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Abstract. This paper introduces a new property called robust reacha-
bility which refines the standard notion of reachability in order to take
replicability into account. A bug is robustly reachable if a controlled in-
put can make it so the bug is reached whatever the value of uncontrolled
input. Robust reachability is better suited than standard reachability in
many realistic situations related to security (e.g., criticality assessment or
bug prioritization) or software engineering (e.g., replicable test suites and
flakiness). We propose a formal treatment of the concept, and we revisit
existing symbolic bug finding methods through this new lens. Remark-
ably, robust reachability allows differentiating bounded model checking
from symbolic execution while they have the same deductive power in the
standard case. Finally, we propose the first symbolic verifier dedicated
to robust reachability: we use it for criticality assessment of 4 existing
vulnerabilities, and compare it with standard symbolic execution.

1 Introduction

Context. Many problems in software verification are encoded as reachability
queries of some undesired condition—a bug, the exploitation of a vulnerability,
etc. When a verification engine establishes that a certain buggy location in the
program is reachable, an input triggering the bug is reported to the developer so
that it can be fixed. In the case of techniques based on an under-approximation of
program behaviors, like Symbolic Execution (SE) [9] or Bounded Model Check-
ing (BMC) [13], we even have in principle the guarantee that the reported issue
is real (correctness): there are no false positives.

Problem. Yet, things are more subtle in practice, as some bugs can be triggered
reliably whereas others only happen in very specific and highly improbable initial
conditions. While standard reachability cannot tell the difference, this distinc-
tion is crucial in many real-life scenarios related to security (bug triage, bug
prioritization, criticality assessment) or software engineering (test suite replica-
bility and the problem of flaky tests [42]). For example, fuzzers are able to detect
so many bugs [38] that they can lead to “bug triage issues” [30]. If each replicable
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(reliably-triggered) bug is hidden by dozens of more fragile ones in the reports
of a verification engine, it is hard to focus development effort efficiently. Also,
if one is only interested in vulnerability reports, bugs which cannot be reliably
triggered may even be dismissed as “not exploitable” altogether.

Goal & challenges. Our goal is to develop a formal framework able to dis-
tinguish replicable bugs from fragile bugs, and amenable to automatic software
verification — precisely, we want to be able in practice to find such replicable
bugs. This is challenging as we need to avoid any quantitative [37] or probabilis-
tic reasoning [34,2], insofar as they would hinder automation on real examples
— these techniques are often either restricted to finite-state systems [34,2] or
rely on highly expensive model counting solvers [39,11].

Proposal. Our approach consists in partitioning inputs of the program into con-
trolled inputs and uncontrolled inputs. This lets us refine the concept of reachabil-
ity into robust reachability : a (buggy) location of a program is robustly reachable
if there exist controlled inputs, such that for all uncontrolled inputs, this location
is reached. In other words, with adequate input we do not need luck.

We typically focus on security scenarios where an attacker provides controlled
input in one go, without knowledge of uncontrolled input – typically sending a
malicious crafted file to obtain remote code execution or privilege escalation. We
deliberately exclude interactive attack scenarios and weaker interpretations like
“bugs replicable most of the time” in order to keep proof methods tractable.

Proving robust reachability is harder than standard reachability. While we
show that robust reachability is expressible in formalisms like branching tempo-
ral logics [14], hyperproperties [16] or hyper temporal logic [15], there exist no
efficient automated analysis methods for these formalisms at the software level
(for Turing-complete languages). Therefore, we investigate dedicated verification
techniques, revisiting standard methods (SE, BMC) for standard reachability as
well as some of their standard companion optimizations.

Our prototype of Robust Symbolic Execution (RSE) relies on the ability of
state of the art Satisfiability Modulo Theory (SMT) solvers [4] to generate models
for universally quantified formulas [27,25,44], which comes with a performance
and completeness cost — yet we report promising results.

Contributions. We claim the following contributions.
– We formally introduce the concept of robust reachability (Sec. 4) and moti-

vate its use (Sec. 2), giving practical examples where standard reachability
leads to false positives in practice (whatever the underlying verification tech-
nology). We also characterize robust reachability in terms of temporal logic
and hyperproperties, and compare it with non-interference (Sec. 4);

– We revisit Symbolic Execution (SE) [9] and Bounded Model Checking (BMC)
[13] and show how they can be lifted to the robust case (Sec. 5). While they
both have the same deductive power in the standard case, they do not any-
more in the robust setting — yet, path merging allows Robust SE to pace up
with Robust BMC. Finally, we show how to adapt standard optimizations
for Symbolic Execution and Bounded Model Checking;



– We implement and evaluate3 (Sec. 6) the first symbolic execution engine
dedicated to robust reachability, namely Binsec/RSE. We show how to
use it for criticality assessment of 4 existing vulnerabilities (CVEs), and
compare it with standard symbolic execution. RSE appears to be tractable
with reasonable overhead, yielding false-positive-free symbolic reasoning.

We believe robust reachability is an important sweet spot in terms of expressive-
ness and tractability, allowing to highlight serious bugs in practical situations.
We hope this first step will pave the way to more refinements and applications
of robust reachability.

2 Motivation

In this section we show why standard reachability is not always a good fit for
bug finding, as it cannot distinguish between replicable bugs and fragile bugs.

void fill(unsigned n, char* ptr) {
for (unsigned i = 0; i < n; i++) {

ptr[i] = 0x61;
}

}
void victim () {
unsigned n = controlled_input;
char buffer [8];
fill(n, buffer );

}
void main() {
victim ();

}

(a) C-like code, for simplicity

1 void victim () {
2 /* stack variables , top to bottom */
3 // return address goes here
4 int canary = global_random_value;
5 char buffer [8];
6 /* end stack variables */
7
8 register unsigned n = controlled_input;
9 fill(n, buffer );

10 if (canary != global_random_value)
11 fail_and_dont_return_at_all ();
12 /* everything is ok */
13 }

(b) Explanation of compiler instrumenta-
tion with Stack Smashing Protection (SSP)

Fig. 1: Simple stack buffer overflow

Stack canaries. Consider the program presented in Fig. 1. It suffers from a
stack buffer overflow: if variable n is greater than 8 (the size of buffer), then
0x61 will be written to stack memory above buffer. For high enough n, this
will overwrite the return address (Fig. 1b, line 3) of function victim and make
the program jump to an unexpected program location when victim returns.

