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Abstract. Arrays are ubiquitous in the context of software verifica-
tion. However, effective reasoning over arrays is still rare in CP, as local
reasoning is dramatically ill-conditioned for constraints over arrays. In
this paper, we propose an approach combining both global symbolic rea-
soning and local filtering in order to solve constraint systems involving
arrays (with accesses, updates and size constraints) and finite-domain
constraints over their elements and indexes. Our approach, named FDCC,
is based on a combination of a congruence closure algorithm for the stan-
dard theory of arrays and a CP solver over finite domains. The tricky
part of the work lies in the bi-directional communication mechanism be-
tween both solvers. We identify the significant information to share, and
design ways to master the communication overhead. Experiments on ran-
dom instances show that FDCC solves more formulas than any portfolio
combination of the two solvers taken in isolation, while overhead is kept
reasonable.

1 Introduction

Context. Constraint resolution is an emerging trend in software verification [25],
either to automatically generate test inputs or formally prove some properties of
a program. Program analysis involves solving so-called Verification Conditions
(VCs), i.e. checking the satisfiability of a formula either by providing a solution
(sat) or showing there is none (unsat). While most techniques are based on
SMT (Satisfiability Modulo Theory), a few verification tools [3, 10,15, 20] rely
on Constraint Programming over Finite Domains, denoted CP(FD). CP(FD) is
appealing here because it allows to reason about some fundamental aspects of
programs notoriously difficult to handle, like floating-point numbers [6], bounded
non-linear integer arithmetic, modular arithmetic [16] or bitvectors [4]. Some
experimental evaluations [4, 11] suggest that CP(FD) could be an interesting
alternative to SMT for certain classes of VCs.
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The problem. Yet the effective use of CP(FD) in program verification is limited
by the absence of effective methods to handle complex constraints over arrays.
While array accesses are handled for a long time through the ELEMENT constraint
[17], array updates have been dealt with only recently [10], and in both cases the
reasoning relies only on local (consistency-based) filtering. This is insufficient
to handle constraints involving long chains of accesses and updates arising in
program verification.

On the other hand, the theory of array is well-known in theorem proving [8].
The standard theory of array considered there cannot express size constraints
over arrays or finite-domain constraints over elements and indexes. One must
use a combination of two decision procedures, one for the array part and one
for the index / element part, through a standard cooperation framework like
the Nelson-Oppen (NO) scheme [22]. Unfortunately, finite-domain constraints
cannot be integrated into NO (eligible theories must have an infinite model [23]).

Contributions. This paper addresses the problem of designing an efficient
CP(FD) approach for solving conjunctive quantifier-free formulas combining ar-
rays with size constraints and finite-domain constraints over indexes and ele-
ments. Our main guidelines are (1) to combine global symbolic deduction mech-
anisms with local filtering in order to achieve better deductive power than both
technique taken in isolation, (2) to keep communication overhead as low as pos-
sible, while going beyond a purely portfolio combination of the two approaches,
(3) to design a combination scheme allowing to re-use any existing FD solver in
a black box manner, with minimal and easy-to-implement APT .
Our main contributions are the following:

1. We design FDCC, an original decision procedure built upon a (new) lightweight
congruence closure algorithm for the theory of arrays, called ccC in the pa-
per, interacting with a (standard) filtering-based CP(FD) solver, called FD.
To the best of our knowledge, it is the first collaboration scheme including a
finite-domain CP solver and a Congruence Closure solver for array constraint
systems. Moreover, the combination scheme, while more intrusive than NO,
is still high-level. Especially, FD can be used in a black-box manner through
a minimal API, and large parts of cC are standard.

2. We bring new ideas to make both solvers cooperate through bi-directional
constraint exchanges and synchronisations. We identify important classes of
information to be exchanged, and propose ways of doing it efficiently : on the
one side, the congruence closure algorithm can send equalities, disequalities
and ALLDIFFERENT constraints to FD, while on the other side, ¥D can deduce
new equalities / disequalities from local filtering and send them to cc. In
order to master the communication overhead, a supervisor queries explicitly
the most expensive computations, while cheaper deductions are propagated
asynchronously.

