
About Directed Fuzzing and Use-After-Free:
How to Find Complex & Silent Bugs?

Manh-Dung Nguyen, Sébastien Bardin, Matthieu Lemerre (CEA LIST)
Richard Bonichon (Tweag I/O)

Roland Groz (Université Grenoble Alpes)

#BHUSA @BLACKHATEVENTS

#BHUSA @BLACKHATEVENTS

Who Are We?
Sébastien Bardin

 sebastien.bardin@cea.fr
Senior Researcher at CEA LIST

Université Paris-Saclay

Manh-Dung Nguyen
@dungnm1710

manh-dung.nguyen@cea.fr
PhD Student at CEA LIST & UGA

#BHUSA @BLACKHATEVENTS

What’s The Talk About?
● Fuzzing is great for finding vulnerabilities in the wild

● Directed fuzzing is a slightly different setting
○ Goal = reach a specific target
○ Bug reproduction, patch-oriented testing

● The problem: Current fuzzing techniques are bad for some classes of issues
○ Here: “Use-After-Free” (UAF)
○ Important: sensitive info leaks, data corruption or first step to other attacks

● Proposal: A directed fuzzing approach tailored to UAF bugs
○ and applications to patch-oriented testing
○ and a tour on UAF and (directed) fuzzing

#BHUSA @BLACKHATEVENTS

Use-After-Free

UAF bugs in National Vulnerability
Database

● Heap element is used after having been freed
● Critical exploits & serious consequences

○ Data corruption
○ Information leaks
○ Denial-of-service attacks

#BHUSA @BLACKHATEVENTS

Teaser
● PoC: ‘AFU’ → no crash
● Bug Target: 14 (alloc) → 17 → 6 → 3

(free) → 19 (use)
● Timeout: 6h

AFL-QEMU
(binary)

AFLGo
(source)

UAFuzz
(binary)

(6 hours)

 (6 hours)

(~ 20 mins)

alloc

free

use

#BHUSA @BLACKHATEVENTS

1. Context
-- about fuzzing, directed fuzzing

#BHUSA @BLACKHATEVENTS

Code-level Flaws: Fuzzing is The New Hype

#BHUSA @BLACKHATEVENTS

As Its Core, Fuzzing is Random Testing
 -- and it starts a long time ago

#BHUSA @BLACKHATEVENTS

Now: Three Shades of Fuzzing

• The original taste
• Scale but dumb

• The new prodigy
• Try to be smart & scale

• Smart but don’t scale
too much

#BHUSA @BLACKHATEVENTS

Principle of Grey/Black Fuzzing

Choose “good” inputs

Mutations

Observe & compute score

Greybox
observes more

The art, science, and engineering of fuzzing: A survey (Manès et al. 2019)

#BHUSA @BLACKHATEVENTS

No Silver Bullet

Complex Code Structure Complex Bugs Target-oriented
Testing?

#BHUSA @BLACKHATEVENTS

Directed Greybox Fuzzing (DGF)
● Input: code + target (trace, code location)

● Goal = Cover the target

● AFLGo (2017), Hawkeye (2018)

● Applications:
○ Bug reproduction
○ Patch-oriented testing
○ Static analysis report confirmation

#BHUSA @BLACKHATEVENTS

Coverage-guided Greybox Fuzzing AFL

Instrumentation Seed Selection Power Schedule Triage

Instrumentation Fuzzing Loop Triage

Binary

Initial
Testsuite

Bugs

Edge ID Execution
characteristics

Crash-based

#BHUSA @BLACKHATEVENTS

Directed Greybox Fuzzing AFLGo, Hawkeye

Instrumentation Seed Selection Power Schedule Triage

Instrumentation Fuzzing Loop Triage

Seed Distance

Binary

Initial
Testsuite

Bugs

Targets

Edge ID +
Distance

Execution
characteristics

Crash-based

Distance-guided

#BHUSA @BLACKHATEVENTS

2. Back to Use-After-Free (UAF)

#BHUSA @BLACKHATEVENTS

Why is Detecting UAF Hard for Fuzzing?

