
Binary level toolchain provenance identification
with graph neural networks

Tristan Benoit
Université de Lorraine, CNRS,

LORIA,
F-54000 Nancy, France

tristan.benoit@loria.fr
,

Jean-Yves Marion
Université de Lorraine, CNRS,

LORIA,
F-54000 Nancy, France

jean-yves.marion@loria.fr
,

Sébastien Bardin
CEA LIST

Université Paris-Saclay
Saclay, France

sebastien.bardin@cea.fr

Abstract—We consider the problem of recovering the compiling
chain used to generate a given stripped binary code. We present
a Graph Neural Network framework at the binary level to solve
this problem, with the idea to take into account the shallow
semantics provided by the binary code’s structured control flow
graph (CFG). We introduce a Graph Neural Network, called
Site Neural Network (SNN), dedicated to this problem. To attain
scalability at the binary level, feature extraction is simplified by
forgetting almost everything in a CFG except transfer control
instructions and performing a parametric graph reduction. Our
experiments show that our method recovers the compiler family
with a very high F1-Score of 0.9950 while the optimization level
is recovered with a moderately high F1-Score of 0.7517. On the
compiler version prediction task, the F1-Score is about 0.8167
excluding the clang family. A comparison with a previous work
demonstrates the accuracy and performance of this framework.

Index Terms—toolchain provenance, graph neural networks,
binary code analysis

I. INTRODUCTION

The problem Identifying the toolchain provenance, i.e. the
compiler family (e.g. Visual Studio or GCC), the compiler
version (e.g. 10.0, 12.0) and its optimization options (e.g.
−O1, −O2), that have been used to produce a given stripped
binary code is an important problem in at least two scenarios:

• Determination of security flaws inside binary codes. Ap-
plications are often built by linking together commercial
off-the-shelf libraries (COTS)1. While allowing faster
development cycles, developers do not have the source
code of these COTS and do not know the compiling
chain used to generate them. This is an important is-
sue in software maintenance and long-term support as
compilers may inject vulnerabilities that are discovered
after the COTS released and after the deployment of the
applications that used them [1]. For example, CVE-2018-
12886 describes a vulnerability allowing an attacker to
bypass stack protection in GCC 4.1 though 8. Hence,
there is a need to be able to retrieve the compiling chain

This work is supported by (i) a public grant overseen by the French National
Research Agency (ANR) as part of the ”Investissements d’Avenir” French
PIA project ”Lorraine Université d’Excellence”, reference ANR-15-IDEX-
04-LUE, and (ii) has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 830927
(Concordia).

1More than 70% of commercial applications used COTS (Gartner).

to assess whether an application may present a certain
vulnerability;

• Identification of known functions. Library function iden-
tification in a binary code is another primary issue
for software maintenance and security, such as clone
detection (see for example [2] using Deep Learning)
or malware reverse engineering (see for example [3]
using I/O relationship). The function name identification
problem is readily solved when the binary code under
analysis is well-behaved, that is when it contains enough
information to disassemble it. For example, IDA disas-
sembler proposes the F.L.I.R.T algorithm [4] based on
signature-patterns that recognizes known functions, while
ByteWeight [5] constructs a weight prefix tree of the
function prologue by machine learning to identify known
functions. These methods work well for regular binary
codes, yet identification fails in many situations: unknown
libraries, slightly modified binaries, stripped or obfus-
cated binaries. Compiler chain provenance identification
may help in such cases [6].

We tested IDA Freeware edition to determine the compiler
used to generate a binary code. For this, we performed a
test manually on 15 unstripped and stripped binary codes.
A stripped binary is a binary code without debugging sym-
bols. On unstripped binary codes, IDA correctly distinguishes
MinGW binary codes from Visual Studio ones. In the case
of stripped binary codes, IDA is not able to find the correct
compiler and assigns each binary code to Visual Studio,
probably as a default setting. Moreover and in all cases, IDA
was unable to retrieve the compiling options.

Goal and approach The goal of the paper is to devise a
machine learning based solution to the toolchain provenance
identification problem over stripped binary codes.

Rosenblum et al.’s pioneering work [7] introduced the
problem and a first solution based on Support Vector Machine
(SVM) over binary functions disassembled from a binary.
Recent works on this topic [8], [9] rely on neural networks, ei-
ther Convolutional (CNN) or Recurrent (RNN). The extracted
features of a binary code are embedded as a text or as an
image to be fed into a neural network. Rahimian et al. [10]
takes a stratified approach: first, the compiler family is guessed

and then, given the compiler family, the optimization level
is determined. With a combination of features coming from
the control graph and the instruction sequences, the toolchain
provenance is attributed with hash kernels and fingerprints.

A recent work by Massarelli et al. [11] extracts binary
function Control Flow Graph (CFG). Their neural network
can be decomposed into two parts: first, the raw binary
sequences in each basic block are dealt with natural language
processing (NLP) techniques, second, the graph is operated
using convolutions – aggregating blocks to classify each binary
function.

Instruction embedding is a topic in itself. Different embed-
dings have been adapted from the natural language processing
setting such as asm2vec [12], cross-architecture instruction
embedding [13], or i2v [11].

Claim We claim that the decision process can be done at the
binary program level rather than at the binary function level
like in most prior approaches. Going away from precise block
level binary semantics, we suggest using a forgetting control
flow graph (CFG) of the whole binary program. That is why
we propose using Graph Neural Networks (GNN) [14]. As a
result, relationships between basic blocks (nodes of CFG) are
taken into account in the graph embedding, and the weight of
a CFG node depends transitively on its neighbors. In doing
so, we take the proviso that a program is not like a text or
an image that can be projected into a regular Euclidean space,
and consequently, it is worth keeping the program structure,
at least partially.