3. We propose an implementation of our approach written on top of SICStus
clpfd. Through experimental results on random instances, we show that
FDCC systematically solve more formulas that cC and FD taken in isolation.
FDCC performs even better than the best possible portfolio combination of



the two solvers. Moreover, FDCC shows only a reasonable overhead over CC
and FD.

2 Motivating examples

Progl Prog2

int T[100]; ... int T[2];

int e=T[i]; int f=T[j]; int e=T[i]; int £=T[j]; int g=TI[k];
if el=fagi=3){... if(el=ftkel=gakf =g {...

Fig. 1. Programs with arrays

We use the two programs of Fig. 1 as running examples. First, consider the
problem of generating a test input satisfying the decision in program Progl of
Fig. 1. This involves solving a constraint system with array accesses, namely

ELEMENT(¢, T, e), ELEMENT(j, T, f),e # f,i=j (1)

where 7' is an array of variables of size 100, and ELEMENT(%, T, e) means T'[i] = e.
A model of this constraint system written in COMET [21] did not provide us
with an unsat answer within 60 minutes of CPU time on a standard machine.
In fact, as only local consistencies are used in the underlying solver, the system
cannot infer that ¢ # j is implied by the three first constraints. On the contrary,
a SMT solver such as Z3 [13] immediately gives the expected result, using a
global symbolic decision procedure for the standard theory of arrays.

Second, consider the problem of producing a test input satisfying the decision
in program Prog2 of Fig. 1. It requires solving the following constraint system:

ELEMENT(i, T, €), ELEMENT(4, T, ), ELEMENT(k, T, g),e # f,e # g, f g (2)

where T is an array of size 2. A symbolic decision procedure for the standard
theory of arrays returns (wrongly) a sat answer here (size constraints are ig-
nored), while the formula is unsatisfiable since T[], T[j] and T[k] cannot take
three distinct values. A symbolic approach for arrays must be combined either
with an explicit encoding of all possible values of indexes, or with the theory
of integer linear arithmetic via NO. However, both solutions are expensive, the
explicit encoding of domains adds many disjunctions (requiring enumeration at
the SAT solver level), and combination of arrays and integers requires to find
all implied disjunctions of equalities. On this example, a CP solver over finite
domains can also fail to return unsat in a reasonable amount of time if it starts
labelling on elements instead of indexes, as nothing prevents to consider con-
straint stores where ¢ = j or ¢ = k or j = k: there is no global reasoning over
arrays able to deduce from T'[i] # T'[j] that i # j.



3 Background

We describe hereafter the standard theory of arrays, existing CP(FD) constraints
over arrays and the congruence closure algorithm. In the following, logical theo-
ries are supposed to be quantifier-free. Moreover, we are interested in conjunctive
fragments.

The theory of arrays. The theory of arrays has signature X4 = {select, store, =
,#}, where select(T, i) returns the value of array T at index ¢ and store(T, i, €)
returns the array obtained from T by putting element e at index i, all other
elements remaining unchanged. The theory of arrays is typically described using
the read-over-write semantics. Besides the standard axioms of equality, three
axioms dedicated to select and store are considered. Axiom (3) is an instance
of the classical functional consistency axiom (FC), while (4) and (5) are two
variations of the read-over-write principle (RoW).

1 =7 —> select(T,1) = select(T, 7) 3)
i =j — select(store(T,i,e),j) = e (4)
i # j — select(store(T,i,e),j) = select(T, j) (5)

The theory of arrays is difficult to solve: the satisfiability problem for its
conjunctive fragment is already NP-complete [14].

The theory of arrays by itself does not express anything about the size of
arrays or the domains of indexes and elements. Moreover, the theory presented
here is non-extensional, meaning that it can reason on array elements but not
on arrays themselves. For example, A[i] # Bl[j] is permitted, while A # B and
store(A,i,e) = store(B, j,v) are not.

CP(FD) and arrays. In CP(FD) solvers, select constraints over arrays are
typically handled with constraint ELEMENT (i, A,v) [17]. The constraint holds
iff Afi] = v, where i, v are finite domain variables and A is a fixed-size sequence
(array) of constants or finite domain variables. Local filtering algorithms are
available for ELEMENT at quadratic cost [7]. Interestingly, ELEMENT can reason
on array size by constraining the domain of indexes. Filtering algorithms for
store constraints over arrays have been defined in [10], with applications to soft-
ware testing. Aside dedicated propagators, store could also be removed through
the introduction of reified case-splits following axioms (4) and (5), but this is
notoriously inefficient in CP(FD).

