
Enhancing Symbolic Execution for
Coverage-Oriented Testing⋆

Sébastien Bardin Nikolai Kosmatov Mickaël Delahaye
CEA, LIST, Laboratoire pour la Sûreté du Logiciel

91191, Gif-sur-Yvettes, France
first.name@cea.fr

Abstract—Automatic (code-based) test data generation is a
major topic in software engineering, and Dynamic Symbolic
Execution (DSE) is a very promising approach to this problem.
However, while DSE inherently covers feasible paths of the
program under test, practical testing is more concerned with
fulfilling so called coverage criteria, such as instructioncoverage,
branch coverage, MCDC (in aeronautic) or mutations. Three
problems arise for DSE in this context. First, path coveragemay
not be adapted to the criteria under consideration. Second,some
of the coverage requirements may be infeasible. Third, we need
to be able to handle a large range of different coverage criteria.
We propose three ingredients to tame these issues: a unified
management of a large class of coverage criteria through labels
(i.e. reachability objectives), a variant of DSE designed to handle
explicit coverage requirements at only a reasonable cost, and a
combination of well-known static analyses for detecting infeasible
coverage requirements. These results have been implemented into
the LTest plugin of the open-source software analyzer Frama-C.
We also present new results, including experiments on a weak
form of the MCDC criterion and a combination of DSE with
infeasibility detection.

Keywords—Testing, symbolic execution, coverage criteria

I. I NTRODUCTION

Automatic (code-based) test data generation is a major
topic in software engineering, and Dynamic Symbolic Ex-
ecution (DSE) [11], [14] is a very promising approach to
this problem. While an old idea [15], Symbolic Execution
has known a regain of interest in the mid 2000’s [13], [17],
[19], leading to many academic tools and case-studies [4],
[7], [8], [18]. However, while DSE inherently covers feasible
paths of the programs under test, practical testing is more
concerned with fulfilling so calledcoverage criteria [1], [20],
such as instruction coverage, branch coverage,MCDC [10] or
mutations [12]. Three problems arise for DSE in this context:

• path coverage may not be adapted to the criterion un-
der consideration, e.g. path coverage does not ensure
multiple-condition coverage;

• since coverage requirements are syntactically defined
from the program under test (without considering its
semantic), some or even many coverage requirements
may be infeasible, leading to a waste of efforts trying
to cover these objectives, as well as to artificially low
coverage ratios;

⋆ Work partially funded by EU FP7 (project STANCE, grant 317753) and
French ANR (project BINSEC, grant ANR-12-INSE-0002, and SOPRANO,
grant ANR-14-CE28-0020).

• finally, there exist many different classes of coverage
requirements, and any coverage-oriented testing ap-
proach must be able to handle a large part of them.

We propose three solutions to these problems. First, we
proposelabels (reachability objectives) as a way of modeling
many existing coverage criteria [6]. Second, we define a variant
of DSE [6] which handles explicit coverage requirements
at only a reasonable cost (i.e., a polynomial growth of the
search space, while a standard approach induces an exponential
blowup). Third, we use a combination of static analyses [3] in
order to detect infeasible coverage requirements. These results
have been implemented in the LTEST plugin [2] of the open-
source software analyzer Frama-C [9].

After reviewing this label-based testing framework, we
present new experimental results on weak forms of the MCDC
criterion and additional optimizations of the approach.

II. OVERVIEW

Background: symbolic execution.Symbolic execution is con-
sidered as a very fruitful and promising approach to automatic
test generation from source-code. Basically, the technique
amounts to iterate over (a finite subset of) the paths of the
program under test, and for each path to compute a so-called
path predicate, i.e. a formula such that any input satisfying it
is ensured to exercise the given path at runtime. The formula
is then fed to an automatic solver (typically: SMT solver) to
derive a new test input. A generic view of the algorithm is
depicted in Algorithm 1.