Mitigations for such programming errors exist, like Stack Smashing Protec-
tion (SSP) [18]. This technique consists in pushing a randomly-chosen constant
value called a canary at the top of the stack in the prologue of each function, and
checking that this value is intact before returning. If the canary has been tam-
pered with, the program exits to prevent exploitation (Fig. 1b, line 11). Here,
SSP prevents the attacker from overwriting the return address of victim, as
doing so also overwrites the canary with 0x61616161. This will be detected at
line 10 of Fig. 1b with probability 1 − 2−32 on a 32-bit architecture: the only
way to pass through it is to have the canary value equal to 0x61616161. Hence,
the buffer overflow in this program is not exploitable anymore.

3 The tool, benchmark and data are available at https://github.com/binsec/

cav2021-artifacts and https://zenodo.org/record/4721753.

https://github.com/binsec/cav2021-artifacts
https://github.com/binsec/cav2021-artifacts
https://zenodo.org/record/4721753


Table 1: Standard reachability is not a good criterion to measure the protection
of SSP on the program of Fig. 1.

Prog. Ground Standard Binsec [23] Angr [46] Robust Binsec/RSE
Fig. 1 truth reachability reachability

No SSP vulnerable vulnerable 3 vulnerable 3 vulnerable 3 vulnerable 3 vulnerable 3

SSP protected vulnerable 7 vulnerable 7 vulnerable 7 protected 3 protected 3

The problem with standard reachability. Can the attacker hijack the con-
trol flow without triggering SSP? We can model this security question as a stan-
dard reachability query over inputs controlled input and global random value.
The attacker succeeds if line 12 is reachable with the additional condition that
the return address of victim is overwritten with an unexpected address.

Unfortunately, this standard reachability query is satisfiable with the ca-
nary global random value equal to 0x61616161 and controlled input equal
to e.g., 42. And indeed, binary-level SE tools Angr [46] or Binsec [23] do report
the bug as reachable (cf. Tab. 1). Yet, this answer is unsatisfying as this only
happens with a very low probability: it may not be considered a plausible attack.
Hence, it turns out that SE can yield false positives in practice — especially in
a security context.

Proposal: robust reachability. We label controlled_input as a controlled
input and global random value as an uncontrolled input. There exists no value
of controlled_input such that victim returns to an address tampered with
independently of the value of global_random_value. We thus say that our ex-
ploitation condition (line 12) is not robustly reachable. We can automatically
verify this intuition. We adapted the SE engine of Binsec to robust reachabil-
ity: our tool finds the vulnerability when we disable the protection (by labelling
the canary as controlled input) and does not find it anymore when the protec-
tion is present. This shows that robust reachability can model the protection
provided by SSP, while standard reachability cannot.

This phenomenon is not restricted to stack protectors. We identify in Tab. 2
several situations where standard reachability may lead to false positives, un-
like robust reachability. Note that some cases (randomisation based protections,
uninitialized reads) concern binary-level issues, and cannot be observed from a
source-level analysis.

Discussion. Consider the slightly different problem of reaching line 11 in Fig. 1b.
It is reachable for all values of the canary except 0x61616161, hence it is not
considered robustly reachable – all values of uncontrolled input should lead to
line 11. This restriction is deliberate. A more quantitative approach would hinder
automation. For similar reasons, we limit ourselves to non-interactive scenarios,
where the attacker input is chosen before uncontrolled input are known. We will
further motivate these choices in Secs. 4.1 and 6.4.

Despite these deliberate restrictions, our case studies (Sec. 6.2) show the
versatility of robust reachability. In the example above, we distinguish inputs



controlled by an attacker (a bad guy) from inputs which he cannot influence
(see also e.g. libvncserver in Sec. 6.2). But with doas (Sec. 6.2), we distinguish
inputs controlled by the system administrator (the good guy) from those which
vary on each execution. Other situations are possible, for instance deterministic
inputs versus non-deterministic ones like in the case of flaky tests [42] — where
there are neither good nor bad guys. Robust reachability can help in all these
situations either assessing the “quality” of a given trigger or test suite (criticality,
replicability), generating “good” triggers or test suites, or proving their absence.

Table 2: Program constructs for which standard reachability yields fragile input

Randomisation
based
protections

Standard reachability models randomized or arbitrary values like ca-
naries or ASLR as attacker-chosen values. This voids such protections.
See also Fig. 1 and libvncserver in Sec. 6.2.

Uninitialized
reads

With standard reachability, the attacker can choose the initial content
of uninitialized memory. For example he can choose it to contain a
password or a secret. See also doas in Sec. 6.2.

Underspecified
initial state

A bug which is unreachable in normal operating conditions can be-
come reachable if, e.g., one leaves the stack location completely free.
Then the bug only happens with pathological initial state.

Undefined
behavior

A bug in a branch depending on undefined behavior is still technically
reachable, but not robustly reachable. Note that even machine code
has some undefined behaviors.

Interactions
with the
environment

Contrary to robust reachability, standard reachability lets the at-
tacker use system calls and interactions by e.g. letting him choose
the date to nanosecond precision, as if the environment helped him.

Opaque
functions

One can abstract complex functions (crypto functions, malloc) as
black boxes returning a fresh, symbolic value. Standard reachability
allows the attacker to choose these values, yielding fragile triggers.

3 Background

Consider a program P and S the set of its possible states. Each state s ∈ S is
labeled by a program location λ(s) ∈ L. Execution of the program is represented
by a (one-step) successor relation →∈ S × S; its transitive reflexive closure is
denoted by →?. For a finite trace t ∈ S? and s, s′ ∈ S two states, we write
s →?

t s
′ if t starts with s, ends with s′ and follows →. The initial state s0(y)

depends on the program input y. For a location ` ∈ L and input y we write y ` `
if s0(y)→? s where λ(s) = `. Additionally, for a trace t ∈ S?, we write y `t ` if
s0(y) →?

t s where λ(s) = `. We use trace for successions of states and path for
successions of locations. By abuse of notation, the path corresponding to a trace
t ∈ S? is λ(t) ∈ L?. For a path π, we denote its length |π| and we write y ` π if
∃t ∈ S?. λ(t) = π ∧ y `t ` where ` is the final location of π.

Definition 1 (standard reachability). Given a program P , a location ` ∈ L
is reachable if ∃y. y ` `.



It is often useful to consider the case of reaching a location ` with a state s
satisfying some predicate φ. This can be reduced to standard reachability by
adding if (φ) /*new target*/ at the target location.