Terminology. In this paper, we consider filtering over ELEMENT as imple-
menting local reasoning, while global reasoning refers to deduction mechanisms
working on a global view of the constraint system, e.g. taking into account all
select/store.

The congruence closure algorithm. Computing the congruence closure of a
relation over a set of terms has been studied by Nelson and Oppen [23]. The al-
gorithm uses a union-find structure to represent the equivalence relation between
terms as its quotient set, i.e., the set of all equivalence classes. Basically, each



class of equivalence has a unique witness and each term is (indirectly) linked
to its witness. Adding an equality between two terms amounts to choose one
term’s witness to be the witness of the other term. Disequalities inside the same
equivalence class lead to unsat, otherwise the formula is sat. Smart handling of
“witness chains” ensures very efficient implementations. Congruence closure is
different from Prolog unification in that it allows to deal with non-free algebra,
for example if we want to express that f(a) = g(b) = 3.

Remark 1. In the (standard) congruence closure algorithm, all implied equalities
are saturated (made explicit), while disequalities deduced from the FC axiom
are left implicit: adding the corresponding equality will lead to an unsat answer,
but it is not easy to retrieve all these inequalities.

4 Combining cc and FD

4.1 Overview

Our approach is based on combining symbolic global reasoning for arrays and
local filtering resolution. The framework, sketched in Fig. 2, is built over three
main ingredients:
1. local filtering algorithms for arrays and other constraints on elements and
indexes (called FD),
2. a lightweight global symbolic reasoning over array accesses and updates
(called cc),
3. a new bi-directional communication mechanism between the two decision
procedures above.

Let ¢ be a conjunction of equal-

ities, disequalities, array accesses

(select) and updates (store), con- -

straint on the size of arrays and / "

other (arbitrary) constraints over

elements and indexes. Our proce- @

dure takes ¢ as input, and returns -T -

a verdict that can be either sat or

unsat. First, the formula ¢ is pre- ~ -
processed and dispatched between [ sat(withasolution)orunsat |

cc and FD. More precisely, equal-

ities and disequalities as well as

array accesses and updates go to (1) subformula with accesses, updates, =, #
both solvers. Constraints over ele- (2)
ments and indexes go only to FD. (3) implied = and #, cliques of disequalities
The two solvers exchange the fol- (4) implied = and # (through filtering)
lowing information: CC can com-

municate new equalities and dise- Fig. 2. An overview of FDCC
qualities among variables to FD, as well as sets of variables being all different

whole initial formula



(i.e., cliques of disequalities); FD can also communicate new equalities and dis-
equalities to CcC, based on domain analysis of variables. The communication
mechanism and the decision procedures are described more precisely in the rest
of this section.

4.2 The cc decision procedure

We can adapt the standard congruence closure algorithm into a semi-decision
procedure CC for arrays. By semi-decision procedure, we mean here that all
deductions made by the procedure are correct w.r.t. array axioms, but these
deductions may not be sufficient to conclude to sat or unsat. CC is correct
(verdict can be trusted) but not complete (may output “maybe”).

For the sake of clarity we refine the set of array axioms given in Section 3
into an equivalent set of five more operational axioms:

(FC-1) i =7 —> select(T,i) = select(T, j)

(FC-2) select(T, i) # select(T,j) —> i # j

(RoW-1) i = j —> select(store(T,i,e),j) =e

(RoW-2) 1 # j — select(store(T,i,e),j) = select(T, j)
(RoW-3) select(store(T,i,e),j) e — i #£j

The congruence closure algorithm is adapted in the following way to handle
these five different rules. Functional consistency rules FC-1 and FC-2 are stan-
dardly handled with slight extension of congruence closure [23]. To cope with
RoW-1 and RoW-3, we close the set of constraints in CC by adding the equality
select(store(T,i,e),i) = e for each term store(T,i,e), then RoW-1 and RoW-3
become specific instances of FC-1 and FC-2. Finally, for RoW-2 we add a mech-
anism of delayed evaluation inside CC: for each term select(store(T,1i,e),7), we
put (T,i,e,7) in a watch list, and when i # j is proved, we deduce the equality
select(store(T, i,e),j) = select(T, j).

