current hot research topics. Another possibility is to implement anti-dynamic
tricks to prevent tracing. This issue is more an engineering problem, but it is
not that easy to handle well.

In a general setting, symbolic attacks and defenses are a hot topic of deob-
fuscation, and several protections against symbolic reasoning have been investi-
gated. Any progress in this domain can be directly re-used, either for or against
our method. Yet, these protections are not that easy to implement well, and it
is sometimes hard to predict whether they will work fine or not. Especially, the
protections have to depend on user input, otherwise they will be discarded by
taint analysis. Note also that we do not claim that our method can overcome all
of these defenses: we focus only on the virtualization step.

Protecting the bytecode instead of the VM. Another interesting defense is
to protect the bytecode of the virtual machine instead of its components. Thus,
if the virtual machine is broken, the attacker gets as a result an obfuscated
pseudo code. For example, this bytecode could be turned into unreadable Mixed
Boolean Arithmetic (MBA) expressions.

6 Related work

Several heuristic approaches to devirtualization have been proposed (e.g., [23]),
yet our work is closer to semantic devirtualization methods [7, 26, 12]. It has
also connexions with recent works on symbolic deobfuscation [2, 1, 8]. Figure 1
Section 1 gives a synthetic comparison of these different approaches.

Manual and heuristic devirtualization. Sharif et al. [23] propose a dynamic
analysis approach which tries to identify vpc based on memory access patterns,
then they reconstruct a CFG from this sequence of vpc. However, their method
suffers from limitations. For example, their loop detection strategies are not
directly applicable to emulators using a threaded approach. Their approach is
also likewise not applicable to dynamic translation-based emulation. Another
point is that their approach expects each unique address in memory to hold
only one abstract variable, which means that an adversary may utilize the same
location for different variables at different times to introduce imprecision in their
analysis. Conversely, our method solves this problem since we are working on a
trace over a SSA representation, making aliasing trivial to catch up. They also
mention nesting virtualization as an open problem, while our method has been
shown to handle some level of nesting.

Semantics devirtualization. Coogan et al. [7] focus on identifying instruc-
tions affecting the observable behavior of the obfuscated code. They propose
a dynamic approach based on a form of tainting together with leveraging the
knowledge from system calls and ABIs. In the end, they identify a subtrace of
the virtualized trace containing only those instructions affecting the program
output. Their approach can devirtualize only a single path (the executed one)
and cannot be applied on virtualized functions without any system call.

Yadegari et al. [26] proposes a generic approach to deobfuscation combining
tainting, symbolic execution and simplifications. Their goal is to recover the CFG
of obfuscated malware, and they carry out experimental evaluation with several
obfuscation tools. Our technique shows similarities with their own approach, yet
we consider the problem of recovering back a semantically-correct (unprotected)
binary code in typical cases of IP protections (hash functions), and we perform a
large set of controlled experiments, regarding all virtualization options provided
by the Tigress tool, in order to evaluate the properties of our approach.

Kinder [12] proposes a static analysis based on abstract interpretation built
over a vpc-sensitive abstract domain. Its approach performs a range analysis on
the whole VM interpreter, providing the reverser with invariants on the argu-
ments of function calls.

Symbolic deobfuscation. Banescu et al. [2] recently evaluate the efficiency
of standard obfuscation mechanisms against symbolic deobfuscation. They con-
clude, as we do, that without any proper anti-symbolic trick these defenses are
not efficient. They also propose a powerful anti-symbolic defense mechanism, but
it requires some form of secret sharing and thus falls outside the strict scope of
man-at-the-end scenario we consider here. These two works are complementary
in the sense that we focus only on virtualization-based protection, but we cover
it in a more intensive way and we take a more ambitious notion of deobfuscation
(get back an equivalent and small code) while they consider program coverage.
In the same vein, recent promising results have been obtain by symbolic deob-
fuscation against several classes of protections [1, 8, 26].