UAF bugs found (1%) by OSS-Fuzz
in 2017

● Rarely found by fuzzers
○ Complexity: 3 events in sequence

spanning multiple functions
○ Temporal & Spatial constraints:

extremely difficult to meet in practice
○ Silence: no segmentation fault

#BHUSA @BLACKHATEVENTS

Recall: Motivation
● PoC: ‘AFU’ → no crash
● Bug Target: 14 (alloc) → 17 → 6 → 3

(free) → 19 (use)
● Timeout: 6h

AFL-QEMU
(binary)

AFLGo
(source)

UAFuzz
(binary)

(6 hours)

 (6 hours)

(~ 20 mins)

#BHUSA @BLACKHATEVENTS

#BHUSA @BLACKHATEVENTS

3. UAFuzz: Directed Fuzzing for UAF

#BHUSA @BLACKHATEVENTS

Existing DGF: #1 No Ordering & No Prioritization

Instrumentation Seed Selection Power Schedule Triage

Instrumentation Fuzzing Loop Triage

Seed Distance

Initial
Testsuite

No
order

Treat edges
equally

Slow

Treat everything
equally

Binary

Targets

UAF Bugs

#BHUSA @BLACKHATEVENTS

Existing DGF: #2 Crash Assumption

Instrumentation Seed Selection Power Schedule Triage

Instrumentation Fuzzing Loop Triage

Seed Distance

Initial
Testsuite

No
order

Treat edges
equally

Expensive
sanitizer-based

triage

Slow

Treat everything
equally

Binary

Targets

UAF Bugs

#BHUSA @BLACKHATEVENTS

Overview of UAFuzz [tailor every fuzzing step to UAF]

Instrumentation Seed Selection Power Schedule Triage

Instrumentation Fuzzing Loop Triage

Seed DistanceBinary

Initial
Testsuite

UAF Bugs

Targets

Edge ID +
Distance (UAF-based)

Execution
characteristics

Pre-triage
for free

Targets
Similarity

Fast

Cut-edge
Coverage

#BHUSA @BLACKHATEVENTS

Key Insights of UAFuzz

★ Seed Selection: based on similarity and ordering of input trace
★ Power Schedule: based on 3 seed metrics dedicated to UAF

○ [function level] UAF-based Distance: Prioritize call traces covering UAF events
○ [edge level] Cut-edge Coverage: Cover edge destinations reaching targets
○ [basic block level] Target Similarity: Cover targets

★ Fast precomputation at binary-level

★ Triage only potential inputs covering all locations & pre-filter for free

#BHUSA @BLACKHATEVENTS

UAF Bug Target
// stack trace for the bad Use

 ==4440== Invalid read of size 1
 ==4440== at 0x40A8383: vfprintf (vfprintf.c:1632)
 ==4440== by 0x40A8670: buffered_vfprintf (vfprintf.c:2320)
 ==4440== by 0x40A62D0: vfprintf (vfprintf.c:1293)
[6] ==4440== by 0x80AA58A: error (elfcomm.c:43)
[5] ==4440== by 0x8085384: process_archive (readelf.c:19063)
[1] ==4440== by 0x8085A57: process_file (readelf.c:19242)
[0] ==4440== by 0x8085C6E: main (readelf.c:19318)

// stack trace for the Free
 ==4440== Address 0x421fdc8 is 0 bytes inside a block of size 86 free'd
 ==4440== at 0x402D358: free (in vgpreload_memcheck-x86-linux.so)
[4] ==4440== by 0x80857B4: process_archive (readelf.c:19178)
[1] ==4440== by 0x8085A57: process_file (readelf.c:19242)
[0] ==4440== by 0x8085C6E: main (readelf.c:19318)

// stack trace for the Alloc
 ==4440== Block was alloc'd at
 ==4440== at 0x402C17C: malloc (in vgpreload_memcheck-x86-linux.so)
[3] ==4440== by 0x80AC687: make_qualified_name (elfcomm.c:906)
[2] ==4440== by 0x80854BD: process_archive (readelf.c:19089)
[1] ==4440== by 0x8085A57: process_file (readelf.c:19242)
[0] ==4440== by 0x8085C6E: main (readelf.c:19318)