Contribution Our paper makes the following contributions:

1) We develop a Graph Neural Network based framework
that we call Site Neural Network (SNN) to determine the
compiler family, compiler version and the optimization
level that generate a given binary code. The overall
architecture is displayed in Figure 1 and Figure 2. We
extract a CFG from a binary code and then abstract
it by preserving only the skeletal control flow. Then,
this forgetting flow graph is chopped into fixed-size
sub-graphs (sites) whose size is a parameter noted α
in the remainder of the text. This preprocessing step
is fully automatic and unsupervised. Next, the Site
Neural Network takes the graph of all sites as input to
classify the binary code. The overall architecture of our
framework follows the approach of adapting Residual
Neural Network (ResNet) to sites [15] and by refining
the model with adaptive max pooling layers [16] to
graphs. We also propose to use hierarchies of multiple
SNN experts making binary decisions (e.g. ’Clang 8.0’
versus ’Clang 8.5’).
Our approach has at least three advantages.

• Compared to prior works [7]–[11], the model is
quite simple because it is reduced to sites. There
is no instruction specific feature and no focus on
function prologues/epilogues. So, we do expect that
Site Neural Networks are more robust and generic.

• From a methodological point of view, Site Neural
Networks provides end-to-end graph based clas-
sifiers. As a result, decisions and classifications
should be more easily based on the binary code
semantics.

• Our framework can easily be adapted to different
contexts: chopping is parameterized by the sub-
graph size α, while our SNN hierarchy allows
adding new experts in a modular way – for example
to deal with a new compiler version or a new option.

2) Most prior works in toolchain provenance based on Ma-
chine Learning use as datasets a set of binary functions
generated by different compilers and optimization levels.
From our point of view, this approach creates a bias,
which might be acceptable depending on the context.
Indeed, it might be difficult to correctly identify function
boundaries when we deal with obfuscated COTS or
stripped binaries and the preprocessing time to find
functions, for example in COTS, may be important.
Moreover, most of the time, libraries, like DLL, are dy-
namically linked and so it is not necessary to determine
the compiler toolchain for each function individually.
That is why we focus on binary codes. Hence, our
dataset consists of full stripped binary codes without
any knowledge about functions and their localization.

3) Some study suffers from a limited dataset variety
(e.g., only 18 compiler configurations in Rosenblum et
al. [17]). Our study covers a large number of possible
compiling toolchains on Linux and Windows (both 64-
bit systems). Indeed, the identification covers 23 differ-
ent compiler versions of four major compilers: Clang,
GCC, MinGW, Visual Studio. We take into consideration
four classes of optimization -O0, -O1, -O2/-O3, and -Os
– for a total of 92 compiler configurations. We evaluated
our system in terms of detection accuracy on a broad
dataset composed of about 36, 272 stripped binary codes
compiled from 36, 272 different source code with four
compiler families, 23 different compiler versions, and
five optimization levels. Thus, we can train and test our
approach with 121 distinct and well-balanced sets of
binary codes, all having different code sources.

We demonstrate that toolchain provenance identification at
program level is feasible with good precision and accuracy
together with an efficient learning phase – obtaining better
classification results than the most recent prior function-
level methods [11] together with much smaller learning time
(Section VI-A). Overall, we believe these results are promising
and may offer new, more robust leads for toolchain provenance
identification.

II. RELATED WORKS

Rosenblum et al. in a series of two seminal papers [17]
and [7] were the first to attempt to recover the compiler and
compiler options using SVM – where features are composed of
regular expressions (idioms) on the assembly program together
with 3-vertex graphlets. While they report excellent precision

Fig. 1. Overall architecture of the preprocessing phase

Fig. 2. Overall architecture of a Site Neural Networks

and accuracy, they consider a rather restricted data set in terms
of code diversity, compilers families, versions, and options.
There are 175 different codes. Only 9 compiler versions are
considered and optimization prediction is either ’Low’ (e.g. -
O0) or ’High’ (e.g. -O3). We show in Section VI-B that more
diversity significantly impacts results, hence we carry out our
experiments in a more diverse setting.

Rahimian et al. [10] developed BinComp, with a complex
model based on three layers – the last one being an Annotated
Control Flow Graphs. All these features are embedded into
a vector by applying a neighbor hash graph kernel. Some
features required the binary codes to be unstripped.

More recently, three papers were published on toolchain
provenance. Yang et al. [8] extracts 1024 bits from the object
file and process them with a one-dimensional CNN. Chen
et al. [9] develop Himalia, which is a two-tier classifier.
Features are extracted from binary functions and consist of
a sequence of instruction types of fixed size, which are
eventually completed by padding. Thus, Himalia focuses on
the prologue and epilogue of functions, and as a result, can
explain its classification. That said, the authors made the strong
hypothesis to be able to determine the function prologue and
epilogue.

Lastly, the closest related work is by Massarelli et al. [11].
They propose a graph embedding neural network based on
methods developed in the field of NLP. The learning phase is
composed of two stages. The first stage transforms sequences
of instruction in basic blocks using an instruction embedding
called i2v and a Recurrent Neural Network. Then, the overall
CFG is embedded into a graph, which is aggregated by a 2-
round convolution process. Our approach is shown to have
a much better learning time for overall better precision and
accuracy (Section VI-A).

III. BACKGROUND

In this paper, we use Graph Neural Networks (GNN) [14],
[18], [19] and more precisely Graph Convolutionnal Networks
(GCN). The architecture of a GCN is mostly based on a trans-
formation of classical CNN architecture. For example, Zhao et
al. [15] generalizes ResNet [20] and DenseNet [21] to graphs.
Inputs of a graph neural network is the representation of a
graph. The recent survey by Hamilton et al. [22] discusses the
different graph representations. Compared to unstructured data
like texts (one-dimensional data) or images (two-dimensional
data), the graph encoding must preserve certain properties like
the shape or the connectivity.

