The BINCOA Framework
for Binary Code Analysis*

Sébastien Bardin Philippe Herrmanh Jérdme Lerouk Olivier Ly?,
Renaud Taba#fy and Aymeric Vincertt

(1) CEA, LIST,) LaBRI
Gif-sur-Yvette CEDEX, 351 cours de la Libération
F-91191, France 33405 Talence Cedex

first.last @ea. fr first.last@abri.fr

Abstract. This paper presents the BINCOA framework, whose goal is se ea
the development of binary code analysers by providing am dpemal model
for low-level programs (typically: executable files), an XNbrmat for easy ex-
change of models and some basic tool support. The BINCOA€dwark already
comes with three different analysers, including simulatitest generation and
Control-Flow Graph reconstruction.

1 Introduction

Automatic analysis of programs from their executable fikea recent and promising
field of research, opening the way to new applications ofrgfe verification (mobile
code, off the shelf components, legacy code, malware) arré axxurate and reliable
analyses (taking into account the compilation step). Indkeyears, a few teams have
been involved in this emerging research field and a few teghas and tools have been
developed [1, 3,5-10, 13, 14], mostly based on static aisadysl symbolic execution.

The problem. Besides specific theoretical challenges, binary code aisayffers from
two major practical issues. First, implementing a binargileceanalyser requires lots of
programming efforts. There exist many different instrotset architectures (ISA), and
each ISA counts several dozens of instructions. Hence gddipport for a new ISA
is a time-consuming, tedious and error-prone activity. &wer, it follows that each
analyser supports only very few ISAs, making different temlbgies and tools difficult
to compare. Second, each analyser comes with its own forradéhof binary code.
Since the exact semantics is seldom available, modellipgtmeses are often unclear
and may differ from one tool to the other, making results amdiats difficult to reuse.

The BINCOA framewor k. We describe in this paper the BINary COde Analysis (BIN-
COA) framework, whose aim is to ease the development of hicade analysers.

1- The framework is constructed around Dynamic Bitvectotofnata (DBA), a
generic and concise formal model for low-level programse Titain design ideas be-
hind DBA are the following: (a) a small set of instructionb) & concise and natural
modelling for common architectures; (c) self-containedele which do not require a

* Work partially funded by ANR grant ANR-08-SEGI-006.

separate description of the memory model or of the architecand (d) a sufficiently
low-level formalism, so that DBA can serve as a referenceaseics of the executable
file to analyse. Most features of low-level programs arenidakéo account by this for-
malism, including dynamic jumps, modification of the calict, instruction overlap-
ping and endianness. The two main limitations are the falignthe formalism cannot
capture self-modifying code and it is untimed.

2- We intend to gather an ecosystem of binary code analysetma DBA, all
tools being able to share their front-ends and exchange tbgilts. To this end, we
have defined an XML DTD to communicate DBA and we provide opeurce code for
basic DBA manipulation, including XML input/output and DBAmplifications.

3- DBA are already used by three different analysers: Osrf¢4 for test gen-
eration, TraceAnalyzer for safe Control-Flow Graph (CF€janstruction (based on
[6]) and Insight, a platform providing front-end, simutati and some value analysis
mechanism. Altogether, these three tools prove that DBAetaode a few different
architectures and ISAs (including PowerPC and x86).

Why using DBA and the BINCOA framework? The BINCOA framework eases the
development of binary code analysers: (semantics) allyages built upon DBA can
be fairly compared and their results can be safely reused &me tool to the other;
(engineering) the BINCOA framework provides open-sourasidfacilities for DBA
manipulations. In the future we also plan to provide an opeurce platform allowing
to share front-ends and ISA support.

Moreover, we think that DBA are a good trade-off between ®ress and ease of
use: there are only about two dozen of operators (to be cadpaith any ISA) and
modelling common ISAs with DBA is straightforward. DBA haakeady been used to
encode four different ISA, including x86 and PowerPC.

Outline. The remaining part of the paper is structured as follows:OB& model is
described in Section 2, its practical usage is discusseedidh 3, tool support for
DBA and different analysers based on DBA are presented itid®et, finally Section 5
describes related work and Section 6 provides a conclusidrseme future work.

2 DBA in anutshdl

The syntax and semantics of DBA is sketched hereafter. A detailed description can be
found in the technical report [2].