UAF Bug Target:
0 (0x8085C6E, main) → 1 (0x8085A57, process_file) → 2 (0x80854BD,
process_archive) → 3 (0x80AC687, make_qualified_name) → 4 (0x80857B4,
process_archive) → 5 (0x8085384, process_archive) → 6 (0x80AA58A, error)

Stack Traces of CVE-2018-20623 Dynamic Calling Tree

Bug Trace Flattening

#BHUSA @BLACKHATEVENTS

UAF-based Distance Metric

● Intuition: UAFuzz favors the shortest path that is likely
to cover more than 2 UAF events in sequence

○ Statically identify and decrease weights of (caller, callee)
in Call Graph

○ Ex: favored call traces <main, f2, fuse>, <main, f1, f3, fuse>

Example of Call Graph, favored pairs
(caller, callee) are in red

● Existing works compute seed distance
○ regardless of target ordering
○ regardless of UAF characteristic: call traces may contain

in sequence alloc/free function and reach use function

#BHUSA @BLACKHATEVENTS

Cut-edge Coverage Metric

➀ call f1

ep

 Control Flow Graph, cut edges are in blue

call f2➁

● Existing works treat edges equally in terms of reaching in
sequence targets

● Cut-edge
○ Edge destinations are more likely to reach the next

target in the bug trace
○ Approximately identify via static intraprocedural analysis

of CFGs
● Intuition: UAFuzz favors inputs exercising more cut edges via

a score depending on # covered cut edges and their hit counts

#BHUSA @BLACKHATEVENTS

Target Similarity Metric

● Target Similarity Metric
○ Prefix: more precise
○ Bag: less precise, but consider the whole trace

● Intuition: Seed Selection heuristic based on both
prefix and bag metrics

○ Select more frequently max-reaching inputs that
have highest value of this metric (most similar to
the bug trace) so far

● Existing works select seeds to be mutated regardless of
number of covered target locations

0

alloc

free

use

1

2

3

4

5

Bug Trace : 0 (alloc) → 1 → 2 (free) → 3 → 4 → 5 (use)

trace of input s: 0 → 1 → 2 → 3 → 7 → 8 → 5

...

#BHUSA @BLACKHATEVENTS

Power Schedule

Intuition: UAFuzz assigns more energy (a.k.a, # mutants) to

● seeds that are closer (using UAF-based Distance)
● seeds that are more similar to the bug trace (using Target Similarity Metric)
● seeds that make better decisions at critical code junctions (using Cut-edge

Coverage Metric)

#BHUSA @BLACKHATEVENTS

Pre-filter
● Existing works simply send all fuzzed inputs to the bug triager

● Potential inputs: cover in sequence all target locations in the bug trace
● UAFuzz triages only potential inputs & safely discards others

○ Available for free after the fuzzing process via Target Similarity Metric
○ Saving a huge amount of time in bug triaging

#BHUSA @BLACKHATEVENTS

Implementation

AFL-QEMU

Support more open-source binary disassemblers

#BHUSA @BLACKHATEVENTS

4. Experimental Evaluation

#BHUSA @BLACKHATEVENTS

Evaluations
● Bug Reproduction

○ Time-to-Exposure, # bugs found, overhead, # triaging inputs
● Patch-Oriented Testing

● Evaluated fuzzers
○ UAFuzz (BINSEC & AFL-QEMU)
○ AFL-QEMU
○ AFLGo (source - level) // Manh-Dung co-author
○ Our implementations AFLGoB & HawkeyeB