Definition 2 (correctness, completeness). Let V : (P, l) 7→ {1,0} be a ver-
ifier taking as input a program P and a location `:
– V is correct when for all P, `, if V(P, `) = 1 then ` is reachable in P ;
– V is complete when for all P, `, if ` is reachable then V(P, `) = 1;
– If V also takes an integer bound as input, V is k-complete when for all

integers k and P, `, if ∃y.∃t ∈ S?. |t| ≤ k ∧ y `t ` then V(P, `, k) = 1.

In general, verifying reachability is undecidable, so verifiers cannot be both cor-
rect and complete. Correct verifiers can still be k-complete as k-completeness
can be thought of as completeness for finite-path systems.

Data: bound k, target `
for path π in GetPaths (k) do

if π goes through ` then
φ := GetPredicate(π)
if ∃y. φ is satisfiable
then

return true
end
return false

(a) SE

Data: bound k, target `
φ := ⊥
for path π in GetPaths (k) do

if π goes through ` then
φ := φ ∨ GetPredicate(π)

end
if ∃y. φ is satisfiable then return true

else return false

(b) BMC

Fig. 2: Reachability of ` with SE and BMC

Symbolic Execution (SE) and Bounded Model checking (BMC). SE [9]
incrementally explores all paths in the program (up to, say, a bound k) and
when an explored path reaches the target location `, checks that this path is
indeed executable. This is performed by converting a path π to an SMT formula
pcπ, called path constraint, which has input y as its only free variable and is
equivalent to y ` π, i.e., a path is executable if and only if its path constraint is
satisfiable. Conversely, BMC [13] considers the program as a whole and builds
a SMT formula expressing that one of the paths of length at most k leads to
`. It is equivalent to the disjunction of the path constraints of these paths. The
target is reachable in k steps at most if and only if this formula is satisfiable.

These algorithms are detailed in Fig. 2, where GetPredicate turns a path
into its path constraint and GetPaths(k) yields all paths below size bound k.

Proposition 1. SE and BMC have the same expressive power: both are correct
and k-complete.

Interestingly, we show in Sec. 5 this is not true anymore with robust reachability.

Solvers. SE and BMC commonly discharge their satisfiability queries to SMT
solvers [4] which take formulas as input, and output whether they are satisfiable



(along with a model) or not. Typical queries are expressed in the quantifier-free
fragments of well known theories (linear integer arithmetic, bitvectors, arrays,
etc.) where SMT solvers perform well in practice. In case of an undecidable
theory, we can use incomplete solvers (possibly answering unknown), at the
price of k-completeness.

4 Robust reachability

4.1 Definition

We introduce the new notion of robust reachability. We partition the input y into
the controlled input a and the uncontrolled input x — we denote y , (a, x). Let
A and X be the sets of possible controlled and uncontrolled inputs respectively.
A location is robustly reachable when the attacker can choose controlled input
a ∈ A without having to rely on specific values of the uncontrolled input x ∈ X
to reach his target. Input a is then called a robust trigger — otherwise it is a
fragile trigger.

Definition 3 (Robust reachability). A location ` ∈ L is robustly reachable
if ∃a.∀x. (a, x) ` `. This definition depends on the partition of inputs.

Proposition 2. Robust reachability implies standard reachability. The converse
implication does not hold.

Discussion. As already mentioned at the end of Sec. 2, our definition of ro-
bust reachability specifically targets a threat model where the attacker speaks
first, unaware of uncontrolled inputs. It deliberately excludes interactive systems
where the attacker can choose some input, then receive some program output
possibly leaking uncontrolled input, and then choose some more input depending
on what was received. Modeling such situations requires additional quantifier al-
ternations, which deeply impact the performance of proof methods and cripple
automation, as shown in Sec. 6.4.

Likewise, a bug triggered for all uncontrolled inputs but one is not robustly
reachable according to Definition 3. A quantitative definition of robust reacha-
bility could take into account the proportion of uncontrolled inputs triggering a
bug. This hints at works about model counting [39,11], but the problem at hand
is actually harder. Consider the following alternative definition: (i) find amax ∈ A
such that a maximal proportion of uncontrolled inputs x lead to `: (amax, x) ` `;
(ii) measure how robustly ` can be reached by computing the proportion of un-
controlled inputs x such that (amax, x) ` `. Current model counting algorithms
can only tackle problem (ii) along one path, and we argue in Sec. 6.4 that even
(ii) alone is considerably more expensive than our SMT-based approach.

In other words, Definition 3 is a tradeoff to keep robust reachability amenable
to automated verification. This does not prevent it from meeting its main goal:
drawing the attention on more serious bugs. Some may of course be missed, but,
as our case studies will show (Sec. 6), a good number will be found.

In the rest of this section, we review a few related properties and see how
much they overlap with, but do not remove the need of, robust reachability.



4.2 Relation with non-interference

We partition inputs and outputs of a system into either high (highly classified)
or low (public, e.g. observable). A system satisfies non-interference [31] when low
outputs do not depend on high inputs, implying that secrets cannot leak. Robust
reachability can be reformulated in a very non-interference-sounding phrasing:
uncontrolled inputs (call them high) must not interfere with the attacker reaching
the target location (the low output). Let us clarify this link.

Formally, let high input be uncontrolled input x, and low input be controlled
input a. Let low output be whether control flow reached location `. Non inter-
ference of the resulting system means that ∀a, x, x′. ((a, x) ` ` ⇐⇒ (a, x′) ` `).

Proposition 3. If ` is (standardly) reachable and the system satisfies non-
interference with the high/low partition described above, then ` is robustly reach-
able. The converse is false.

Robust reachability requires a single value of the controlled input a for which
reachability of ` is guaranteed but says nothing for other values of a, whereas
non-interference constrains the system to behave much more independently of
uncontrolled input than robust reachability but says nothing of reachability.

4.3 Interpretation in terms of hyperproperty

Robust reachability and its negation are not trace properties: the observation of
a single trace is never enough to prove or disprove them. For example, observing
a single trace reaching target ` with input (a, x) is both compatible with ` being
robustly reachable (if all other inputs (a, x′), x′ ∈ X also reach `), and with `
not being robustly reachable (if some other x′ is such that (a, x′) does not reach
`). Robust reachability and its negation thus belong to the more general class of
hyperproperties [16], i.e. statements relating several traces.