Algorithm 1: Symbolic Execution algorithm

Input : a programP with finite set of pathsPaths(P)
Output : TS, a set of pairs(t, σ), with t a test input

andσ a path, such thatP (t) coversσ
1 TS := ∅;
2 Spaths := Paths(P);
3 while Spaths 6= ∅ do
4 chooseσ ∈ Spaths; Spaths := Spaths \ {σ};
5 compute path predicateφσ for σ ;
6 switch solve(φσ) do
7 casesat(t): TS := TS ∪ {(t, σ)};
8 caseunsat: skip;
9 endsw

10 end
11 return TS;

Labels.Labels [6] are basically reachability objectives inserted
into the program under test. They can perfectly emulate many
standard criteria [6], ranging from basic ones (Instructions,
Decisions, Conditions) to more advanced ones (e.g. side-effect
free weak mutations). Labels are interesting here for two
essential reasons: (1) they allow to manage in a unified way
many different criteria, (2) they allow to reuse the whole
machinery of program verification for dealing with coverage
criteria issues, since reachability is at the heart of program
verification. An encoding of a standard criterion is given in
Figure 1. Readers can refer to [6] for more examples.

statement_1;
if (x==y && a<b)

{...};
statement_3;

−→

statement_1;
// l1: x==y
// l2: !(x==y)
// l3: a<b
// l4: !(a<b)
if (x==y && a<b)

{...};
statement_3;

Condition (CC)

Fig. 1. Simulating the Condition Coverage criterion with labels

The LTEST tool. LTEST is a label-based white-box testing
framework [2], implemented on top of Frama-C [9] and
PathCrawler [19], which provides three main services: (1)
computation of the coverage score of a given test suite, (2) au-
tomatic generation (resp. completion) of a test suite (resp. of a
given test suite), (3) automatic detection of infeasible coverage
requirements. And, thanks to labels, a wide range of coverage
criteria are supported. A schematic overview of the platform
is depicted in Figure 2.

Fig. 2: User view of the LTEST platform

III. SYMBOLIC EXECUTION AND COVERAGE

Label-oriented symbolic execution.As already stated, path
coverage does not entail certain other coverage criteria, espe-
cially it does not ensure label coverage. There is a straightfor-
ward way for taking labels into account in symbolic execution:
each label can be hard-coded in the program under test with
extra branching conditions [16]. Yet, this approach (denoted
DSE’) can yield a dramatic blowup of the search space [6].
We propose DSE⋆, a variant of DSE which takes advantage of
tight instrumentation (cf. Figure 3) anditerative label deletion
in order to manage labels in a very efficient way. Especially,
it can be shown that the search space of DSE⋆ increases only
polynomially in the number of labels w.r.t. the search spaceof
DSE.

Fig. 3. Tight instrumentation

Experiments reported in [6] (summarized here in Table I),
over 3 coverage criteria (CC, MCC , WM), clearly demonstrate
the advantage of DSE⋆ w.r.t. DSE with straightforward instru-
mentation (DSE’). Moreover, the overall overhead w.r.t. stan-
dard DSE is kept low.

TABLE I. OVERHEAD (SLOW-DOWN) WITH RESPECT TODSE

DSE’ DSE⋆

Min ×1.02 ×0.49
Median ×1.79 ×1.37
Max ×122.50 ×7.15

Mean ×20.29 ×2.15

Timeouts∗ 5 0

∗Overhead take into account timeouts, counted as 5400s (90min)

Finally, new experimental results reported in Table II show
that, in terms of coverage, DSE⋆ does improve over DSE
(which performs already well) and over random testing.

TABLE II. L ABEL COVERAGE RATIOS

Random DSE DSE’ DSE⋆

Min 37% 61% 62% 62%
Median 63% 90% 92% 95%
Max 100% 100% 100% 100%

Mean 70% 87% 88% 90%

Timeouts are excluded from the coverage computation.

