
Binsec platform overview

Adel Djoudi and Sébastien Bardin

January 20, 2015

Contents

1 Disassembly methods 2

2 Simplifications 2

3 Memory model and Simulation 4

A DBA platform : command line options 5

1

1 Disassembly methods

The BinSec platform implements four basic disassembly methods:

• Linear sweep. In this method, instructions are decoded sequentially
starting from a list of initial addresses and stepping to the next address
according to the current instruction size. Note that the user can choose
between instruction-wise disassembly or byte-wise disassembly. This
method is used by programs such as the GNU utility objdump, and can
be activated in our tool by the option -linear in disassembly mode.

• Recursive traversal. This method follows the control flow of the
program, but it cannot follow successors of dynamic jumps. Yet, we
allow the user to specify potential jump targets at each dynamic jump.
This method can be activated in our tool by the option -rec in disas-
sembly mode.

• Linear sweep combined with recursive traversal. This method
merges the two previous ones. It is similar in some way to the method
used by IDA Pro, and can be activated in our tool by the option
-rec-linear in disassembly mode.

• Dynamic disassembly. In this mode, a specified numer of random
executions are launched in order to detect function entry points and
jump targets, then recursive traversal disassembly is performed with
this additional information.

The info file allows to provide information to disassmbly methods listed
above. The directive @recursive disassembly allows to specify a worklist
of initial addresses to start recursive disasssembly from, and the directive
@linear disassembly allows to specify ranges of addresses for linear dis-
assembly. An example is shown in Figure 1 .

1 @recursive disassembly :
0x0804810d ; 0x0804809c ;

@linear disassembly :
(0 x0804810d , 0x08048167) (0 x080480d8 , 0 x080480fc)

Figure 1: info file: disassembly directives

2 Simplifications

Simplifications are inspired by standard code optimization techniques used
in compilers, especially constant propagation and liveness analysis. Yet, we
design our techniques such that they remain sound in case of incomplete
CFG, which is a common case in binary-code analysis.

2

The goal of our simplification mechanism is to lighten some undully
heavy DBA translations, we do not seek to optimize the original program.
Having this point in mind, we focus on removing as much as possible assign-
ments to flags (“flag assignments”) since they are very likely to be useless.
Assignments to temporary variables (“temporary assignments”) are also a
target of choice. The impact of our simplifications is shown in Figure 2.

31 ed xor ebp , ebp
res32 := 0<32>;
OF := 0<1>;
SF := res32 {31 ,31} ;
ZF := (res32 = (cst , 0<32>));
CF := 0<1>;
ebp := 0<32>;

#0 f 85 7c 00 00 00 jnz 0x805637c
i f (! ZF) goto L1
else goto L2

L1 : #83 e3 fa and ebx , 0 x f f f f f f f a
ebx := (ebx and 0 x f f f f f f f a <32>);
OF := 0<1>;
SF := res32 {31 ,31} ;
ZF := (res32 = 0<32>);
CF := 0<1>;

L2 : #85 f f test edi , ed i
r e s32 := ed i ;
OF := 0<1>;
SF := res32 {31 ,31} ;
ZF := (res32 = 0<32>);
CF := 0<1>;

Before simplification

31 ed xor ebp , ebp

ZF := 1<1>;

ebp := 0<32>;

#0 f 85 7c 00 00 00 jnz 0x805637c
i f (! ZF) goto L1
else goto L2

L1 : #83 e3 fa and ebx , 0 x f f f f f f f a
ebx := (ebx and 0 x f f f f f f f a <32>);

L2 : #85 f f test edi , ed i
r e s32 := ed i ;
OF := 0<1>;
SF := res32 {31 ,31} ;
ZF := (res32 = 0<32>);
CF := 0<1>;

After simplification

Figure 2: Example of simplifications

Simplification layers. Our simplification method is organized around
three layers:

• instruction simplification: idiom expressions can be turned into con-
stant values through rewriting rules. Such expression are largely met
in machine code, For instance, eax xor eax can be turned into 0.

• intra-block simplification: this layer performs constant propagation
inside a DBA block, liveness analysis on temporary variables (recall
that by definition they are killed at the end of the block) and other
forms of temporary variable eliminations.