7 Conclusion and Future Work

We propose a new automated dynamic analysis geared at fully recovering the
original program behavior of a virtualized code – expurged from the VM machin-
ery, and compiling back a new (devirtualized) version of the original binary. We
demonstrate the potential of the method on small hash-like functions (typical of
proprietary assets protected by obfuscation) through an extensive experimental
evaluation, assessing its precision, efficiency and genericity, and we solve (the
non-jitted part of) the Tigress Challenge in a completely automated manner.
While our approach still shows limitations on the class of programs that can
be handled, this work clearly demonstrates that hash-like functions can be eas-
ily retrieved from their virtualized versions, challenging the common knowledge
that virtualization is the best defense against reversing.

In a near future we will focus on the reconstruction of more complicated
program structures such as user-dependent loops or memory accesses.

References

1. Bardin, S., David, R., Marion, J.-Y.: Backward-Bounded DSE: Targeting Infeasi-
bility Questions on Obfuscated Codes. S&P 2017. IEEE

2. Banescu, S., Collberg, C., Ganesh, V., Newsham, Z., Pretschner, A.: Code obfus-
cation against symbolic execution attacks. In ACSAC 2016.

3. Codevirtualizer. https://oreans.com/codevirtualizer.php
4. Themida. https://www.oreans.com/themida.php
5. Tigress: C diversifier/obfuscator. http://tigress.cs.arizona.edu/
6. Clause, J., Li, W., Orso, A.: Dytan: a generic dynamic taint analysis framework.

In: ISSTA 2007. ACM
7. Coogan, K., Lu, G., Debray, S.: Deobfuscation of virtualization-obfuscated soft-

ware: a semantics-based approach. In: CCS 2011. ACM
8. Eyrolles, N., Guinet, A., Videau, M.: Arybo: Manipulation, canonicalization and

identification of mixed boolean-arithmetic symbolic expressions. In: GreHack 2016.
9. Godefroid, P., de Halleux, J., Nori, A.V., Rajamani, S.K., Schulte, W., Tillmann,

N., Levin, M.Y.: Automating software testing using program analysis. IEEE Soft-
ware 25(5), 30–37 (2008)

10. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In PLDI 2005. ACM

11. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based
program synthesis. In: ICSE 2010. ACM/IEEE

12. Kinder, J.: Towards static analysis of virtualization-obfuscated binaries. In: 19th
Working Conference on Reverse Engineering, WCRE 2012

13. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis and transformation. 2004

14. Maximus: Reversing a simple virtual machine. CodeBreakers 1.2 (2006)
15. David, R., Bardin, S., Feist, J., Mounier, L., Potet, M-L., Thanh Dinh Ta, Mar-

ion, J-Y.: Specification of concretization and symbolization policies in symbolic
execution. In ISSTA 2016. ACM

16. David, R., Bardin, S., Ta, T. D., , Feist, J., Mounier, L., Potet, M.-L., Marion, J.-Y.:
BINSEC/SE : A Dynamic Symbolic Execution Toolkit for Binary-level Analysis.
In SANER 2016. IEEE

17. Rolles, R.: Defeating hyperunpackme2 with an ida processor module (2007)
18. Rolles, R.: Unpacking virtualization obfuscators. In: WOOT 2009
19. Salwan, J., Bardin, S., Potet, M.L.: Deobfuscation of vm based software protection.

In: SSTIC 2017
20. Saudel, F., Salwan, J.: Triton: A dynamic symbolic execution framework. In: SSTIC

2015
21. Scherzo: Inside code virtualizer (2007)
22. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:

FSE 2005
23. Sharif, M.I., Lanzi, A., Giffin, J.T., Lee, W.: Automatic reverse engineering of

malware emulators. In: S&P 2009. IEEE
24. Vmprotect: http://vmpsoft.com (2003–2017)
25. Yadegari, B., Debray, S.: Symbolic execution of obfuscated code. In: CCS 2015.
26. Yadegari, B., Johannesmeyer, B., Whitely, B., Debray, S.: A generic approach to

automatic deobfuscation of executable code. In: S&P 2015. IEEE
27. Vanegue, J., Heelan, S., Rolles, R.: SMT Solvers in Software Security. WOOT 2012.
28. Schwartz, E. J., Avgerinos, T., Brumley, D. All you ever wanted to know about

dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: S&P 2010. IEEE

29. Blazytko, t., Contag, M., Aschermann, C., Holz, T.: Syntia: Synthesizing the Se-
mantics of Obfuscated Code. In:USENIX Security Symposium 2017. Usenix