Note that while implied disequalities are left implicit in the congruence clo-
sure procedure, in CC we close the set of disequalities (especially through FC-2)
in order to benefit as much as possible from rules RoW-2 and RoW-3.

Obviously this polynomial-time procedure is not complete (recall that the
problem is NP-complete), however we think that it is a nice trade-off between
standard congruence closure (no array axiom taken into account) and full closure
(exponential cost because of the introduction of case-splits for RoW-* rules).

4.3 The FD decision procedure

We use existing propagators and domains for constraints over finite domains.
Our approach requires at least array constraints for select/store operations, and
support of ALLDIFFERENT constraint [24] is a plus. Array constraints can be im-
plemented either with the standard ELEMENT constraint and reified disjunctions,
or (more efficiently) with the load_element and store_element constraints [10].



4.4 Cooperation between cC and FD

The cooperation mechanism involves both to know which kind of information
can be exchanged, and how the two solvers synchronise together. Our main
contribution here is twofold: we identify interesting information to share, and
we design a method to tame the communication cost.

Communication from cc to rD. Our implementation of CC maintains the
set of disequalities and therefore both equalities and disequalities can be easily
transmitted to FD. Interestingly, maintaining disequalities allows to communicate
also ALLDIFFERENT constraints. More precisely, any set of disequalities can be
represented by an undirected graph where each node corresponds to a term,
and there is an edge between two nodes iff there is a disequality between the
corresponding terms. Finding the cliques* of the graph permits one to identify
ALLDIFFERENT constraints that can be transmitted to ¥D. These cliques can be
sought dynamically during the execution of the congruence closure algorithm.
Since finding a largest clique of a graph is NP-complete, restrictions have to be
considered. Practical choices are described in Sec. 5.1.

Communication from FD to CC. FD may discover new disequalities and equal-
ities through filtering. For example, consider the constraint z > x x y with do-
mains z € 3.4, y € 1..2 and z € 5..6. While no more filtering can be performed,
we can still deduce that formulas x # y, x # 2z and y # z hold, and transmit
them to cc. Yet, this information is left implicit in the constraint store of FD and
need to be checked explicitly. But there is a quadratic number of pairs of vari-
ables, and (dis-)equalities could appear at each filtering step. Hence, the eager
generation of all domain-based (dis-)equalities must be temperated in order to
avoid a combinatorial explosion. We propose efficient ways of doing it hereafter.

Synchronisation mechanisms: how to tame communication costs. A
purely asynchronous cooperation mechanism with systematic exchange of infor-
mation between FD and cC (through suspended constraints and awakening over
domain modification), as exemplified in Fig. 2, appeared to be too expensive in
practise. We manage this problem through a reduction of the number of pairs of
variables to consider (critical pairs, see after) and a communication policy
allowing tight control over expensive communications.

1. We use the following communication policy:

— cheap communications are made in an asynchronous manner;

— expensive communications, on the other hand, are made only on request,
initiated by a supervisor;

— the two solvers run asynchronously, taking messages from the supervisor;

— the supervisor is responsible to dispatch formulas to the solvers, to ensure
a consistent view of the problem between FD and CC, to forward answers of
one solver to the other and to send queries for expensive computations.

4 A clique is a subset of the vertices such that every two vertices in the subset are
connected by an edge.



It turns out that all communications from CC to FD are cheap, while commu-
nications from FD to CC are expensive. Hence, it is those communications which
are made only upon request. Typically, it is up to the supervisor to explicitly
ask if a given pair of variables is equal or different in FD. Hence we have a total
control on this mechanism.

2. We also reduce the number of pairs of variables to be checked for (dis-)equality
in ¥D, by focusing only on pairs whose disequality will surely lead to new de-
ductions in cC (i.e., pairs involved in the left-hand side of rules FC-2, RoW-2
and RoW-3). Such pairs of variables are said to be critical. Considering the five
deduction rules of Section 4.2, the set of all critical pairs is defined by:

— for each array T, all pairs (select(T, 1), select(T, j)),
— for each term v of the form select(store(T,i,¢),7), pairs (i,7) and (e, v).