A key feature is the pooling method. A pooling layer of a
GNN does not depend on the input size. For this, the pooling
can just take the sum of node values. There are other methods
such as sort pooling selecting a fixed sized set of maximum
node values [23] or such as adaptive max pooling by dividing
the matrix at each convolution in a fixed number of parts [24],
as illustrated in Figure 4.

Note that we name each node with an identifier to increase
the predictivity of the model [25].

IV. OUR METHOD FOR TOOLCHAIN PROVENANCE
IDENTIFICATION

A. Binary code preprocessing

Symbol Signification

RET return
CALL function call
JMP unconditional jump
HLT interruption
INVALID failure when disassembling
UNDEF unknown address
JCC conditional jump
SWITCH jump to multiples destinations

TABLE I
AUTOMATIC LABELLING

The architecture of the preprocessing is shown in Figure 1.
Inputs are binary codes. The Control Flow Graph (CFG) is
extracted using a concolic disassembler framework [26]. Then,
there are two more steps that we call the forgetful phase and
the chopping phase. They reduce drastically the dimension
of the adjacency matrix and facilitate transmission during the
convolution phase.

B. The forgetful phase

The forgetful phase consists of simplifying a CFG by
removing sequential instructions and by just keeping control
flow instruction types. Figure 3 illustrates this reduction. For
this, the phase runs in two stages :

1) All consecutive nodes labeled by a sequential instruction
(like mov or add) are pruned in one single node that is
removed.

2) All remaining nodes are relabeled based on the instruc-
tion type following Table I.

Fig. 3. The forgetful phase

The forgetful phase respects the underlying structure of the
input CFG and maps it to a reduced graph that we call the
forgetting CFG for convenient notation in the remainder.

C. The chopping phase

The chopping phase cuts a forgetting graph into a set of
small disconnected subgraphs. These subgraphs are called sites
and their size is at most of α nodes. Sites are obtained using a
breadth-first search algorithm from the forgetting graph – the
algorithm is presented in Algorithm 1. It performs a limited
exploration of the graph using a breadth-first search. During
that exploration, it collects from the graph multiple small
subgraphs.

We associate with each node of a site two features composed
of the instruction type (see Table I) and a unique identifier to
solve the problem of anonymity.

Since each site has a small diameter of at most α, a
small number of convolutions allows information to pass
through all nodes. Notice that sites are directed graphs, but
they are processed as undirected graphs during convolution
computations.

D. Site Neural Networks

Inputs are graphs built from a binary code by the two
previous phases. Take a graph composed of a set of nodes
V and represented by the adjacency matrix A. We define X0

as the matrix containing the nodes attributes, thus it has a
dimension of n× 2.

a) Mini-batches: A single input is a set of sites that are
collectively regrouped in a graph. In the training phase, the
input graphs are partitioned into mini-batches. This allows us
to normalize the data [27]. Each mini-batch B is normalized
by calculating batchNormB(x) = x−µB

σB
, where µB is the

observed mean and σB is the observed variance. Notice that,
the observed means and variances are memorized because they
are reused in test time. This process has been shown to be
successful but is not yet understood in theory. The activation
function is the rectified linear unit relu(x) = max(0, x).

Algorithm 1 Graph chopping algorihtm
Input: A forgetting graph G = (V,E), a root vertex r in V
Parameters: n the number of sites to extract, α max node in
a site
Output: A graph containing a maximum of n sites

Let Gr = (Vr, Er) be a a graph.
while |V | > 0 and n > 0 do

Let q1 be a queue.
Let q2 be a queue.
Let g = (N,A) be a graph.
push q1, r
while |N | < α and |q1| > 0 do

empty q2
for all x ∈ q1 do

if |N | > α then
break

end if
for all y such that (x, y) ∈ E do

if |N | > α then
break

end if
if y ∈ N then
A← A ∪ {(x, y)}
break

end if
N ← N ∪ {y}
A← A ∪ {(x, y)}
push y in q2

end for
end for
q1← q2

end while
V ← V \ {N}
E ← E \ {(u, v)|u, v ∈ N}
r ← first vertex left in V
Vr ← Vr ∪N
Er ← Er ∪A
n← n− 1

end while
return Gr

b) Dense Convolution: Now, the vector sequence of node
values (Yk+1)k≥0 obtained after k+1 convolution(s) is defined
as follows:

Y1 = relu(batchNormB((A+ I)X0W0 + b0))

Yk+1 = (relu(batchNormB((A+ I)YkWk + bk))|Yk)

The notation | is the matrix augmentation. Using dense con-
volutions introduced by Huang et al. [21] the output of one
step is fed into every future step.

c) Dimensions: Let dt be the hyperparameter corre-
sponding to the second dimension of the matrix Wt at convo-

Fig. 4. An example of two adaptive max pooling on a matrix of dimension
22× 8. The first adaptive max pooling is of dimension 2× 2, it has a kernel
size of dimension 11× 4. The second adaptive max pooling is of dimension
4× 4, it has a kernel size of dimension 6× 2.

lution t. The first dimension of the matrix Wk, for k > 0, is∑k−1
t=0 dt.

d) Output: The dimension of matrix Yk, for k > 0, is
n×
∑k
t=0 dt where n is the number of nodes. We now perform

a pooling, which reduces the matrix of the last convolution to
some smaller fixed-size matrix.

e) Adaptive Max Pooling Layer(s): Following [16], a
crucial point in our approach is the extraction of features based
on the Weisfeiler-Lehman test of graph isomorphism. For this,
we apply on the result of the convolutional layers an (AMP)
step. This pooling operation is defined by an operator ampn,m
that reduces a matrix to a matrix of smaller dimension n×m
as follows: Take a matrix M of dimension u × v. M is cut
into n ×m matrices of kernel size

⌈
u
x

⌉
×
⌈
v
y

⌉
. We take the

maximum in each block. The figure 4 illustrates the adaptive
max pooling computation. We iterate four times adaptive max
pooling to extract a fixed-size representation of X .

f) Readout layer: At this point, we have obtained from
the adaptive max pooling layers a fixed-size representation
of our graph. The output of the adaptive max pooling layers
is fed into a multilayer perceptron to predict the probability
distribution of the class that the input graph should belong to.