More specifically, Clarkson et al. [16] show that any hyperproperty is the
intersection of a hypersafety hyperproperty (i.e. something bad cannot hap-
pen) and a hyperliveness hyperproperty (something good will eventually hap-
pen). Hypersafety is generally thought as easier to prove, notably with self-
composition [6]. Unfortunately, robust reachability and its negation are pure
hyperliveness in the general case: no finite set of finite traces can falsify them.
However, in some conditions, they degenerate partly into hypersafety:

Proposition 4. If the domain X of uncontrolled inputs is finite, then the nega-
tion of robust reachability is not pure hyperliveness ( i.e., it has a non-trivial
hypersafety component).

Proof. Robust reachability of ` can be proved by finding controlled input a ∈ A
such that for all uncontrolled input x ∈ X one observes a trace starting with
input (a, x) and reaching `. When X is finite, this means that a finite observation
can disprove non-(robust reachability). This is the definition of hypersafety.



This idea—trying to observe a hopefully small set of traces which together prove
robust reachability—is crucial for algorithms and leads to our use of path merg-
ing in Sec. 5.3.

4.4 Interpretation in terms of temporal logic

Computational Tree Logic (CTL). CTL [14] is a temporal logic over the tree
of possible traces. Let L be a labeling which maps states to the set of (atomic)
predicates they satisfy. If ` is a predicate, the CTL formula ` is satisfied by all
systems whose initial state s0 verifies ` ∈ L(s0). If φ is a CTL formula and s a
state, then EXφ expresses that φ holds in at least one (direct) successor of s,
and AFφ that all traces arising from s eventually reach a state from which φ
holds. CTL introduces other operators, not needed here.

Proposition 5. It is possible to express robust reachability with CTL.

Proof. Let S ′ , S ∪ A ∪ {si} where si is a new state, let →′,→ ∪{(si, a) | a ∈
A} ∪ {(a, s0(a, x)) | a ∈ A, x ∈ X}, and let L′(s) be equal to L(s) if s ∈ S and
∅ otherwise. Then ` is robustly reachable if, and only if EXAF` is true in the
new extended system (S ′,→′, L′) with si as initial state.

HyperLTL. It is also possible to express robust reachability in the temporal
logic HyperLTL[15], which allows to reason over sets of traces π, assuming we
have an atomic predicate ≡v stating that the first states of two traces have the
same value for variable v. Robust reachability of ` can then be expressed as
∃π.∀π′.F`π ∧ (π ≡a π′ → F`π′), where F`π denotes that trace π goes through `.
In other words, there exists a trace π reaching ` s.t. all traces sharing the same
controlled input also reach `.

4.5 Robust reachability and automatic verification

The previous classification does not help us find an efficient software verification
method for robust reachability. Indeed, while efficient CTL model checkers exists
for the finite case [12] or very specific formalisms such as pushdown systems
[47], most efforts in (general) software verification have been directed towards
the verification of safety temporal formulas or simple termination [17] (formulas
of the form AFϕ). Moreover, temporal logics like HyperLTL [15] suffer the same
limitations, and checking for both reachability and non-interference is probably
too strong a requirement in practice. Finally, one can prove the absence of robust
reachability by proving the absence of standard reachability. It is thus possible to
use existing algorithms for unreachability, based e.g. on invariant computation,
at the price of even larger over-approximation than when they are used for their
original purpose. This kind of approach is not our focus. In this paper we look
for correct verifiers able to prove robust reachability (and report robust triggers)
rather than to disprove it.



5 Automatically proving robust reachability

We now extend SE and BMC to the robust case.

5.1 Robust Bounded Model Checking

As mentioned in Sec. 3, BMC determines the reachability of a location ` by
building a family of SMT formulas ϕk(a, x) equivalent to ∃t ∈ S?. |t| ≤ k ∧
(a, x) `t `. ϕk expresses that ` is reachable in less that k steps. Then one proves
that ` is reachable if and only if ∃k.∃a.∃x. ϕk(a, x). This extends to robust
reachability:

Proposition 6. If the domain of uncontrolled input X is finite or the system has
finitely many paths, then ` is robustly reachable if and only if ∃k. ∃a.∀x. ϕk(a, x).

Proof. (⇐= ) comes directly from the definition of ϕk. ( =⇒ ). If ` is robustly
reachable, let a0 be a robust trigger. The set of paths P arising from inputs in
{a0} × X is finite (bounded either by X or the number of paths in the system),
and ∀x.

∨
π∈P pcπ(a0, x) holds. Let k = 1 + maxπ∈P |π|. All paths in P are

unrolled in ϕk so
∨
π∈P pcπ(a0, x) =⇒ ϕk(a0, x) and thus ∀x. ϕk(a0, x).

As a result, it is enough to replace the condition “∃y. φ is satisfiable” by
“∃a.∀x. φ is satisfiable” in Fig. 2b.

Corollary 1. The resulting algorithm, robust BMC, is correct w.r.t. robust reach-
ability. If the domain of uncontrolled input X is finite or the system has finitely
many paths, then robust BMC is also k-complete.

The finiteness hypothesis is required: if a program reaches a location after
having executed a loop an unbounded, uncontrolled number of times, then robust
BMC has to unroll an unbounded number of paths to prove robust reachability.

5.2 Robust Symbolic Execution

Similarly to BMC, we check that a path π robustly reaches the target by check-
ing the satisfiability of ∃a.∀x. pcπ(a, x), instead of ∃a.∃x. pcπ(a, x). This means
replacing “∃y. φ is satisfiable” by “∃a.∀x. φ is satisfiable” in Fig. 2a. Unfortu-
nately the resulting algorithm, robust SE, is not exactly what we want, as it
proves a stronger property.

Definition 4 (Single-path robust reachability). A location ` ∈ L is single-
path robustly reachable if ∃π ∈ L?.∃a.∀x. ∃t ∈ S?. λ(t) = π∧ (a, x) `t `. In other
words, the path used to reach ` is the same regardless of the uncontrolled input.

Proposition 7. Single-path robust reachability implies robust reachability. The
converse implication does not hold.

Proposition 8. Robust SE is correct and k-complete w.r.t. single-path robust
reachability.



Proof. By construction, pcπ(a, x) is equivalent to (a, x) ` π so ∃π.∃a.∀x. pcπ(a, x)
is equivalent to single-path robust reachability of the last location of π.

Corollary 2. Robust SE is correct but incomplete for robust reachability.

Interestingly, the expressive powers of SE and BMC, which are the same for
standard reachability, diverge when extended to robust reachability.