DBA are automata extended with a finite set of variables ramgver fixed-width
bit-vectors and a finite set of (disjoint) fixed-size arraydgtes (bit-vectors of size
8). Some of the nodes of the automaton are labelled with addseranging oveX.
Transitions are decorated with basic instructions: assamis Assign lhs := rhs), no-
operation 8kip), guards Guard cond), jumps to a non-statically known addreksip
expr), and an instruction to handle absent code such as ABI(External ¢). The
first three kind of instructions are standard. Tleernal instruction, followed by a
first-order formula over bit-vectors and arrays, allowsrttsaduce a non-deterministic
computation step defined in a pre/post-condition style. Jimap instruction is de-
scribed hereafter. The operational semantics is given tanaition system in a standard

manner. Expressions and conditions are built upon a smadif standard fixed-width
bit-vector operators, including (signed / unsigned) anigic operators, reified (signed
/ unsigned) arithmetic relational operators, logical B®voperators, size extensions,
shifts, concatenation and restriction. Contrary to reatpssor instructions, these oper-
ators are side-effect free. Every expression evaluatebitovactor of statically known
size (this is not a restriction considering current ISAS).

Original features. DBA provide a few original mechanisms dedicated to low-l¢ae-
guages. (1) Dynamic jumpsymp transitions) arelangling, i.e. they do not have a pre-
defined target node. When the transition is fired, the jumpesgion is evaluated and
turned into an integet, and the control-flow goes to the node labelledsbypynamic
jumps are necessary for modelling indirect branching. (pBuinipulations can be ex-
pressed easily thanks to the restriction operator, availadith inlhs andrhs operands.
(3) Multiple-byte read and write operations (and incidéytandianness) can be ex-
pressed easily thanks to a dedicated array-access opef gterform: arrajexpr; k#],
wherek € N and# € {«,—}, denoting thek consecutive indices starting at index
expr and accessed in big-endiar:] or little-endian). (4) Memory zone proper-
ties define specific behaviours for segments of arrays; itlyravailable properties are
write-is-ignored, write-aborts, read-aborts andvolatile (with their intuitive meanings).

A few remarks. (1) The set of operators in DBAs is not minimal, however walkhi

that it is a nice trade-off between conciseness and easeeof2jsRealistic programs
have typically only a few dynamic jumps, hence “realistid3&s will behave mostly as

standard extended automata. This motivates the choiceaftamata-based formalism
for DBA. (3) DBAs do not have native support for procedurdsahd returns: they are
encoded as jumps, as it is the only correct semantic forrealbh instructions found

in ISAs. However, since this extra information may be uséftrieated with care, the

XML format for DBA (see Section 4) allows to annotate jumpstwéall/return tags.

3 Modelling low level programswith DBA

Basics. Most architectures and ISAs can be modelled accuratelygusia following
rules. Each register in the processor is modelled by a Verialthe automaton, addi-
tional variables (“local” variables) may be introduced tewede ISA instructions need-
ing intermediate results, e.g. for side-effects. An ISArinstion at addresg is trans-
lated in at least one node labelled dyand one transition. Additional (“local”) nodes
and transitions may be needed for intermediate computatidre additional nodes are
not labelled. A single array is usually sufficient for memdkgditional arrays may al-
low for example to distinguish an 1/0 bus from a memory busnidey zone properties
can be used for ROMwfite-is-ignored), code section of the progranm(ite-aborts,
allowing to detect self-modifying code) or memory contedllby an external device
(volatile). Instructions with side effects (e.g. flag updating) arkt sjto several DBA
instructions by adding local nodes and transitions.

Figure 1 presents a few examples of ISA instruction modgliimvough DBA. We
suppose that each ISA instruction is encoded on four bytesISA instruction is on the
left column, and the corresponding DBA is on the right. ISAtiactions are supposed

to be located at addre§€x5003 in the executable file. For the second example (an
addition instruction), we suppose that the instructionatpd a carry flagc (the carry-
flag is set to O iff theunsigned addition is correct).