V. EVALUATION

A. Dataset

We evaluate the performance of our framework on a data
set coming from CodeForces2.

The Codeforces Dataset: The dataset is made from
36,272 C/C++ source code examples, that solve 91 problems
from Codeforces. We compiled them using clang 3.9.1, clang
4.0.1, clang 5.0.1, clang 6.0.0, clang 7.0.0, clang 8.0, gcc 4.8.5,
gcc 5.5.0, gcc 6.5.0, gcc 7.5.0, gcc 8.4.0, gcc 9.3.0, mingw
3.4.5, mingw 4.4.1, mingw 4.7.1, mingw 4.9.2, mingw 5.11.0,
mingw 8.1.1, visual studio (vs) 10.0, vs 12.0, vs 14.0, vs 2017
and vs 2019. Thus, there are 23 different compilers in total.
The target platform of GCC and Clang binaries is Ubuntu

2https://codeforces.com/

Fig. 5. The hierarchical classifier for optimization level prediction. A parent
node is an expert trained during the number of epoch noted in blue.

Fig. 6. The hierarchical classifier for version prediction. A parent node is an
expert trained during the number of epoch noted in blue.

18.04.4 x64. The target platform of MinGW and Visual Studio
binaries is Windows 10 Enterprise x64.

Compilation process: Each source code is compiled using
a random compiler with a random optimization among options
-O0, -O1, -O2, -O3, and -Os. Binaries are then stripped. We
thus have a relatively well balanced dataset of 36, 272 binaries.

Optimization level similarities: There are huge similar-
ities between programs compiled with −O2 and -O3. Over
a random sample of 2920 MinGW binary codes, 561 binary
codes compiled with -O2 are identical when compiled with -
O3. This has already been reported [28] and has been an issue
for Chen et al. [9] in their compiler optimization detection
framework. Note that this is not the case for Visual Studio
Compiler which has only one advanced optimization level.
Due to the similarity between programs produced by -O2 and
by -O3, we will consider -O2 and -O3 as a proper subclass.

B. Hierarchies of SNN

Prior works [7]–[9], [11], [17] take each classification task,
such as determining the optimization level, separately, and use
a single neural network to classify at the level of functions.
We choose to implement binaries hierarchical classifiers with
a local expert classifier per parent node [29]. In this way, the
optimization level prediction depends on the compiler family.
Moreover, we take advantage of our domain problem, for
instance, we expect -O0 instances and -O1 instances to be
closer to each other than -O0 instances and -O2/-O3 instances.

A site neural network expert is specialized to make the
separation between two choices (e.g. between MinGW -O0/-
O1 and MinGW -O2/-O3). The hierarchy for optimization
level prediction (Figure 5) is built upon the prediction of
the compiler family. There is one expert per parent node,

thus 15 experts. Similarly, the hierarchy for version prediction
(Figure 6) is built upon family prediction and contains 22
experts. Three experts for compiler family prediction are in
both hierarchies. Therefore, we have in total 34 experts.

C. Implementation of SNN

We perform four convolutions with a dimension of 8 at
each step. The hyper-parameter dt of the matrix Wt is 8 for
each convolution t. We use four pooling layers with amp2,2,
amp4,4, amp8,8, and amp16,16 operators. The multilayer per-
ceptron has four layers. Their respective number of neurons
are 384, 256, 128, and 2. As a result, each of our SNN has
286, 962 trainable parameters. Therefore the complete model,
with two hierarchies, has 9, 756, 708 trainable parameters. The
number of training epochs depends on each expert and is put
under each node in Figures 5 and 6. Batch size is 20, learning
rate is 0.005 and the loss function is cross-entropy loss.

We implemented our neural network using the lan-
guage python along with the machine learning library
PyTorch. Prepossessing, forgetful, and chopping phases
are implemented in C++. Data and tools are available
at https://gitlab.inria.fr/tbenoit/saner-2021-binary-level-toolchain-
provenance-identification.

D. Research questions

We investigate the following research questions, ending the
two most crucial ones, to validate our framework and to see
its current limits:
RQ1 How does our framework evolve when the site size α

increases in term of running time performance?
RQ2 How does our framework evolve when the site size α

increases in term of accuracy?
RQ3 Does our framework have the capacity to predict the

compiler and optimization level of binary codes?
RQ4 Does our framework have the capacity to predict the

compiler version of binary codes?

Fig. 7. Percent of the CFG dataset in megabyte kept by the chopping phase.