5.3 Path merging

Path merging [33] (a.k.a. state joining) consists in identifying “close” paths lead-
ing to the same location and replacing them by a merged path (summary).
With original path constraints pcπ1

and pcπ2
, the merged path constraint is

pcπ1
∨pcπ2

. This is only an optimization in the standard setting, with no im-
pact on k-completeness. The situation is different in the robust setting.

Data: bound k, target `
1 φ := ⊥
2 for path π in GetPaths (k) do
3 if π goes through ` then
4 φ := φ ∨ GetPredicate(π)
5 if ∃a.∀x. φ is satisfiable

then
6 return true

7 end
8 return false

Algorithm 1: RSE+: Robust SE
with systematic path merging

1 void main(a, x) {

2 if (x) x++; // π1

3 else x--; // π2

4
5 if (!a) bug ();

6 }

Fig. 3: An example where path
merging is required

Consider the program in Fig. 3: the bug is robustly reachable with controlled
input a = 0, but the control flow takes one of two paths π1 and π2 depending
on the value x of uncontrolled input. This bug will not be found by robust
SE as defined previously, as neither π1 nor π2 fulfills the satisfiability criterion
∃a.∀x. pcπi

(a, x). However, if π1 and π2 are merged, then the bug is found
because ∃a.∀x. pcπ1

(a, x) ∨ pcπ2
(a, x) is satisfiable. This leads us to robust SE

with systematic path merging (RSE+, Alg. 1), better fit to robust reachability.

Proposition 9. Robust SE with systematic path merging (RSE+) is correct for
robust reachability. If the domain of uncontrolled input X is finite or the system
has finitely many paths, then it is also k-complete.

Proof. For k-completeness: If ` is robustly reachable, let a0 be a robust trigger.
The set of paths P arising from inputs in {a0} × X is finite (bounded either by
X or the number of paths in the system). Let k = 1 + maxπ∈P |π|. For bound
k, when GetPaths has output all paths in P ,

∨
π∈P pcπ =⇒ φ so ∃a.∀x. φ is

satisfiable.



In conclusion, path merging improves the completeness of robust SE. This is
surprising because path merging is merely optional in standard SE.

5.4 Revisiting standard optimizations and constructs

Some optimizations commonly used in SE are not correct nor complete anymore
in a robust setting. We show here how to adapt them.

Data: program entrypoint `0, bound k
1 P := {`0}
2 while P 6= ∅ do
3 Take a path π out of P
4 if |π| > k then continue
5 if ∃a, x. pcπ unsat then continue
6 yield π
7 P := P ∪ {children paths of π}
8 end

Algorithm 2: Implementation of
GetPaths with path pruning

uncontrolled int x;

if (x<10) { /* a */ }

else { /* b */ }

/* c */

if (x>20) {

/* d */

if (x>30) { /* e */ }

else { /* f */ }

}

Fig. 4: Failure case for universal
path pruning

Data: entrypoint `0, bound k
P := {`0}
while P 6= ∅ do

Take a path π out of P
if |π| > k then continue
if ∃a.∀x. pcπ unsat then

/* Skip MaybeMerge to

disable path

merging */

P := MaybeMerge(π, P )
continue

end
yield π
P := P∪{children paths of π}

end

Algorithm 3: GetPaths with
universal path pruning

1 Function MaybeMerge(π, P)
2 Choose u a transitive child of the

last location of π (ideally, a
strict postdominator of the
second to last location of π)

3 Let π′ the longest strict prefix of
π.

4 Let U the set of paths from π′ to u
5 if ∃a.∀x.

∨
π′′∈U π

′′ is SAT then
6 Merge paths in U and add the

result to P
7 end
8 return P

Algorithm 4: Incomplete path
merging for universal path pruning

Incremental path pruning [48,3]. When a path has an unsatisfiable path
constraint, all its descendent paths are also infeasible. For example, the path
acd in Fig. 4 has path constraint x < 10 ∧ x > 20, which is unsatisfiable. One
can prune this path, i.e. stop exploring it and its children acde and acdf.



In Fig. 2a this would be an optimization of GetPaths: as shown in Alg. 2,
one checks that the path constraint of currently explored paths are satisfiable,
and if not, the paths at fault are pruned, and their children paths are not ex-
plored. As a result, we now issue satisfiability queries in two occasions: during
GetPaths to prune paths (Alg. 2, line 5), and when validating a candidate reach-
ing path (Fig. 2a, line 5). Pruning queries and validation queries must be treated
differently.

Robust SE is obtained from SE by adding a universal quantifier to valida-
tion queries but not pruning queries. The path constraint for path a in Fig. 4
is pca = x < 10 but ∃a.∀x. pca is false. Same applies for b. If we added a uni-
versal quantifier to pruning queries—which we call universal path pruning, see
Alg. 3—we would prune a and b, and incorrectly conclude that c is not robustly
reachable. In other words, Symbolic Execution with universal path pruning (de-
noted RSE∀) is correct but not complete.

Universal path pruning, however, conveys an interesting intuition: the full
if branch below acd in Fig. 4 is not robustly reachable, because ∀x. x > 20 is
false. With normal path pruning and RSE+, we would needlessly explore these
paths. To take advantage of this, we keep RSE∀ but improve its completeness
with path merging, as depicted in Alg. 4.

The main idea is that when a set of paths are to be pruned, they may pass
the universal pruning test ∃a.∀x. pc when merged together. One way to find
such sets of paths is the use the Control Flow Graph (CFG) of the program. For
example when trying to prune π = a in Fig. 4, we know by invariant of the set
P of paths to be explored that π′ = ε the empty path passes the universal test.
We compute the strict postdominator u = c of π′: when the paths from π′ to c
join again, they pass the pruning test again. We then replace π by this merged
path in the set P of paths to be explored.

Note that computing a postdominator is not required for correction. In our
implementation, we cannot compute the exact CFG at the binary level so the
chosen u may be wrong. In line 5 of Alg. 4 we check that we picked correctly,
and otherwise, merging failed and we prune π. Despite the heuristic approach,
the technique proves useful, as we will see in Sec. 6.

We denote Robust SE with universal path pruning and path merging as
RSE∀+. It is correct and less incomplete than RSE∀.

controlled unsigned int a;

uncontrolled unsigned int x;

assume(x < a);

if (false) bug ();

Fig. 5: Unsound assumption, in
pseudo-C.