A Detailed experiments

Traces Size (instructions) Binary Size (instructions)

Protection Original Obfuscated Deobfuscated Original Obfuscated Deobfuscated

min: 92 min: 3,047 min: 48 min: 78 min: 935 min: 48
Anti Branch Analysis: branchFuns max: 9,743 max: 1,555,703 max: 599 max: 426 max: 2,048 max: 599

avg: 698 avg: 121,460 avg: 122 avg: 192 avg: 1,641 avg: 122

min: 92 min: 1,430 min: 48 min: 78 min: 783 min: 48
Kind of Operands: stack max: 9,743 max: 381,230 max: 599 max: 426 max: 1,139 max: 599

avg: 698 avg: 31,104 avg: 122 avg: 192 avg: 979 avg: 122

min: 92 min: 1,459 min: 48 min: 78 min: 807 min: 48
Kind of Operands: registers max: 9,743 max: 425,285 max: 599 max: 426 max: 1,182 max: 599

avg: 698 avg: 34,322 avg: 122 avg: 192 avg: 1,065 avg: 122

min: 92 min: 1,430 min: 48 min: 78 min: 783 min: 48
Opaque to VPC: False max: 9,743 max: 381,230 max: 599 max: 426 max: 1,139 max: 599

avg: 698 avg: 31,104 avg: 122 avg: 192 avg: 979 avg: 122

min: 92 min: 1,600 min: 48 min: 78 min: 861 min: 48
Opaque to VPC: True max: 9,743 max: 700,138 max: 599 max: 426 max: 1,296 max: 599

avg: 698 avg: 51,405 avg: 122 avg: 192 avg: 1,148 avg: 122

min: 92 min: 1,430 min: 48 min: 78 min: 783 min: 48
Duplicate Opcodes: 3 max: 9,743 max: 381,230 max: 599 max: 426 max: 1,226 max: 599

avg: 698 avg: 31,037 avg: 122 avg: 192 avg: 1,063 avg: 122

min: 92 min: 2,449 min: 48 min: 78 min: 814 min: 48
Dispatcher: binary max: 9,743 max: 2,825,359 max: 599 max: 426 max: 1,154 max: 599

avg: 698 avg: 195,969 avg: 122 avg: 192 avg: 1,010 avg: 122

min: 92 min: 2,625 min: 48 min: 78 min: 839 min: 48
Dispatcher: interpolation max: 9,743 max: 2,592,186 max: 599 max: 426 max: 1,183 max: 599

avg: 698 avg: 181,698 avg: 122 avg: 192 avg: 1,037 avg: 122

min: 92 min: 2,115 min: 48 min: 78 min: 785 min: 48
Dispatcher: linear max: 9,743 max: 5,804,970 max: 599 max: 426 max: 1,125 max: 599

avg: 698 avg: 351,747 avg: 122 avg: 192 avg: 982 avg: 122

min: 92 min: 1,430 min: 48 min: 78 min: 783 min: 48
Nested VMs: 1 max: 9,743 max: 381,230 max: 599 max: 426 max: 1,139 max: 599

avg: 698 avg: 30,104 avg: 122 avg: 192 avg: 979 avg: 122

min: 92 min: 37,479 min: 48 min: 78 min: 676 min: 48
Nested VMs: 2 max: 9,743 max: 47,927,795 max: 599 max: 426 max: 1,182 max: 599

avg: 698 avg: 3,520,624 avg: 122 avg: 192 avg: 814 avg: 122

Table 8: Average of all algorithms per protection

Traces Size (instructions) Binary Size (instructions)