Yet, the number of such pairs is still quadratic, not in the number of variables
but in the number of select. We choose to focus our attention only on the second
class of critical pairs: they capture the specific essence of array axioms (besides
FC) and their number is only linear in the number of select.

In practise, it appears that this reduction is manageable while still bringing
interesting deductive power.

Complete architecture of the approach. A detailed architecture of our
approach can be found in Fig. 3. Interestingly, cc and FD do not behave in a
symmetric way: CC transmits systematically to the supervisor all new deductions
made and cannot be queried, while FD transmits equalities and disequalities
only upon request from the supervisor. Note also that cC can only provide a
definitive unsat answer (no view of non-array constraints) while FD can provide
both definitive sat and unsat answers.

The list of critical pairs is dynamically modified by the supervisor: new pairs
are added when new select are deduced by cc, and already proved (dis-)equal
pairs are removed. In our current implementation, the supervisor queries FD on
all active critical pairs at once. Querying takes place at the end of the initial
propagation step, and after each labelling choice.

We consider labelling in the form of X = k or X # k. The labelling procedure
constrains only FD: it appears that flooding cC with all the new (dis)-equalities at
each choice point was expensive and mostly worthless. In a sense, most labelling
choices do not impact ¢C, and those which really matter are in fine transmitted
through queries about critical pairs.

While the approach requires a dedicated implementation of the supervisor
and cc (yet, most of CC is standard and easy to implement), any CP(FD) solver
can be used in black-box, as long as it provides support for the atomic constraints
considered and the two functions is_fd_eq(x,y) and is_fd_diff (x,y), stating
if two variables can be proved equal or different within the current domain
information. These two functions are either available or easy to implement in
most CP(FD) systems. Support for ALLDIFFERENT is a plus, but not mandatory.



asynchronous deduction m
input formula Query answers

x=y, x!=y, FANF x=y, xl=y
load(...),
all-different(...)

Supervisor

=k, xl=
internal state labelling x=k, x!=k
- association fd <-> cc
- critical paires

is_fd_eq(x,y)?

dispatch formula is_fd_diff(x,y)?
asynchronous asynchronous

deduction deduction
- vy

cc F FANF FD

Fig. 3. Detailed view of the communication mechanism

Theoretical properties. Properties of FDCC are summarised in the next the-
orem. A filtering algorithm is correct if it does not discard any domain value
participating into a solution of the underlying formula to solve. A decision pro-
cedure is said to be correct if both positive and negative results can be trusted,
and complete if it terminates.

Theorem 1. Assuming that FD filtering algorithm is correct, then FDCC is cor-
rect and complete.

4.5 Running examples

Consider the array formulas extracted from Fig. 1. FD solves each formula in less
than 1 second. For Progl, cc immediately determines that (1) is unsat, as i = j
allows to merge e and f, which are declared to be different. For Prog2, in cc,
the formula is not detected as being unsat (the size constraint over 7' being not
taken into account), but rule (FC-2) produces the new disequalities i # j, i # k
and j # k. Then, the two cliques (e, f,g) and (i, j, k) are identified. In FD, the
domains of ¢, j, k are pruned to 0..1 and local filtering alone cannot go further.
However, when considering the cliques previously identified, two supplementary
global constraints are added to the constraint store: ALLDIFFERENT(e, f, g) and
ALLDIFFERENT(i, j, k). The latter and the pruned domains of i, j, k allow FDCC
to determine that (2) is unsat.



5 Implementation and experimental results

5.1 Implementation of FDCC

We developed a prototype constraint solver implementing the FDCC approach.
FDCC is a constraint solver over the theory of arrays augmented with finite
domains arithmetic. It takes as input formulas written in the given theory and
classifies them as being sat or unsat. In the former case, the tool also returns
a solution under the form of a complete instantiation of the variables. Formulas
may include array select and store, array size declaration, variable equalities and
disequalities, finite domains specifications and arithmetic constraints on finite
domain variables.