● Benchmark
○ 13 UAF bugs of real-world programs

#BHUSA @BLACKHATEVENTS

Bug Reproduction: Fuzzing Performance

Bug-reproducing performance of binary-based DGFs

● Total success runs vs. 2nd best
AFLGoB: +34% in total, up to +300%

● Time-to-Exposure (TTE) vs. 2nd best
AFLGoB: 2.0x, avg 6.7x, max 43x

● Vargha-Delaney metric vs. 2nd best
AFLGoB: avg 0.78

UAFuzz outperforms state-of-the-art directed fuzzers in terms of UAF
bugs reproduction with a high confidence level

#BHUSA @BLACKHATEVENTS

Bug Reproduction: Overhead

● Instrumentation overhead
○ 15x faster in total than AFLGo-source

● Runtime overhead
○ UAFuzz has the same total executions

done compared to AFL-QEMU

Global Overhead

UAFUZZ enjoys both a lightweight instrumentation time
and a minimal runtime overhead

#BHUSA @BLACKHATEVENTS

Bug Reproduction: Triage

● Total triaging inputs
○ UAFuzz only triages potential inputs

(9.2% in total – sparing up to 99.76%
of input seeds for confirmation)

● Total triaging time
○ UAFuzz only spends several seconds

(avg 6s; 17x over AFLGoB, max 130x) Bug Triaging Performance

UAFuzz reduces a large portion (i.e., more than 90%) of triaging
inputs in the post-processing phase

#BHUSA @BLACKHATEVENTS

5. Patch-Oriented Testing

#BHUSA @BLACKHATEVENTS

Patch-Oriented Testing

How to find

● Identify recently discovered UAF bugs

● Manually extract call instructions in bug traces

● Guide the directed fuzzer on the patch code

UAFuzz has been proven effective in a patch-oriented setting, allowing to find
30 new bugs (4 incomplete patches, 7 CVEs) in 6 open-source programs

Targets

● Incomplete patches,
regression bugs

● Weak parts of code

#BHUSA @BLACKHATEVENTS

Patch-Oriented Testing: Zero-day Bugs

#BHUSA @BLACKHATEVENTS

Buggy Patch in GNU Patch CVE-2019-20633

Using the bug trace of CVE-2018-6952 produced by
Valgrind, we found an incomplete fix of GNU Patch with

one different call in red

#BHUSA @BLACKHATEVENTS

6. Conclusion

#BHUSA @BLACKHATEVENTS

Conclusion & Takeaways

1. Directed Fuzzing exists, and it is practical
 -- should be integrated into dev. process in addition to standard fuzzing

2. Recent trend toward dedicated fuzzers (UAFuzz, PerfFuzz, MemLock ...)
 -- perform better than general fuzzers

3. Patch-oriented fuzzing is bigger than patch testing
4. Patching a PoC is not enough, we should find and fix variants of the bug class

● UAFuzz: A directed fuzzing framework to detect UAF bugs at binary level
● Find more bugs in bug reproduction than state-of-the-art tools
● New bugs and CVEs in patch-oriented testing

Thank you ! Q & A
Manh-Dung Nguyen, Sébastien Bardin, Matthieu Lemerre (CEA LIST)

Richard Bonichon (Tweag I/O)
Roland Groz (Université Grenoble Alpes)

~~~
Paper: Binary-level Directed Fuzzing for Use-After-Free Vulnerabilities (RAID’20)

UAFuzz: https://github.com/strongcourage/uafuzz
UAF Fuzzing Benchmark: https://github.com/strongcourage/uafbench

BINSEC v0.3: https://binsec.github.io/

#BHUSA   @BLACKHATEVENTS 

Partially funded by European H2020 project C4IIOT

https://github.com/strongcourage/uafuzz
https://github.com/strongcourage/uafbench
https://binsec.github.io/


#BHUSA   @BLACKHATEVENTS 

Bug Reproduction: Individual Contribution

Each component individually contribute to improve fuzzing performance. 
Combining them yield even further improvements

Impact of each component
Summary of 4 fuzzers



#BHUSA   @BLACKHATEVENTS 

UAF Fuzzing Benchmark
● Create a fuzzing benchmark for UAF bugs
● In the vein of Google’s FuzzBench (currently only supports evaluating 

coverage-guided fuzzers)