E. RQ1: How does our framework evolve when the site size
α increases in terms of running time performance ?

a) Goal: The whole control flow graph has variable
size and is not suitable as direct input of a machine-learning
process. As a result, we chop the control flow graph in

Fig. 8. Chopping phase: average time to process a binary code

α Option s/e Version s/e Complete s/e

4 0.46 0.58 0.95
8 0.59 0.74 1.21
12 0.73 0.80 1.39
16 0.71 0.85 1.42
20 0.85 0.97 1.67
24 0.79 0.90 1.54
28 0.84 0.93 1.61
32 0.85 1.02 1.71
48 0.98 1.08 1.88
64 1.13 1.25 2.20

TABLE II
LEARNING PHASE AVERAGE TIME (IN SECONDS) PROCESSING AN BINARY

100 smaller graphs of fixed size α. The dimension of the
parameter α modifies the processing time necessary to perform
the chopping phase itself along with the learning phase.
We want to evaluate the impact of this parameter α in the
learning phase process of both our hierarchies the one for
the optimization level prediction and the one for the compiler
version prediction.

b) Method: We vary α by taking values : 4, 8, 12, 16,
20, 24, 28, 32, 48 and 64. As shown in Figure 7, using those
α in the chopping phase retains from 2% of the original CFG
data to 12%. This is a good range of values as we seek to
retain only a small part of the forgetting graphs data.

We select only a sample of 1000 binaries from our dataset.
Using an identical computer sequentially for all values of
alpha, we learn one epoch for each expert. We measure
the learning phase processing time in function of α. We
extrapolate from that the average learning phase processing
time per binary if the number of epochs was correct. We also
record the average processing time of the chopping phase of
a binary in function of α. We present the average time in
seconds of the process a binary coming from our dataset.

We run experiments on a computer equipped with an Intel
i7-8665U, 4 cores, and a frequency of 2.11 GHz.

c) Results: Graph extraction, which does not depend
on α, takes an average processing time of 0.11 seconds per
binary. The average time of the chopping phase goes from
0.12 seconds per binary to 0.38 seconds per binary depending

on α. Chopping processing time is monotonic with α. The
average time of the complete learning phase processing goes
from 0.95 seconds per binary to 2.21 seconds per binary.

d) Conclusion: As α increases, so do the volume of the
data to be classified. Thus one can adapt the process to its need
using α. It can scale to dozens of thousands of binaries. We
note that extraction and chopping phases can be parallelized
efficiently. Due to the use of experts, the learning phase is also
done in parallel.

F. RQ2: How does our framework evolve when the site size
α increases in terms of accuracy ?

a) Goal: We want to identify the impact of α on the
accuracy of our framework. Indeed, since the parameter α
gives the size of data extracted, at first glance, it must affect
the accuracy of the machine learning process. However, it is a
bit tricky because machine learning neural networks have an
inherent variance in their results. To measure the performance
of our hierarchies, we use as a single metric the macro average
F1-Score. It is a simple metric that is unbiased by potential
class imbalances.

b) Methodology: As in RQ1, we apply our framework
with 4, 8, 12, 16, 20, 24, 28, 32, 48, and 64 as different
possible values of α. We effectuate ten runs for each alpha.
In each run, we sample 10% of our dataset as the train set.
We sample a test set of size 2000. A different validation
set composing 10% of the train set is used for each expert.
For each specialized site neural network, we select the model
neural network with the best accuracy on the validation split
on the last epoch. We train our hierarchies for the optimization
level prediction task and the compiler version prediction task.

To deal with the inherent variance, we use the mean value
of each 10 runs as the estimated macro average F1-Score for
a given α. Our data is then analyzed using linear models with
the ordinary least square (OLS) method. This simple model
assumes that our data follow a linear law with some noise that
should be identically distributed. We evaluate the impact of α
on the macro average F1-Score by the r2 value of the statistical
analysis. We can also give a probability that the model fits the
data using the F1-Statistic.

Fig. 9. Macro average F1-Score along alpha on the optimization level
prediction task. Red dots are values obtained by a run. Black dots are mean
values for an α. The blue line is a linear model using the ordinary least square
method (OLS).

c) Results: On the optimization prediction task, a linear
model does not fit the data using the ordinary least square
(OLS) method (Figure 9). First, the probability that there is
no relationship is too high as demonstrated by a p-value of
0.537. Even if there were a relation, α would explain less
than 5 percent of the variance in the overall macro average
F1-Score.

Fig. 10. Macro average F1-Score along alpha on the compiler version
prediction task. Red dots are values obtained by a run. Black dots are mean
values for an α. The blue line is a linear model using the ordinary least square
method (OLS).

On the version prediction task, a linear model is a better fit
for the data using the ordinary least square (OLS) method.

First, the p-value is 0.00991. This probability may be lower
as indicated by the Durbin-Watson test result of 2.699. Such
a value higher than 2 predicates negative auto-correlation
which could artificially increase the p-value by breaking an
assumption of the ordinary least squares method. However,
the probability of the Omnibus test about the distribution of
errors is 0.375 which is too close to 0. With a good probability,
the model fails to have normally distributed errors, a potential
break of another assumption. The r2 of the model is an
intermediate value of 0.585, α could explain around 58% of
the variation in the mean F1-Score.

d) Conclusion: We have moderate confidence that in-
creasing alpha does increase our capacity to predict the data
in the version prediction task. We select α = 32 as the value
to use in our next questions due to it having achieved the best
mean F1-Score in both prediction tasks and extracting only
8% of the complete CFG data in megabytes.

G. RQ3: Does our framework have the capacity to predict the
compiler and optimization level of binary codes?

a) Methodology: We set the site size to be α = 32
(cf. RQ1-RQ2). We train experts of the first hierarchies to
predict both the compiler family and the optimization level.
To run this experiment, the dataset is split into a train set
and a test set. The test set has a size of 2200 and is balanced
along the dimension of the combination of compilers, compiler
versions, and optimization levels. A different validation set
composing 10% of the train set is used for each expert. The
loss function is the cross entropy loss. For each specialized site
neural network, we select the epoch with the best accuracy on
the validation split on the last ten epochs. After training, the
hierarchical classifier is evaluated thanks to the test set.

Fig. 11. Confusion matrix of SNN on the compiler family and option prediction. On the diagonal, the best value is 100 and elsewhere it is 0.