Assumptions. It is common to model
complex parts of the system by introduc-
ing their result as a symbolic input z and
then assume that z satisfies the required
properties. For example, Address Space
Layout Randomisation (ASLR) for the
stack pointer could be modeled by adding
an assumption that esp ∈ [m,M ] where
m and M are in-lined constant values. In
standard SE this would be translated to
an assertion esp0 ∈ [m,M ] conjoined to



the path constraint pcπ, where esp0 is the initial value of esp. Actually, in stan-
dard SE and BMC, assertions and assumptions are dealt with identically.

In a robust setting, to the contrary, adding an assumption ψ to a path con-
straint yields ψ =⇒ pcπ, while adding an assertion φ yields pcπ ∧φ. Addi-
tionally, assumptions which mix controlled and uncontrolled inputs can make
the algorithms above unsound without adaptation: in Fig. 5, reachability of bug
maps to the SMT query ∃a.∀x. x < a =⇒ ⊥. It is satisfiable, with a = 0,
which makes the premise false. However, this does not correspond to an exe-
cutable path. Actually, formalizing robust reachability assuming ψ(a, x) naively
by ∃a.∀x. (ψ(a, x) =⇒ a, x ` `) does not imply standard reachability anymore.
A slight adaptation is needed:

Definition 5 (Robust reachability under assumption). A location ` is
robustly reachable under the assumption of ψ when

∃a. ((∃x. ψ(a, x)) ∧ (∀x. (ψ(a, x) =⇒ (a, x) ` `)))
This definition preserves the implication from robust to standard reachability.
The algorithms we presented are easily adapted to take it into account.

Interestingly, in the robust case, SE and BMC cannot handle assertions and
assumptions in the same way anymore.

Concretisation and other optimizations. When path constraints along a
path become too complex, some variables can be concretized : their symbolic
value can be replaced by a concrete one [29,45,21]. Formally, concretizing a
variable u to value 42 corresponds to adding an assertion u = 42. This sacrifices
k-completeness for tractability. Actually, any additional constraint can be added,
and several common optimizations (e.g., domain shrinking, path filtering) can be
seen through this lens. These optimizations must be taken with care in the robust
setting. First, considering them as assumptions instead of assertions would be
incorrect. Second, if the value of the concretized variable ultimately depends
semantically on uncontrolled input, the path does not pass universal validation
anymore: for example, when concretizing x to 42, ∃a.∀x. pc(a, x) ∧ x = 42 is
unsatisfiable because ∀x. x = 42 is false. As a result, locations visited further
on this path become robustly unreachable. In other words, concretisation only
works on controlled or constant values.

5.5 About constraint solving

Adaptations to robust reachability require solvers to deal with one alternation
of quantifiers. Most theories become undecidable with quantifiers. Dedicated al-
gorithms exist for a few decidable quantified theories, e.g. the array property
fragment [7] or Presburger arithmetic [8]. For other theories, generic methods
like E-matching [40] and MBQI [27] have proven rather efficient, although not
complete. Sound approximations [25] also have been proposed to reduce quan-
tified formulas to quantifier-free ones. In our experiments, the newly introduced
quantifier associates to an increase in the frequency of time-outs and memory-
outs, as seen in Sec. 6.3 and specifically Tab. 4.



6 Proof-of-concept of a robust symbolic execution engine

6.1 Implementation

We propose Binsec/RSE, the first symbolic execution engine dedicated to ro-
bust reachability. We base our proof-of-concept on Binsec [23], a binary ex-
ecutable formal analysis engine written in OCaml and already used in sev-
eral significant case studies [20,19,43]. For the sake of experimental evaluation
(Sec. 6.3) we actually implement five variants of robust reachability: RSE (basic
approach in Sec. 5.2 with existential path pruning Sec. 5.4), RSE+ (the same
plus systematic path merging, Sec. 5.3), RSE∀ (RSE with universal path prun-
ing, Alg. 3), RSE∀+ (same, with path merging during path pruning, Alg. 4),
and RBMC (Sec. 5.1). Binsec/RSE emits quantified formulas in the theory
of bitvectors and arrays (arrays are used to model memory) which are then
solved by the quantified solver Z3 [22]. We reuse the recent ROW simplifica-
tion [26] to reduces the number of array indexations. The source code of Bin-
sec/RSE, the test suite and the case studies of this section are available for re-
production at https://github.com/binsec/cav2021-artifacts and https:

//zenodo.org/record/4721753.

6.2 Case studies: exploitability assessment for vulnerabilities

We show here how Binsec/RSE (unless otherwise specified, the RSE+ variant)
can help in vulnerability assessment. Especially, we demonstrate that robust
reachability allows deeper insights into a bug than standard reachability, by
replaying 4 existing vulnerabilities.

CVE-2019-15900 in doas. doas is a utility granting higher privileges to users
specified in a configuration file. User IDs are sometimes parsed incorrectly and
left uninitialized. We look for a vulnerable configuration file denying root access
to the attacker such that the (flawed) executable reliably grants root access to
the attacker. For simplicity we assume that the system has no named users and
groups and the configuration file has two lines.

Binsec/RSE with standard reachability reports that root access is granted
with a configuration file containing permit :("@@@@@ when the initial memory
address 0xffefffff contains the group ID of the attacker and the stack starts
at 0xfff0001f. This is a typical “false positive in practice”: these conditions
may vary unpredictably across executions so we cannot conclude regarding the
exploitability of the flaw.

With robust reachability where the configuration file is controlled but the
initial state of memory is not, Binsec/RSE reports in less than 10s that root
access is granted reliably to the attacker when the configuration file contains
deny :4 and permit b%@)@@(. This is more useful, but b%@)@@( is not a valid
user name. We test therefore if any other given user name is also affected by
running the analysis with this user name concretized in the initial state. By this
method, we proved that the flaw is also robustly reachable for wwww, a possible
typo of a usual user name, as well as all two-letter lowercase user names.

https://github.com/binsec/cav2021-artifacts
https://zenodo.org/record/4721753
https://zenodo.org/record/4721753


In other words, if the system administrator grants privileges to a non existing
user by mistake, he may unknowingly grant them to the attacker instead. Here,
robust reachability provides us with invaluable insight about the severity of a bug
where standard reachability fails.

CVE-2019-20839 in libvncserver. An attacker-chosen null-terminated string
is copied by an unbounded strcpy into a 108-bytes buffer, leading to a stack
buffer overflow. Exploitability is not guaranteed: null bytes cannot be copied, the
executable is protected by SSP, etc. Starting from the vulnerable function, we
ask whether it is possible to return to the address 0xdeadbeef, chosen arbitrarily.