Hash Original Obfuscated Deobfuscated Original Obfuscated Deobfuscated Time (s) RAM (KB) Correctness

min: 235 min: 5,385 min: 222 min: 78 min: 665 min: 222 min: 0.4 min: 84,784
Adler-32 max: 235 max: 2,996,678 max: 222 max: 78 max: 2,001 max: 222 max: 516.0 max: 2,469,276 100%

avg: 235 avg: 169,174 avg: 222 avg: 78 avg: 1,092 avg: 222 avg: 26.6 avg: 203,737

min: 200 min: 1,455 min: 57 min: 175 min: 571 min: 57 min: 0.1 min: 81,664
CityHash max: 200 max: 37,532 max: 57 max: 175 max: 1,396 max: 57 max: 3.2 max: 93,540 100%

avg: 200 avg: 3,555 avg: 57 avg: 175 avg: 938 avg: 57 avg: 0.3 avg: 82,756

min: 173 min: 4,497 min: 79 min: 167 min: 679 min: 79 min: 0.4 min: 86,008
Collberg-0001-0 max: 173 max: 2,840,513 max: 79 max: 167 max: 3,366 max: 79 max: 494.7 max: 2,339,380 100%

avg: 173 avg: 174,703 avg: 79 avg: 167 avg: 1,243 avg: 79 avg: 26.4 avg: 204,447

min: 326 min: 8,456 min: 167 min: 177 min: 685 min: 96 min: 0.8 min: 102,948
Collberg-0001-1 max: 326 max: 2,066,306 max: 167 max: 177 max: 3,697 max: 96 max: 184.2 max: 883,780 100%

avg: 326 avg: 103,599 avg: 167 avg: 177 avg: 1,300 avg: 96 avg: 9.3 avg: 136,964

min: 227 min: 7,099 min: 84 min: 223 min: 685 min: 84 min: 0.6 min: 93,016
Collberg-0001-2 max: 227 max: 2,132,169 max: 84 max: 223 max: 5,043 max: 84 max: 182.0 max: 899,528 100%

avg: 227 avg: 104,401 avg: 84 avg: 223 avg: 1,364 avg: 84 avg: 9.3 avg: 127,183

min: 262 min: 7,467 min: 68 min: 195 min: 687 min: 68 min: 0.6 min: 90,400
Collberg-0001-3 max: 262 max: 2,071,933 max: 68 max: 195 max: 4,367 max: 68 max: 164.8 max: 898,128 100%

avg: 262 avg: 98,637 avg: 68 avg: 195 avg: 1,342 avg: 68 avg: 8.0 avg: 122,732

min: 228 min: 5,881 min: 100 min: 183 min: 709 min: 100 min: 0.5 min: 86,564
Collberg-0001-4 max: 228 max: 1,510,030 max: 100 max: 183 max: 3,676 max: 100 max: 168.1 max: 896,148 100%

avg: 228 avg: 107,831 avg: 100 avg: 183 avg: 1,315 avg: 100 avg: 12.5 avg: 145,051

min: 372 min: 10,348 min: 190 min: 210 min: 702 min: 99 min: 1.1 min: 116,452
Collberg-0004-0 max: 372 max: 7,804,232 max: 190 max: 210 max: 3,631 max: 99 max: 1431.0 max: 6,306,932 100%

avg: 372 avg: 465,758 avg: 190 avg: 210 avg: 1,317 avg: 99 avg: 74.4 avg: 435,567

min: 147 min: 3,810 min: 67 min: 143 min: 636 min: 67 min: 0.3 min: 85,904
Collberg-0004-1 max: 147 max: 859,278 max: 67 max: 143 max: 2,704 max: 67 max: 71.0 max: 420,912 100%

avg: 147 avg: 46,031 avg: 67 avg: 143 avg: 1,165 avg: 67 avg: 4.1 avg: 100,100

min: 408 min: 11,294 min: 332 min: 219 min: 722 min: 128 min: 1.6 min: 172,760
Collberg-0004-2 max: 408 max: 2,999,784 max: 332 max: 219 max: 4,765 max: 128 max: 275.2 max: 1,243,348 100%

avg: 408 avg: 138,738 avg: 332 avg: 219 avg: 1,400 avg: 128 avg: 13.2 avg: 206,449