Compiler Precision Recall F1 Score Support

Clang 1 0.9933 0.9967 600
GCC 0.9967 1 0.9983 600
MinGW 0.9983 0.9917 0.9950 600
VS 0.9828 0.9975 0.9901 400

Macro AVG 0.9944 0.9956 0.9950 2200
TABLE III

F1-SCORE OF SNN FOR COMPILER FAMILY PREDICTION.

Option Precision Recall F1 Score Support

-O0 0.7917 0.8261 0.8085 460
-O1 0.8289 0.7478 0.7863 460
-O2/-03 0.7869 0.8329 0.8092 820
-Os 0.6316 0.6 0.6154 460

Macro AVG 0.7598 0.7517 0.7549 2200
TABLE IV

F1-SCORE OF SNN FOR OPTIMIZATION LEVEL PREDICTION.

b) Results: Table III presents F1-Score for each compiler
family and the macro average F1-Score. We achieve a very
high overall F1-Score of 0.9950 on the compiler family
prediction. Table IV presents F1-Score for each optimization
level and the macro average F1-Score. We achieve a high F1-
Score of 0.7549 on the optimization level prediction.

c) Conclusion: We achieve a very high F1-Score on the
compiler family prediction. It is so high that nearly all errors
are in predicting the optimization level. On this other task,
we achieve a high F1-Score. We conclude that predicting
the optimization level is harder than predicting the compiler
family. We suppose this is in part due to the similarity of
binaries produced by different compiler options.

Version Precision Recall F1-Score Support

Clang 3.9.1 0.3137 0.16 0.2119 100
Clang 4.0.1 0.194 0.26 0.2222 100
Clang 5.0.1 0.1897 0.11 0.1392 100
Clang 6.0.0 0.1594 0.11 0.1302 100
Clang 7.0.0 0.216 0.27 0.24 100
Clang 8.0.0 0.1384 0.22 0.1699 100
GCC 4.8.5 0.9375 0.90 0.9184 100
GCC 5.5.0 0.6032 0.38 0.4663 100
GCC 6.5.0 0.4237 0.75 0.5415 100
GCC 7.5.0 0.6747 0.56 0.612 100
GCC 8.4.0 0.3636 0.24 0.2892 100
GCC 9.3.0 0.4359 0.51 0.47 100
MinGW 3.4.5 1 0.99 0.995 100
MinGW 4.4.1 0.99 0.99 0.99 100
MinGW 4.7.1 0.9794 0.95 0.9645 100
MinGW 4.9.2 0.95 0.95 0.95 100
MinGW 5.11.0 0.98 0.98 0.98 100
MinGW 8.1.1 1 1 1 100
VS 10.0 0.939 0.9625 0.9506 80
VS 12.0 0.8478 0.975 0.907 80
VS 14.0 0.9125 0.9125 0.9125 80
VS 2017 0.9367 0.925 0.9308 80
VS 2019 0.9452 0.8625 0.902 80

Macro AVG 0.6578 0.6508 0.6475 2200
TABLE V

F1-SCORE OF SNN FOR VERSION PREDICTION

H. RQ4: Does our framework have the capacity to predict the
compiler version of binary codes?

a) Methodology: We set the site size to be α = 32
(cf. RQ1-RQ2). We use the same methodology as before with
experts of the second hierarchy to predict the compiler version.

Fig. 12. Confusion matrix of SNN on the compiler version prediction. On the diagonal, the best value is 100 and elsewhere it is 0.

Family Precision Recall F1-Score Support

Clang 0.2019 0.1883 0.1856 600
GCC 0.5731 0.5567 0.5496 600
MinGW 0.9832 0.9767 0.9799 600
VS 0.9162 0.9275 0.9206 400

GCC-MinGW-VS 0.8242 0.8202 0.8167 1600

MinGW-VS 0.9497 0.9521 0.9502 1000
TABLE VI

F1-SCORE OF SNN FOR VERSION PREDICTION AMONG COMPILERS
FAMILY

b) Results: Table V presents F1-Score for each compiler
version, and macro averages F1-Score. We achieve a moderate
F1-Score of 0.6475 on the version prediction task. Table
VI presents macro averages F1-Score of compiler version
identification by compiler family. We notice the macro average
F1-Score of 0.1856 for the Clang family. The Clang family
version prediction stands out due to this very low accuracy.
On the other hand, the macro average F1-Score of the MinGW
family is about 0.9799. Table VI shows that if we omit Clang,
we attain a macro average F1-Score if 0.8167. Moreover, if
we concentrate on binaries compiled for Windows, we attain
a very high F1-Score of 0.9502.

c) Conclusion: We conclude that compiler version pre-
diction is hard on the Clang family but easy for binaries
coming from the Windows platform.

VI. DISCUSSION

We choose to compare our framework to the work of Mas-
sarelli et al. [11]. As we said previously, it is one of the closest
frameworks to ours. Indeed, they used graph convolution at the
binary function level while we performed graph convolution
at the binary level. Moreover, this framework is available in

a repository. This is not the case with other works [7]–[10]
which makes it difficult for a fair comparison. Still, we also
provide elements of comparison with Rosenblum et al. [17].

A. Comparison with Massarelli et al. [11]

a) Methodology: Massarelli et al. [11] relies on radare2
[30] to extract CFG of binary functions in a binary. They pro-
pose an instruction embedding method called i2v to represent
each instruction, and then feed it to an RNN.

We sample a set of 2843 binaries from our dataset that
we transform to CFG of functions using the Massarelli et al.
framework. Using Massarelli et al. framework, 227 of these
binaries constitute the validation split, 601 constitute the test
split and the rest belong to the train split. We take a much
smaller dataset that for RQ3 and RQ4 because Massarelli et
al. preprocessing phase is around 1300 time slower than ours
for learning.