Binsec/RSE reports that for standard reachability, the bug can be reached
when: (1) the stack starts at 0xfff00000; (2) the initial value of the return
address of the function is 0; (3) the gs segment starts at 0xf7f00000; (4) the
stack canary is 0x01010180; (5) neither system call in the function fails; (6) file
descriptor 0 is free; (7) the input path has a specific value. The attacker cannot
prepare such a state, so this is another false positive in practice.

With robust reachability, when only the input buffer is controlled and not the
stack canary, Binsec/RSE fails to prove or disprove exploitability in 24h. How-
ever, if we mark the canary as controlled, Binsec/RSE finds an exploit in about
15 min. This suggests the canary brings a real protection against exploitation.

CVE-2019-14192 in U-boot. U-boot is an open-source boot-loader, popular
for embedded boards. When booting over Network File System (NFS), U-boot
does not validate the length field of some network packets. This length is sub-
tracted 16 and used as a size to be copied. If a malicious packet declares a length
of less than 16, computation underflows and leads to a buffer overflow.

We encode the situation as follows: the input network packet is controlled,
the IP address of the victim is constant, the NFS state machine is initialized
to expect the appropriate packet type and all other values are uncontrolled.
Binsec/RSE with the RSE∀+ variant (RSE+ times out here) proves in about
2 minutes that a memory copy of more than 4GB is robustly reachable, which
is a strong indication of the criticality of this denial-of-service vulnerability.

CVE-2019-19307 in Mongoose. Mongoose is an embedded networking li-
brary. When receiving large MQTT packets, the length of the parsed packet can
be computed as 0. The parsing loop does not advance and is thus infinite. We
look for network packets whose length is parsed as 0 but are accepted as valid.
Binsec/RSE proves in less than a second that such situations are robustly
reachable when only the network packet is controlled, confirming exploitability.

6.3 Experimental evaluation

Research Questions. We now seek to investigate in a more systematic way
the following research questions:

RQ1 Precision: What is the best algorithm for robust reachability in terms of
correctness and completeness?



Table 3: The 46 reachability problems selected for our evaluation

Type Description Controlled variable
R

e
a
l

Vulnerability

CVE-2019-14192 (U-boot) Network packet
CVE-2019-20839 (libvncserver) Socket path
CVE-2019-19307 (mongoose) Network packet
CVE-2019-15900 (doas) Configuration file
CVE-2015-8370 (grub, simplified) Password entry

CTF
Flare-on 2015 1 & 2 Text entry
Nintendo Coding Game Input to hash function to invert
Manticore Text entry

Function
inversion

musl (strptime, strverscmp, atoi, strtol)

Preimage
busybox (chmod mode and ip parsing)
µclibc (fnmatch)
openssl (base64 decoding)

S
y
n
th

e
ti

c

Motivating example of [25] and variants Coefficients to affine function
Motivating example of [24, Figure 2.2] Text entry
SSP bypass See Sec. 2 Overflowing buffer
ASLR bypass 2 examples Various
Undefined behavior Overflow flag after 3-bit shl in x86 None
Other Various Various

RQ2 Gain associated to robustness: Is standard SE subject to false positives
and does robust reachability avoid them in practice?

RQ3 Path pruning: Does universal path pruning (Sec. 5.4) help explore less
paths than normal path pruning?

RQ4 Performance: What is the overhead of robust reachability?

Protocol. We base our analysis on a set of 46 reachability problems on bi-
nary executables from various architectures (i686-windows-pc, i686-linux-gnu
and armv7-linux-gnu) presented in Tab. 3. The average trace length for reachable
problem instances is 809 instruction-long, with a maximum of 18k instructions.
The problems fall into two categories: real code and synthetic examples (e.g.
code designed to be analysed). For each executable, Binsec/RSE determines if
a certain location is robustly reachable from a certain initial state. If this is the
case a model is output by Binsec/RSE, and compared to a ground truth ob-
tained by manual analysis. Tests were run on Intel Xeon E-2176M(12)@4.4GHz
and we use Z3 4.8.7. Results are classified as follows:
Correct Binsec/RSE proves the expected result, i.e. it either reports a robust

trigger or rightfully proves the absence of such a trigger;
False positive a fragile trigger is reported;
Inconclusive Binsec/RSE reports no trigger but search was incomplete or

the solver returned unknown at some point;
Resource exhaustion timeout is an hour and memory usage is capped to 7GB.

Precision (RQ1). As expected, robust variants do not report any false pos-
itives, and path merging increases completeness. RSE variants with universal
path pruning (RSE∀, RSE∀+) are less complete than those with existential path
pruning, but they are less prone to timeouts. This is the case of CVE-2019-14192
in U-boot (Sec. 6.2), for example. RBMC suffers from path explosion (time out)



Table 4: Comparison of standard and robust algorithms over our 46 test cases

SE BMC RSE∀ RSE∀+ RSE RSE+ RBMC

Correct 30 22 30 34 37 44 32
False positive 16 14
Inconclusive 16 11 7 1
Resource exhaustion 10 1 2 2 13

Total time (s) 2725 36911 3947 4374 13590 11534 47784
. . . w/o resource exhaustion 2725 911 3947 3589 6390 4334 984

much more often than RSE variants. Overall, Robust SE with path merging and
existential path pruning is the most promising method among those presented
here, with 44/46 correct answers. RSE∀+ is less complete but terminates more
often.

Note that two interesting test cases in the “real” category of Tab. 3 need
path merging to prove robust reachability: one where a pointer with uncontrolled
alignment is passed to memcpy, and one where a branch depends on the result
of IO. These situations are common programming idioms, demonstrating the
importance of path merging.

Gain associated to robustness (RQ2). We compare standard SE with RSE+,
the most precise algorithm of RQ1. Standard reachability has about 30% false
positives while robust reachability has none, at the cost of slightly more timeouts.

There are no false positives in code in the “real” category, except in CVE
replays. Our interpretation is that well-functioning programs are designed to
behave the same regardless of the uncontrolled environment: concrete mem-
ory layout, stack canaries, etc. Robust reachability becomes decisive on buggy
code, notably with undefined behavior. This is also illustrated by case studies
(Sec. 6.2).

Path pruning (RQ3). We compare RSE∀, which features universal path prun-
ing, to RSE, which features usual path pruning. Comparison is limited to test
runs of more than a second which succeed with both methods. This is to prevent
comparing a run where Binsec/RSE proves that the target is reachable and
stops, to a run where Binsec/RSE does not find the target and explores the
whole program. RSE∀ explores 17% less paths and interprets 21% less instruc-
tions than RSE. This comes at the price of more universally quantified SMT
queries: the average time per SMT query goes up by 25%. Overall the run time
of both methods is very close.