FDCC is implemented in SICStus Prolog and is about 1.7 KLOC. It exploits
the SICStus clpfd library [9] which provides an optimised implementation of
ALLDIFFERENT as well as efficient filtering algorithms for arithmetical constraints
over FD. The FD solver is extended with our own implementations of the array
select and store operations [10]. We use simple labelling heuristics such as first-
fail and first-fail constraint [9]. Communication is implemented through message
passing and awakenings. ALLDIFFERENT constraints are added each time a 3-
clique is detected. Restricting clique computations to 3-cliques is advantageous to
master the combinatorial explosion of a more general clique detection. Of course,
more interesting deductions may be missed (e.g. 4-cliques) but we hypothesise
that these cases are rare in practise. The 3-clique detection is launched each time
a new disequality constraint is considered in CC.

CPU runtime is measured on an Intel Pentium 2.16GHZ machine running
Windows XP with 2.0GB of RAM.

5.2 Experimental evaluation on random instances

Using randomly generated formulas is advantageous for evaluating an approach,
as there is no bias in the choice of problems. However, there is also a threat to
validity as random formulas might not fairly represent reality. In SAT-solving,
it is well known that solvers that perform well on randomly generated formulas
are not necessary good on real-world problems. To mitigate the risk, we built a
dedicated random generator that produces easy-to-solve as well as hard-to-solve
instances.

Formula generation. We distinguish four different classes of formulas, depend-
ing on whether linear arithmetic constraints are present or not (in addition to
array constraints) and whether array constraints are (a priori) “easy” or “hard”.
Easy array constraints are built upon three arrays, two without any store con-
straint, and the third created by two successive stores. Hard array constraints
are built upon 6 different arrays involving long chains of store (up to 8 successive
stores to define an array). The four classes are:

— AEUF-I (easy array constraints),
— AEUF-II (hard array constraints),



— AEUF+LIA-I (easy array constraints plus linear arithmetic),
— AEUF+LIA-IT (hard array constraints plus linear arithmetic).

We performed two distinct experiments: in the first one we try to balance
sat and unsat formulas and more or less complex-to-solve formulas by varying
the formulas length, around and above the complezity threshold, while in the
second experiment, we regularly increase the formula length in order to cross the
complezxity threshold. Typically, in both experiments, small-size random formulas
are often easy to prove sat and large-size random formulas are often easy to prove
unsat. In our examples, formula length varies from 10 to 60.

The other parameters are the following: formulas contain around 40 variables
(besides arrays), arrays have a size of 20 and all variables and arrays range over
domain 0..50. Interestingly, we also ran experiments with domains in 0..1000 and
results were not significantly different.

Properties to evaluate. We are interested in two different aspects when com-
paring two solvers: (1) the ability to solve as many formulas as possible, and (2)
the average computation time on easy formulas.

These two properties are both very important in a verification setting: we
want of course to solve a high ratio of formulas, but a solver able to solve many
formulas with an important overhead may be less interesting in some contexts
than a faster solver missing only a few difficult-to-solve formulas.

Competitors. We submitted the formulas to three versions of FDCC. The first
version is the standard FDCC described so far. The second version includes only
the cc algorithm while the third version implements only the FD approach. In
addition, we use also two witnesses, HYBRID and BEST. HYBRID represents a
naive concurrent (black-box) combination of ¢C and FD: both solvers run in par-
allel, the first one getting an answer stops the other. BEST simulates a portfolio
procedure with “perfect” selection heuristics: for each formula, we simply take
the best result among cC and FD. BEST and HYBRID are not implemented, but
deduced from results of cC and FD.

All versions are correct and complete, allowing a fair comparison. The cc
version requires that the labelling procedure communicates each (dis-)equality
choice to CC in order to ensure correctness.

We are primarily interested in comparing FDCC to FD since we want to im-
prove over current CP(FD) handling of arrays. cC and HYBRID serve as wit-
nesses, in order to understand if our combination goes further in practise than
just a naive black-box combination. Finally, BEST serves as a reference point,
representing the best possible black-box combination.

Results of the first experiment. For each formula, a time-out of 60s was
positioned. We report the number of sat, unsat and timeout answers for each
solver in Tab. 1.