• inter-block simplification: this layer performs liveness analysis on flag
variables, we remove flag variables which are sure to be killed (the
usual ¬may-used approach from compilers being unsound in case of
incomplete CFGs).

Simplification levels. Simplifications can be performed on the whole pro-
gram at once, per function or per sequence (i.e. per CFG block). These three

3

levels of simplifications give different trade-offs between computation time
and quality of the simplification. We found that the function-level approach
offers large simplifications in a reasonable amount of time.

3 Memory model and Simulation

This service allows to evaluates DBA intermediate representation. For in-
stance, the evaluator can be used to perform randomized testing or check the
consistency between the DBA program semantics and the real program’s se-
mantics. The evaluation can be performed in three distinct memory models
(flat, region-based and low-level region-based).

Low-level region based memory model. The Region-Based memory
model presents some limitations when dealing with low level operations.
Illegal operations are for example:

• (r1, v1) + (r2, v2) = ⊥V if r1, r2 6= Cst

• (r1, v1)− (r2, v2) = ⊥V if r1 6= r2

Yet, such patterns are found in libc programs, such as memmove or memcopy,
and can also be introduced at compile-time (branchless conditions). We use
symbolic values to keep an intermediate representation for the evaluated
expressions. A concrete value is retrieved from symbolic values as soon as
possible through a dedicated rewriting engine. Actually, our implementation
supports three different memory models:

1. Flat memory model (if we consider only the Cst region)

2. Region-based memory model (without symbolic values)

3. Low-level region-based memory model (with symbolic values)

model simulation scalability of analysis

flat X ×
region × X
low-level region X X

Figure 3: Comparison of standard memory models

4

A DBA platform : command line options

Command Argument Description
disas -dmode rec (Default) Activates recursive disassembly mode. A work-list

of initial disassembly addresses is retrieved from the info file.
linear Activates linear disassembly mode. A list of ranges of ad-

dresses is retrieved from the info file.
reclinear Activates linear disassembly mixed with recursive disassem-

bly mode.
bytelinear Activates linear bitwise disassembly mode.

-out [file name] Indicates the output file where to display DBA instructions.
By default, a file named out.dba is created in current direc-
tory.

-outop [file name] Indicates the output file where to display opcodes, if this
option is not specified the opcodes are displayed on standard
output.

simulate -dba (Mandatory) Indicates the dba file.
-start [hex address] (Mandatory) Indicates the initial address of the program.
-fuzz [positive integer] Indicates the number of fuzzing iterations.
-step Activates step (instruction) by step (instruction) simulation.
-mem-mode flat Activates simulation with flat memory model.

region Disables the use of symbolic values. Activates simulation
with pure region-based memory model. By default, the low-
level region-based memory model with mixed basic and full
symbolic values is used.

rewrite Disables full symbolic values but enables basic symbolic val-
ues. Simulation still in low-level region-based memory model.

logic Disables basic symbolic values but enables full symbolic val-
ues. Simulation still in low-level region-based memory model.

-else-default Simulation follows else branches if simplification fails on sym-
bolic conditions.

-vv Verbose display of registers and memory content after simu-
lation.

-v Verbose display of registers only after simulation.
analyse -dba (Mandatory) Indicates the dba file.

-start [hex address] (Mandatory) Indicates the initial address of the program.
-kmax Indicates the maximum bound of the ksets cardinality.
-clos Disables disassembly during the analysis. The analysis is re-

stricted to the content of DBA file specified by -dba option.
-degrade Allows analysis to switch to unsound mode whenever stum-

bling on (jump >) by propagating the last non-> computed
approximation.

-vv Verbose display of registers and memory content after analy-
sis.

-v Verbose display of registers only after analysis.
* -info [file name] Indicates the info file name, if this option is not specified a

in.info file is sought by default in current directory.
-loader [file name] Specifies the loader library. Currently only the elf file format

is supported. If this option is omitted, the executable file is
converted into a simple table of bytes with indexes starting
from 0.

-file [file name] Indicates the executable file.
-simplify-level prog Enables DBA simplifications on whole disassembled instruc-

tions at once.
fun Enables DBA simplifications per function.
seq Enables DBA simplifications per Sequence.

* : disas, simulate, analyse

5