On our side, we train our framework using a dataset
containing the same 2843 binaries with a random test set of
601 binaries. We perform the experiment 10 times to mitigate
randomness.

To compare with our binary level approach, we take two
distinct approaches:

• Function-level We evaluate Massarelli et al., denoted
MA. We transform the output of our SNN framework
from binary level to function level. To do so, the pre-
diction of each function is the prediction for the binary
containing the function. We use the information of MA
to get the number of functions in each binary. We note
this process SNN-F;

• Program-level We already have evaluated our approach
with a complete dataset. We note this evaluation SNN-
Full. We transform the output of MA from function level
to binary level. To do so, the prediction for a given binary

Framework / Task Compiler Optimization Version

MA-B 0.91 0.42 0.32
SNN 0.92 [±0.03] 0.58 [±0.03] 0.45 [±0.02]
SNN-Full 0.99 0.75 0.65

MA 0.90 0.36 0.36
SNN-F 0.87 [±0.07] 0.60 [±0.05] 0.42 [±0.02]

TABLE VII
MACRO AVG F1-SCORE OF DIFFERENTS FRAMEWORK WITH EACH

PREDICTION TASKS.

is the majority prediction of each function extracted from
the binary. We note this process MA-B;
b) Results: Massarelli et al. preprocessing is compli-

cated and time-consuming, as radare2 disassembly is a costly
process. The average time per binaries is 665 seconds with
a minority of binaries taking hours to complete. While this
preprocessing is done in parallel, it takes 525 hours of com-
putation to obtain 2842 binaries. It was done on computers
equipped with two Intel Xeon silver 4110. The dataset for
Massarelli et al. approach contains approximately 825,000 bi-
nary functions. Each epoch takes approximately 2200 seconds.
Thus, the average learning time is 116 seconds per binary,
using computers equipped with two Intel Xeon gold 5218R
– while on an Intel i7-8665U our approach has an average
learning time of 1.71 seconds per binary.

We report the result of each framework on the three tasks
in Table VII. For the sake of brevity, we report only the
overall macro average F1-Score with two digits along with
standard deviation when available. Comparing SNN with a
restricted dataset to MA-B, we are on the same range on
family prediction. However, we outperform MA-B by 0.16
on optimization prediction, and 0.13 on version prediction.
Using our full dataset, SNN-Full outperforms MA-B by 0.08
en compiler family prediction, 0.33 on optimization prediction
and 0.33 on version prediction. This is expected as MA-
B had less training data than SNN-Full. On the other side,
comparing MA to SNN-F, we are again on the same range on
family prediction. We outperform it by 0.24 on optimization
prediction and 0.06 on version prediction.

c) Conclusion: We are approximately 68× times faster
during learning, and 1300× time faster during preprocessing.
Moreover, we can use much more parallelism in the learning
phase. This processing time allows us to enhance our classi-
fication performance by learning from more binaries.We are
also able to consistently outperform in terms of accuracy MA
except for the compiler family where we are in the same range.

B. Comparison with Rosenblum et al. framework [17]

Rosenblum et al. [17] dataset and classifier are not available,
so we give only elements of comparison. They report accuracy
of 0.999 for compiler family, 0.999 for optimization level, and
0.918 for compiler version. However, their dataset consists
of 2,686 programs compiled from only 175 different source
code examples, while we consider 36,272 different source code
examples (internal validity is ensured by random assignment of

a code to a toolchain). They consider three compiler families
(Visual Studio, Intel Compiler, and GCC), but only 9 compiler
versions, and the optimization prediction is reduced to ’Low’
(e.g. −O0) vs ’High’ (e.g. −O2) – hence a total of 18 compiler
configurations where we consider 92 such configurations.

We can observe trends when we move from our broad
dataset to a more restricted one closer to Rosenblum et al.
setting. We select compiler versions VS 10.0, VS 12.0, VS
2017, GCC 4.8, GCC 5.5 and GCC 7.5. Reproducing the
setting of Rosenblum et al., we restrict optimization option
prediction to a choice between ’Low’ and ’High’ optimization
options. After a learning phase on this restricted dataset, our
F1-Scores is 1.0 for compiler family, 0.97 for optimization
level and 0.89 for compiler version. As expected, broadness
of the dataset significantly impacts accuracy.

VII. LIMITATIONS

Our dataset is composed of small programs (most file sizes
are around 30kb). It would be interesting to use a more diverse
dataset. Nevertheless, our evaluation at least demonstrates the
accuracy of SNN. Moreover, our approach was tested and
validated on stripped binary codes. In adversarial contexts
where binary are obfuscated or when we are dealing with
malware, the situation is quite different. We believe this is
a challenge worth working on.

VIII. CONCLUSION

We consider the problem of toolchain provenance identi-
fication. Our starting hypothesis is that binary code is not
unstructured data and that semantics is important. Moreover,
since libraries are more frequently dynamically linked, binaries
are usually homogeneous in terms of toolchain provenance.

In this work, we explore the possibility of (i) extracting
semantic features in the form of graphs, (ii) processing the
neural networks of the graphs to propagate the information
according to the topology of the graph, and (iii) using tailored
hierarchies to fit a dataset. We demonstrate that binary-level
toolchain provenance identification is feasible with both high
precision/accuracy and fast learning – we outperform a recent
function-level approach on these metrics.

This work opens several immediate questions. The combi-
nation of the forgetful phase followed by the chopped phase
provides a simple and realistic feature graph model. That said,
one could think of a first phase that would leave out less
information. Also, the pooling layers play an important role. It
should be worth looking at which features are useful and how
they are intertwined to improve pooling. This question bounces
off the question of semantics. Finally, CFG provides only
a very shallow program semantics. An interesting question
would be to automatically extract and take advantage of some
sort of richer semantic features without too much extra cost.