As expected for pure array formulas (AEUF-*), ¥D is better on the sat in-
stances, and CC behaves in an opposite way. Performance of ¢C decrease quickly
on hard-to-solve sat formulas. Surprisingly, the two procedures behave quite dif-
ferently in presence of arithmetic constraints: we observe that unsat formulas



AEUF-I AEUF-1I || ABUF+LIAI [AEUF+LIA-II total
(79) (90) (100) (100) (369)

S|U|TO| T ||S|U|TO| T ||S|UTO| T ||S|UITO| T || S |U|TO| T
CcC  ||26(37] 16 [987|| 2 (30| 58 |3485|| 1 |21| 78 |4689| 0 (27| 73 |4384| 29 [115/225|13545
FD [|39]26] 14 |875|35|18] 37 {2299(|50(47| 3 | 199 (|30|60| 10 | 622 || 154 |151| 64 | 3995
FDCC ||40(37| 2 |144(/51|30| 9 |635(|52(48| 0 | 24 (|38|60| 2 |154 ||181|175|13 | 957
BEST |[39(37| 3 [202]|35|30| 25 [1529(|50|48| 2 | 139 ||30|60| 10 | 622 || 154 [175| 40 | 2492
HYBRID|[39(37| 3 [242|/35|30| 25 |1561||50(48| 2 | 159 ||30(60| 10 | 647 || 154 |175| 40 | 2609

S : # sat answer, U : # unsat answer, TO : # time-out (60 sec), T: time in sec.
Table 1. Experimental results of the first experiment

become often easily provable with domain arguments, explaining why FD per-
forms better and cc worst compared to the AEUF-* case.

Note that computation times reported in Tab. 1 are dominated by the number
of time-outs, since here solvers often succeed quickly or fail. Hence BEST and
HYBRID do not show any significant difference in computation time, while in
case of success, BEST is systematically 2x faster than HYBRID.

The experiments show that:

— FDCC solves strictly more formulas than FD or CC taken in isolation, and
even more formula than BEST. Especially, there are 22 formulas solved only
by FDCC, and FDCC shows 5x less TO than FD and 3x less TO than BEST.

— FDCC has only a very affordable overhead over ¢C and FD when they succeeds.
Actually, FDCC was at worst 4x slower than CC or FD, and on average around
1.5x slower. While we do not provide a full comparison for each formula, one
can estimate the overhead of FDCC as follow: given a formula category, take
computation times ¢ and ¢’ for FDCC and BEST, and d the difference between
#TO in FDcc and #TO in BEST. Then for each category, t ~ t' — 60 X d
(for the whole set of formulas, we found a 1.1x ratio).

— These two results have been observed for the four classes of programs, for
both sat and unsat instances, and a priori easy or hard instances. Hence,
FDCC is much more robust than FD or CC are.

Results of the second experiment. In this experiment, 100 formulas of class
AEUF-II are generated with length [, [ varying from 10 to 60. While crossing the
complexity threshold, we record the number of time-outs (60sec). In addition, we
used two metrics to evaluate the capabilities of FDCC to solve formulas, Gain
and Miracle:

— Gain is defined as follows: each time FDCC classifies a formula that none of
(resp. only one of) cc and FD can classify, Gain is rewarded by 2 (resp. 1);
each time FDCC cannot classify a formula that one of (resp. both) cc and FD
can classify, Gain is penalised by 1 (resp. 2). Note that the —2 case never
happens during our experiments.
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Fig. 4. Experimental results for the 2"¢ experiment

— Miracle is defined as the number of times FDCC gives a result while both
cc and FD fail to do so.

Fig. 4 shows the number of solved formulas for each solver, the number of for-
mulas which remain unsolved because of time out, and both the values of Gain
and Miracles. We see that the number of solved formulas is always greater for
FDCC (about 20% more than FD and about 70% more than cc). Moreover, FDCC
presents maximal benefits for formula lengths in between 20 and 40, i.e. for
lengths close to the complexity threshold, meaning that relative performance
are better on hard-to-solve formulas. For these lengths, the number of unsolved
formulas is always less than 11 with FDCC, while it is always greater than 25
with both cC and FD.

Conclusion. Experimental results show that FDCC performs better than FD and
CC taken in isolation, especially on hard-to-solve formulas, and is very competi-
tive with portfolio approaches mixing ¥D and CC. Especially, FDCC solves strictly
more formulas than its competitors (3x less TO than BEST) and shows a rea-
sonable overhead (1.1x average ratio vs BEST). Moreover, relative performance
are better on hard-to-solve formulas than on easy-to-solve formulas, suggesting
that it becomes especially worthwhile to combine global symbolic reasoning with
local filtering when hard instances have to be solved. Finally, FDCC performance
seems to be robust to the class of formulas considered.