Infeasibility detection. In order to detect infeasible labels, we
reuse techniques from software verification. Indeed, a label is
infeasible iff its negation is a valid assertion of the program
under test, which is what software verification is about. We
consider two different popular approaches, value analysisby
abstract interpretation (VA) and weakest precondition calculus
(WP), as well as a lightweight combination of both, denoted
VA⊕WP [3]. Results are reported in Table III (taken from [3]).
The combination allows to detect almost all infeasible labels
(98%), and performs significantly better than each approach
taken in isolation.

Combining DSE⋆ and VA⊕WP. Symbolic execution can take
advantage of the detection of infeasible coverage requirements
in two ways. First, the infeasibility information can be used
to report more accurate coverage ratios (Table IV). Second,
infeasible labels can be ignored by symbolic execution, and
the search stops once all labels are covered (Table V).

TABLE III. D ETECTION OF INFEASIBLE LABELS

#Lab #Inf VA WP VA ⊕ WP
#d %d #d %d #d %d

Total 1,270 121 84 69% 73 60% 118 98%
Min 0 0 0% 0 0% 2 67%
Max 29 29 100% 15 100% 29 100%
Mean 4.7 3.2 63% 2.8 82% 4.5 95%

#Lab: number of labels

#Inf: number of infeasible labels (manual inspection)

#d: number of detected infeasible labels

%d: ratio of detected infeasible labels

TABLE IV. C ORRECTED COVERAGE RATIOS

Random DSE DSE⋆

norm. VA VA
⊕WP

Total 67% 81% 90% 96% 99%

Min. 37% 61% 62% 80% 91%
Med. 63% 90% 95% 100% 100%
Max. 100% 100% 100% 100% 100%

Mean 70% 87% 90% 96% 99%

For DSE⋆ VA⊕WP, ratios take into account the detected infeasible labels.
Timeouts are excluded from the coverage computation.

TABLE V. I MPROVING DSE⋆ EFFICIENCY

DSE⋆-OPT vs DSE⋆

Min. 0.96×
Med. 1.46×
Max. 592.54×

Mean 49.04×

performance speedup is relative to DSE⋆

The GACC coverage criterion. We consider now a more
demanding coverage criterion, namelyGACC [1], a weak
interpretation ofMCDC (a.k.a. shortcut MCDC). The criterion
is indeed demanding, but also industrially relevant (critical
systems) and expressible by labels [16] (while fullMCDC
is not). Experiments (reported in Tables VI and VII) confirm
that GACC is a challenging criterion for automatic tools. Yet,
while the overhead of DSE⋆ is more important than for other
criteria, it is still affordable in most cases, and the technique
achieves very good coverage — much better than random
testing or standard DSE. Additional optimizations allow to
keep overhead low.

TABLE VI. OVERHEADS (SLOW-DOWN) W.R.T. DSEFOR GACC

DSE’ DSE⋆

norm. OPT

Min 1.44× 1.41× 1.38×
Med 3.76× 1.81× 1.44×
Max 130.79× 59.40× 3.14×

Mean 21.99× 10.55× 1.85×

Timeouts∗ 1 0 0

∗ For DSE’, a timeout counts as a 5400s (90min).

IV. CONCLUSION

Symbolic execution is a promising approach for automatic
code-based testing. Yet, while the primary technique is essen-
tially based on path exploration, code-based testing is often

TABLE VII. L ABEL COVERAGE RATIOS FORGACC

Random DSE DSE⋆

norm. OPT

Min 47% 62% 64% 72%
Med 55% 76% 88% 96%
Max 100% 100% 100% 100%

Mean 60% 78% 85% 91%

For DSE⋆ OPT-1-2, ratios take into account the detected infeasible labels.
Timeouts are excluded from the coverage computation.

about coverage criteria, leading to a sort of mismatch between
what a symbolic execution engine does, and what it should do.