RO:=5
0x5003 : move RO 5 O—)Q

0x5003 0x5007
Ax := A+B Fc := (Ax<A) A := Ax
0x5003 : add AB O () () O
/ /
0x5003 0x5007
0x5003 : goto 0x100(O—O
0x5003 0x1000

ump A

J
0x5003 : goto A ()———»»

0x5003

Fig. 1. DBA encoding of a few typical instructions

Open programs and interruptions. DBA provides various ways to model programs
interacting with an external environment, either hardwaemsor/actuator) or software
(0S). A sequential interaction may be simulated either bl er by a logical speci-
fication External). A concurrent interaction may be simulated in the geneasédy a
product of DBA, and in simple cases by declaring a volatilemagy zone.

Limitations. The two strongest limitations of DBA are that they are uetihand that
they cannot encompass self-modifying code. There are disa ‘aveaker” limitations,
i.e. mechanisms with no native support, which can still belelied in DBA but at a
possibly high cost. These limitations are mainly dynamiecmogy (de-)allocation, run-
time modification of endianness and asynchronous intdougt Finally, DBA do not
provide any operator for floating-point arithmetic. It isasghtforward to add them to
the model, but taking them into account in the analysers ishnmiore demanding.

4 The BINCOA Framework

Tool support for DBA manipulation. We provide open-source OCaml code for basic
DBA manipulatiort. The module contains a datatype for DBA, import / export func
tions from / to the XML format defined in the technical repd?},[as well as type
checking (based on bit-vector sizes) and simplificatiorcfioms for a few typical inef-
ficient patterns observed in automatic DBA generation @giby, removing useless flag
computations). These simplifications are inspired by sieshdode optimisation tech-
niques (peephole, dead code elimination, etc.), and angtedi#o be sound opartial
DBAs, in case where the DBA is recovered incrementally franegecutable file. We
observed a reduction from 10% to 55% of the number of DBA irdtons with these
simplifications. The XML parser is based on xml-lighand the library counts about
3 kloc. The code is under GPL license.

Yhttps://bincoa.labri.fr/
2http://tech. notion-twi n.com xm |ight

Insight: decoding, smulation and analysisplatform.2 Insightis a platform developed
mostly in C++ and offers the ability to load executable fileported by the GNU BFD
library and disassemble them with a homebrew disassentislérternal representation
is very close to DBA and import/export of DBA in XML is possiblit offers a general
setting for concrete and symbolic execution of the modekeglkas a generic annotation
facility which allows to prove assertions using weakestpralition computation. The
platform currently has three satellite tools allowing teatisemble a program, to execute
it concretely or symbolically (intervals, sets of valuesylpability distributions), and to
apply control flow graph reconstruction to polymorphic gianalysis.

Osmose: test data generation. Osmose [3, 4] is a test data generation tool for binary
code, based on dynamic symbolic execution and bit-vectastcaint solving. The tool
also offers test suite replay via a simulation engine, teis¢ £ompletion, (unsafe) test
suite coverage estimation, (under-approximated) CFGvesgoand a graphical user
interface. Front-ends are available for PowerPC, Intel18853d Motorola 6800. The
tool can export/ import DBA given in XML. The program contain5 kloc of OCaml.

A few industrial case-studies have been successfullyazhot.

TraceAnalyzer: safe and precise CFG recovery. TraceAnalyzer performs safe and
precise CFG reconstruction from an executable file. Theteatenology is a refinement-
based static analysis [6]. The program is about 29 kloc of.@%front-end for Pow-
erPC is available, as well as import / export facilities frbto DBA.

A concrete example of cooperation between tools. TraceAnalyzer and Osmose are
able to communicate in two ways. First, Osmose can receira ffraceAnalyzer an
upper approximation of every set of jump targets and takegidge of it to provide
a safe coverage measure, which is crucial for example iic&@risystem certification.
Second, TraceAnalyzer can receive from Osmose a set ofveasgmp targets, and
take advantage of it to efficiently bootstrap its refinemessed static analysis.

5 Redated work

Many binary code analysers have been developed recentlgxémple to name a few:
CodeSurfer/x86 [1], Sage [8], Bitscope [5], Osmose [3] siallk [9] and McVeto [14].