This is particularly interesting in a verification setting, since it means that
FDCC can be clearly preferred to the standard FD-handling of arrays in any



context, i.e. whether we want to solve a few complex formulas or we want to
solve as many as formula in a small amount of time.

6 Related work

It is well known in the SMT community that solving formulas over arrays and in-
teger arithmetic in an efficient way through a Nelson-Oppen combination frame-
work [22] is difficult. Indeed, since arrays and (linear) integer arithmetic are non
convex theories, NO requires to communicate all implied disjunctions of equalities
to ensure correctness. Such a propagation may be much more expensive than sat-
isfiability check [2]. NO with delayed theory combination [1,2] requires only the
propagation of implied equalities, at the price of adding new boolean variables
for all potential equalities between variables. Some works aim at mitigating the
potential overhead of these extra-variables, for example the model-based combi-
nation implemented in Z3 [12], where equalities are propagated lazily. Another
possibility is to reduce the theory of arrays to the theory of equality by system-
atic “inlining” of axioms (4) and (5) to remove all store operators, at the price
of introducing many case-splits. The encoding can be eager [18] or lazy [8].

Filtering approaches for array constraints are already discussed in Section 3.
The ELEMENT constraints and disjunctions can express update constraints. How-
ever, a dedicated update constraint is more efficient in case of non-constant in-
dexes. The work of Beldiceanu et al. [5] has shown that it is possible to capture
global state of several ELEMENT constraints with an automaton. Qur approach is
more general as it handles any possible combination of ELEMENT (and UPDATE)
constraints but it is also only symbolic and thus less effective. In our framework,
the cc algorithm cannot prune the domain of index or indexed variables. In fact,
our work has more similarities with what has been proposed by Nieuwenhuis on
his DPLL(ALLDIFFERENT) proposition®. The idea is to benefit from the efficiency
of several global constraints in the DPLL algorithm for SAT encoded problems.
In FDCC, we derive ALLDIFFERENT global constraints from the congruence clo-
sure algorithm for similar reasons. Nevertheless, our combined approach is fully
automated, which is a keypoint to address array constraint systems coming from
various software verification problems.

Several possibilities can be considered to implement constraint propagation
when multiple propagators are available [26]. First, an external solver can be
embedded as a new global constraint in ¥D, as done for example on the QUAD
global constraint [19]. This approach offers global reasoning over the constraint
store. However, it requires fine control over the awakening mechanism of the
new global constraint. A second approach consists in calling both solvers in a
concurrent way. Each of them is launched on distinct threads, and both threads
prune a common constraint store that serves of blackboard. This approach has
been successfully implemented in Oz [27]. The difficulty is to identify which
information must be shared, and to do it efficiently. A third approach consists

® http://wuw.1lsi.upc.edu/ roberto/papers/CP2010slides.pdf



in building a master-slave combination process where one of the solvers (here
cC) drives the computation and call the other (FD). The difficulty here is to
understand when the master must call the slave.

We follow mainly the second approach, however a third agent (the supervisor)
acts as a lightweight master over cC and FD to synchronise both solvers through
queries.

7 Conclusions and perspectives

This paper describes an approach for solving conjunctive quantifier-free formu-
las combining arrays and finite-domain constraints over indexes and elements
(typically, bounded arithmetic). We sketch an original decision procedure that
combines ideas from symbolic reasoning and finite-domain constraint solving.
The bi-directional communication mechanism proposed in this paper lies on the
opportunity of improving the deductive capabilities of the congruence closure
algorithm with finite domains information. We also propose ways of keeping the
communication overhead tractable. Experiments show that our combined ap-
proach performs better than any portfolio-like combination of a symbolic solver
and a filtering-based solver. Especially, our procedure enhances greatly the de-
ductive power of standard CP(FD) approaches for arrays. In future work, we
plan to incorporate our algorithm into a CP(FD)-based verification tool in order
to evaluate its benefits on real-life problems.

Acknowledgements. We are very grateful to Pei-Yu Li who proposed a pre-
liminary encoding of FDCC during her trainee period, and Nadjib Lazaar for
comparative experiments with OPL.
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