ACKNOWLEDGMENTS

Experiments were carried out using the Grid’5000 testbed,
supported by a scientific interest group hosted by Inria and
including CNRS, RENATER as well as other organizations
(see https://www.grid5000.fr).

REFERENCES

[1] M. J. Hohnka, J. A. Miller, K. M. Dacumos, T. J. Fritton, J. D. Erd-
ley, and L. N. Long, “Evaluation of compiler-induced vulnerabilities,”
Journal of Aerospace Information Systems, vol. 16, no. 10, pp. 409–426,
2019.

[2] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in 2016 31st IEEE/ACM ASE,
2016, pp. 87–98.

[3] J. Calvet, J. M. Fernandez, and J.-Y. Marion, “Aligot: Cryptographic
function identification in obfuscated binary programs,” in Proceedings
of the 2012 ACM CCS, 2012, p. 169–182. [Online]. Available:
https://doi.org/10.1145/2382196.2382217

[4] I. Guilfanov, “Ida fast library identification and recognition technology
(flirt technology): In-depth,” 2012.

[5] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley,
“BYTEWEIGHT: Learning to recognize functions in binary code,” in
23rd USENIX Security Symposium, 2014, pp. 845–860. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity14/technical-
sessions/presentation/bao

[6] P. Shirani, L. Wang, and M. Debbabi, “Binshape: Scalable and robust
binary library function identification using function shape,” in DIMVA.
Springer Publishing, 2017, pp. 301–324.

[7] N. Rosenblum, B. P. Miller, and X. Zhu, “Recovering the toolchain
provenance of binary code,” in Proceedings of the 2011 International
Symposium on Software Testing and Analysis, 2011, p. 100–110.
[Online]. Available: https://doi.org/10.1145/2001420.2001433

[8] S. Yang, Z. Shi, G. Zhang, M. Li, Y. Ma, and L. Sun, “Understand code
style: Efficient cnn-based compiler optimization recognition system,” in
ICC 2019 - IEEE, 2019, pp. 1–6.

[9] Y. Chen, Z. Shi, H. Li, W. Zhao, Y. Liu, and Y. Qiao, “Himalia: Recov-
ering compiler optimization levels from binaries by deep learning,” in
Intelligent Systems and Applications. Springer Publishing, 2019, pp.
35–47.

[10] A. Rahimian, P. Shirani, S. Alrbaee, L. Wang, and M. Debbabi, “Bin-
comp: A stratified approach to compiler provenance attribution,” Digital
Investigation, vol. 14, pp. S146 – S155, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1742287615000602

[11] L. Massarelli, G. Luna, F. Petroni, and L. Querzoni, “Investigating graph
embedding neural networks with unsupervised features extraction for
binary analysis,” Workshop on Binary Analysis Research, 2019.

[12] A. Viet Phan, M. Le Nguyen, and L. Thu Bui, “Convolutional neural
networks over control flow graphs for software defect prediction,”
in 2017 IEEE 29th International Conference on Tools with Artificial
Intelligence (ICTAI), 2017, pp. 45–52.

[13] K. Redmond, L. Luo, and Q. Zeng, “A cross-architecture instruction
embedding model for natural language processing-inspired binary code
analysis,” CoRR, vol. abs/1812.09652, 2018.

[14] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
“Graph neural networks: A review of methods and applications,” 2018.

[15] W. Zhao, C. Xu, Z. Cui, T. Zhang, J. Jiang, Z. Zhang, and J. Yang,
“When work matters: Transforming classical network structures to graph
cnn,” arXiv:1807.02653, 2018.

[16] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn,
and K. M. Borgwardt, “Weisfeiler-lehman graph kernels,” Journal of
Machine Learning Research, vol. 12, no. 77, pp. 2539–2561, 2011.
[Online]. Available: http://jmlr.org/papers/v12/shervashidze11a.html

[17] N. Rosenblum, B. Miller, and X. Zhu, “Extracting compiler prove-
nance from program binaries,” Proceedings of the 9th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering, pp. 21–28, 2010.

[18] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2008, publisher: IEEE.

[19] A. Micheli, “Neural network for graphs: A contextual constructive
approach,” Neural Networks, IEEE Transactions on, vol. 20, pp. 498
– 511, 2009.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[21] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[22] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” arXiv preprint arXiv:1709.05584,
2017.

[23] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep
learning architecture for graph classification,” in 32th AAAI Conference
on Artificial Intelligence, 2018.

[24] J. Yan, G. Yan, and D. Jin, “Classifying malware represented as control
flow graphs using deep graph convolutional neural network,” in 49th
Annual IEEE/IFIP DSN, 2019, pp. 52–63.

[25] J. Seidel, R. Wattenhofer, and Y. Emek, Anonymous Distributed Com-
puting: Computability, Randomization, and Checkability. ETH-Zürich,
2015.

[26] G. Bonfante, J. Fernandez, J.-Y. Marion, B. Rouxel, F. Sabatier,
and A. Thierry, “CoDisasm: Medium Scale Concatic Disassembly of
Self-Modifying Binaries with Overlapping Instructions,” in 22nd ACM
Conference on Computer and Communications Security, Denver, United
States, Oct. 2015. [Online]. Available: https://hal.inria.fr/hal-01257908

[27] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” 2015.

[28] M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket execution:
Dynamic similarity testing for program binaries and components,” in
23rd USENIX Security Symposium, 2014, pp. 303–317.

[29] C. Silla and A. Freitas, “A survey of hierarchical classification across
different application domains,” Data Mining and Knowledge Discovery,
vol. 22, pp. 31–72, 01 2011.

[30] R. Team, “Radare2 book,” in GitHub, 2017.