However most of them are based on a “private” formal modeh wo available spec-
ification. We are aware of two other generic low-level modwigable for executable
analysis, but none of them is open. DBA can be seen as thesamrasf the Generic
Assembly Language (GAL) of Osmose [4], which is similar to/dB both goals and

shape. However DBA are more concise, easier to manipulatenane expressive than
GAL. Actually, GAL shows a few shortcomings that have beedradsed in DBA: no

loops in intermediate nodes, no native support for endissinenduly complex opera-
tors with multiple return-values. Osmose is being redesiigo work on DBAS instead
of GAL. TSL [12], developed by Lim and Reps to re-implement€8urfer/x86 [1], is

based on semantic reinterpretation: each instructioneof$i is given a concrete se-
mantic written in a ML-like language (with only a limited s#tbasic operators); adding
a new analysis is mainly done by overloading every basicaiperThis is rather similar

Shttp://insight.labri.fr/

to the idea behind BINCOA, the ML description serving as thierence model. TSL
and DBA should have more or less the same modelling powerehemcomparison is
difficult since TSL is not publicly available.

LLVM [11] is a generic low-level language designed for cotafion rather than
verification. Hence LLVM abstraction level is in betweendnipcode and C: it provides
many low-level operations, as well as higher level featbigesed on the knowledge of
the initial source code (types, native array manipulation)

6 Conclusion and per spectives

This paper presents the BINCOA framework for binary coddyesig BINCOA aims
at easing the development of binary code analysers by grayah open formal model
(DBA) for low-level programs, an XML format to allow easy déxange of both models
and benchmarks and some basic tool support. Future work rigesproviding more
open-source support (visualisation tools, x86 and ARMtfemds) as well as extending
DBA with native support for memory allocation and facilgitor self-modifying code.

References

1. Balakrishnan, G., Gruian, R., Reps, T., W., Teitelbaum,JodeSurfer/x86-A Platform for
Analyzing x86 Executables. In: CC 2005. Springer, Heidegl{2005)

2. Bardin, S., Fleury, E., Herrmann, P., Leroux, J., Ly, Ggh8eanu, M., Tabary, R., Touili, T,
Vincent, A.: Description of the BINCOA Model. Deliverabld.l part 2 of ANR Project
BINCOA (2009). Available aht t ps: // bi ncoa. | abri.fr/

3. Bardin, S., Herrmann, P.: Structural Testing of Exedetab In: IEEE ICST 2008. |IEEE
Computer Society, Los Alamitos (2008)

4, Bardin, S., Herrmann, P.: OSMOSE: Automatic Structuesting of Executables. Interna-
tional Journal of Software Testing, Verification and Reliap(STVR), 21(1), 2011

5. Brumley, D., Hartwig, C., Kang, M., G., Liang, Z., Newsonde, Poosankam, P., Song, D.,
Yin, H.: BitScope: Automatically Dissecting Malicious Biries. Carnegie Mellon Uni. tech-
nical report CS-07-133. CMU (2007)

6. Bardin, S., Herrmann, P., Védrine, F.: Refinement-b&fed Reconstruction from Unstruc-
tured Programs. In: VMCAI 2011. Springer, Heidelberg (2011

7. Balakrishnan, G., Reps, T., W.: Analyzing Memory Accssisex86 Executables. In: CC
2004. Springer, Heidelberg (2004)

8. Godefroid, P., Levin, M., Y., Molnar, D., A.: Automated \tbox Fuzz Testing. In: NDSS
2008. The Internet Society (2008)

9. Kinder, J., Veith, H.: Jakstab: A Static Analysis Platfdor Binaries. In: CAV 2008. Springer,
Heidelberg (2008)

10. Kinder, J., Zuleger, F., Veith, H.: An Abstract Interation-Based Framework for Control
Flow Reconstruction from Binaries. In: VMCAI 2009. Sprimgeeidelberg (2009)

11. Lattner, C.: The LLVM Compiler Infrastructure Projebt.t p: //11vm org/.

12. Lim, J., Reps, T., W.: A System for Generating Static Arets for Machine Instructions.
In:. CC 2008. Springer, Heidelberg (2008)

13. Reps, T., Lim, J., Thakur, A., Balakrishnan, G., Lal, Aefe’s plenty of room at the bottom:
Analyzing and verifying machine code. In: CAV 2010. Sprind¢eidelberg (2010)

14. Thakur, A., Lim, J., Lal, A., Burton, A.,Driscoll, E.,&r, M., Andersen, T., Reps, T.: Di-
rected proof generation for machine code. In: CAV 2010. 181, Heidelberg (2010)