min: 203 min: 5,503 min: 78 min: 171 min: 718 min: 78 min: 0.5 min: 86,948
Collberg-0004-3 max: 203 max: 1,439,344 max: 78 max: 171 max: 3,478 max: 78 max: 138.9 max: 755,056 100%

avg: 203 avg: 96,331 avg: 78 avg: 171 avg: 1,317 avg: 78 avg: 11.1 avg: 137,375

min: 307 min: 8,674 min: 146 min: 274 min: 725 min: 146 min: 0.7 min: 103,964
Collberg-0004-4 max: 307 max: 9,279,883 max: 146 max: 274 max: 5,424 max: 146 max: 1,681.6 max: 7,480,952 100%

avg: 307 avg: 533,675 avg: 146 avg: 274 avg: 1,452 avg: 146 avg: 86.6 avg: 482,005

min: 143 min: 1,499 min: 57 min: 110 min: 517 min: 57 min: 0.1 min: 80,872
FNV1a max: 143 max: 54,846 max: 57 max: 110 max: 1,180 max: 57 max: 4.9 max: 101,828 100%

avg: 143 avg: 3,544 avg: 57 avg: 110 avg: 861 avg: 57 avg: 0.3 avg: 82,139

min: 201 min: 5,520 min: 125 min: 79 min: 631 min: 125 min: 0.5 min: 87,572
Jenkins max: 201 max: 1,069,111 max: 125 max: 79 max: 1,888 max: 125 max: 83.9 max: 543,272 100%

avg: 201 avg: 76,420 avg: 125 avg: 79 avg: 1,076 avg: 125 avg: 6.2 avg: 110,694

min: 92 min: 1,349 min: 48 min: 90 min: 468 min: 48 min: 0.1 min: 79,732
JodyHash max: 92 max: 155,637 max: 48 max: 90 max: 1,085 max: 48 max: 25.2 max: 203,072 100%

avg: 92 avg: 9,820 avg: 48 avg: 90 avg: 803 avg: 48 avg: 1.4 avg: 86,237

min: 9,743 min: 173,673 min: 557 min: 314 min: 1,311 min: 557 min: 16.5 min: 266,032
MD5 max: 9,743 max: 47,927,795 max: 557 max: 314 max: 4,828 max: 557 max: 4,226.7 max: 2,688,976 100%

avg: 9,743 avg: 2,328,114 avg: 557 avg: 314 avg: 1,857 avg: 557 avg: 207.5 avg: 583,198

min: 364 min: 2,880 min: 160 min: 362 min: 824 min: 160 min: 0.3 min: 89,356
SpiHash max: 364 max: 1,694,015 max: 160 max: 362 max: 1,829 max: 160 max: 288.1 max: 1,434,764 100%

avg: 364 avg: 100,661 avg: 160 avg: 362 avg: 1,224 avg: 160 avg: 15.1 avg: 159,257

min: 536 min: 1,784 min: 79 min: 426 min: 788 min: 79 min: 0.1 min: 82,424
SpookyHash max: 536 max: 140,565 max: 79 max: 426 max: 1,443 max: 79 max: 23.1 max: 193,080 100%

avg: 536 avg: 9,571 avg: 79 avg: 426 avg: 1,125 avg: 79 avg: 1.3 avg: 88,364

min: 182 min: 1,402 min: 81 min: 144 min: 506 min: 81 min: 0.1 min: 82,572
SuperFastHash max: 182 max: 37,479 max: 81 max: 144 max: 1,331 max: 81 max: 3.1 max: 94,696 100%

avg: 182 avg: 3,502 avg: 81 avg: 144 avg: 874 avg: 81 avg: 0.3 avg: 83,540

min: 186 min: 1,672 min: 68 min: 182 min: 691 min: 68 min: 0.1 min: 83,376
Xxhash max: 186 max: 103,193 max: 68 max: 182 max: 1,470 max: 68 max: 16.3 max: 164,128 100%

avg: 186 avg: 9,310 avg: 68 avg: 182 avg: 1,047 avg: 68 avg: 1.1 avg: 88,478

Table 9: Average of all protections per hash function