We have proposed different techniques to enhance symbolic
execution in order to overcome these problems. Our framework
is based on three ingredients: (1) a “low-level” coverage
criterion (labels), able to encode a large variety of standard
coverage criteria; (2) a dedicated variant of DSE, optimized
for label coverage; (3) the use of state-of-the-art verification
technologies in order to automatically detect infeasible test
requirements.

Experiments show the potential of the approach. Especially,
symbolic execution can take a clear advantage of static analysis
in terms of efficiency and reported coverage ratios, and the
method still obtains excellent results on very demanding cov-
erage criteria, such as weak mutations orGACC. Moreover,
there is still room for improvements, for example through
combining labels with search-based optimizations of symbolic
execution, such as [5].

REFERENCES

[1] P. Ammann, A. J. Offutt: Introduction to software testing. Cambridge
University Press, New York (2008)

[2] S. Bardin, O. Chebaro, M. Delahaye, N. Kosmatov: An All-in-One
Toolkit for Automated White-Box Testing. In: TAP 2014. Springer,
Heidelberg (2014)

[3] S. Bardin, M. Delahaye, R. David, N. Kosmatov, M. Papadakis, Y. Le
Traon, J.-Y. Marion: Sound and quasi-Complete Detection ofInfeasible
Test Requirements. In: ICST 2015. IEEE, Los Alamitos (2015)

[4] S. Bardin and P. Herrmann. Structural Testing of Executables. In: IEEE
ICST 2008. IEEE, Los Alamitos (2008)

[5] S. Bardin and P. Herrmann. Pruning the search space in path-based test
generation. In: ICST 2009. IEEE, Los Alamitos (2009)

[6] S. Bardin, N. Kosmatov, F. Cheynier.: Efficient Leveraging of Symbolic
Execution to Advanced Coverage Criteria. In: ICST 2014. IEEE, Los
Alamitos (2014)

[7] C. Cadar, D. Dunbar, D. Engler: KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs. In:
OSDI 2008. Usenix Association (2008)

[8] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill and D. R. Engler.
EXE: automatically generating inputs of death. In: CCS 2006. ACM

[9] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles,
B. Yakobowski: Frama-C - A Software Analysis Perspective. In: SEFM
2012. Springer (2012)

[10] Chilenski, J. J., Miller, S. P.: Applicability of modified condition/de-
cision coverage to software testing. Software EngineeringJournal, 9(5),
193–200 (1994)

[11] C. Cadar, K. Sen: Symbolic execution for software testing: three
decades later. Commun. ACM, 56(2), 2013.

[12] R. A. DeMillo, R. J. Lipton, A. J. Perlis: Hints on test data selection:
Help for the Practicing Programmer. Computer, 11(4), 34–41

[13] P. Godefroid, N. Klarlund and K. Sen. DART: Directed Automated
Random Testing. In: PLDI 2005. ACM

[14] P. Godefroid, M. Y. Levin, D. A. Molnar: SAGE: whitebox fuzzing for
security testing. Commun. ACM 55(3): 40–44 (2012)

[15] J. C. King. Symbolic execution and program testing. Communications
of the ACM, 19(7), july 1976.

[16] R. Pandita, T. Xie, N. Tillmann and J. de Halleux. Guidedtest
generation for coverage criteria. In: ICSM 2010. IEEE

[17] K. Sen, D. Marinov, G. Agha: CUTE: A Concolic Unit Testing Engine
for C. In: ESEC/FSE 2005. ACM

[18] N. Tillmann and J. de Halleux. Pex-White Box Test Generation for
.NET. In: TAP 2008. Springer

[19] N. Williams, B. Marre and P. Mouy. On-the-Fly Generation of K-Path
Tests for C Functions. In: ASE 2004. IEEE (2004)

[20] H. Zhu, P. A. V. Hall and J. H. R. May. Software Unit Test Coverage
and Adequacy. In: ACM Computing Surveys, vol. 29(4), 1997