With path merging, the difference in paths explored disappears: RSE∀+ ex-
plores 1% less paths and instructions than RSE+. This is due to the fact that
for some tests, path merging “unlocks” some new paths. Overall, RSE∀+ is 6%
slower than RSE+ on successful, terminating tests.

Performance (RQ4). In this question, we compare the run time of robust al-
gorithms to SE. Comparison is done on the same basis as before, except that we
count timeouts. RSE+ is 74% slower than standard SE on geometric average.



This is mostly due to newly introduced time-outs (up to 260× slower) since me-
dian slowdown is only 15%. RSE∀ is more consistently slower with about 30%
slowdown in both geomean and median. This is mainly explain by increased
solver time (universal path pruning queries). RSE∀+ is close in median slow-
down, but path merging introduces new timeouts and drives the average slow-
down up to 62%. RSE+ has a low overhead compared to standard SE, except for
a few time-outs (2/46).

6.4 Additional considerations

We excluded interactive systems and quantitative approaches from our definition
of robustness (Definition 3, Sec. 4.1) to keep automated proof methods tractable.
We motivate this choice by experimentally showing that these alternatives yield
significant overhead. Technical details are provided in Appendix A.

Quantitative reasoning and model counting. We could imagine refining our
definition of robust reachability, looking for some controlled input for which the
number of uncontrolled inputs allowing to reach the intended target is maximal
(or, above a certain threshold). Although we have already observed that model
counters do not directly solve this problem (Sec. 4.1), we can lower bound its
runtime cost by the cost of determining the number of uncontrolled x satisfying a
path constraint for some given controlled input a0. We experimentally measured
it with SearchMC [39] and SMTApproxMC [11], two of the few model counters
supporting the SMTlib2 format and the QF BV theory. We compare this to our
“all-or-nothing” qualitative approach on our 4 CVE case-studies: the quantitative
approach is here several orders of magnitude slower than our qualitative method
— SMTApproxMC always times out while SearchMC is at least 400× slower.

Interactive systems and quantifier alternations. We estimate the cost of
adding more quantifier alternations in order to deal with interactive systems
(Sec. 4.1), by modifying queries on the two of our case studies where interactive
input makes sense (libvncserver and doas, cf. Sec. 6.2). RSE+ in this setting does
not terminate within 24h, highlighting the fact that current SMT solvers have a
very hard time generating models for quantified formulas beyond ∃∀. It seems
to be a fundamental issue as none of Z3 [22], Boolector [41] and CVC4 [5] is able
to prove in less than 1h that ∀z.∃a. a XOR 1 = z holds over 32-bit bitvectors.

7 Related work

Broadly speaking, we are interested in defining a subclass of comparatively more
interesting bugs amenable to automation. We review related prior attempts.

Automatic exploit generation (AEG). These approaches seek to demon-
strate the impact of a bug by automatically generating an exploit from it [1,10,36].
This is complementary to robustness, which focuses on replicability. Actually,
both techniques could be advantageously combined, as a replicable exploit is



clearly more threatening than a fragile one. Current AEG methods being based
on symbolic methods, adapting them for robustness looks feasible.

Quantitative reasoning & model counting. Several approaches rely on
probabilities or counting to distinguish important issues from minor ones —
for example (quantitative) probabilistic model checking [2,34] or quantitative in-
formation flow analysis [37]. Robust reachability could be refined in such a way.
Yet, current quantitative approaches do not scale on software, as they often rely
either on the finite-state hypothesis, or on model counting solvers [32], which are
only at their beginning (see Secs. 4.1 and 6.4).

Flakiness. The opposition between flaky tests and sturdy tests [42, section 6.3]
is close to that between robustly reachable bugs and normally reachable bugs. A
test is flaky when it is reachable, but not robustly reachable under the partition
of inputs where controlled inputs are deterministic inputs and uncontrolled in-
puts are non-deterministic inputs. Flakiness is thus a particular case of (non-)
robustness. Especially, our tool can help find non-flaky tests.

Fairness. Fairness assumptions in model checking [35] aim at discarding traces
considered as unrealistic and avoiding false alarms from the user point of view.
While the goal is rather similar to ours, the two techniques are very different:
fairness assumptions typically require certain sets of states to be visited infinitely
often along a trace, while robust reachability requires that a trace cannot be
influenced by uncontrolled input w.r.t. a given reachability property.

Symbolic Execution and quantifiers. Finally, while symbolic execution is
commonly performed with quantifier-free constraints, a notable exception is
higher-order test generation [28], where Godefroid proposes to rely on universally
quantified uninterpreted functions (∀∃ queries) in order to soundly approximate
opaque code constructs. Higher-order test generation and robust reachability are
complementary as they serve two different purposes: robust reachability can only
be used in a modest way for opaque code constructs (finding controlled inputs
for which their value does not matter), while higher-order test generation is in-
adequate for robust reachability, as it would be as if the attacker could choose
the controlled inputs knowing the uncontrolled ones.

8 Conclusion

We introduce the novel concept of robust reachability, that we argue is better
suited than standard reachability in several important scenarios for both security
(e.g., criticality assessment, bug prioritization) and software engineering (e.g.,
replicable test suites). We formally define and study robust reachability, discuss
how standard symbolic methods to prove reachability can be revisited to deal
with the robust case, design and implement the first robust symbolic execution
engine and demonstrate its abilities in criticality assessment over 4 CVEs. We
believe robust reachability is an important sweet spot in terms of expressiveness
and tractability. We hope this first step will pave the way to more refinements
and applications of robust reachability.
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A Details on the experiments supporting Sec. 6.4

We reuse the notations of the discussion in Sec. 4.1.

Model counting. For simplicity, consider single-path robust reachability of `
along a path with path constraint pc(a, x). It is equivalent to ∃a.∀x. pc(a, x).
A more quantitative approach would be to consider amax s.t. the ratio r(amax)
of x satisfying pc(amax, x) is maximal. The larger r(amax), the more robustly
reachable `. We try to experimentally get an idea of the cost of computing
this. Determining amax is an open problem, but we can lower bound the full
computation time by the time to compute r(amax) from amax. As the algorithms
below are randomized, we can measure the time to compute r(a0) for any a0.

We collect the path constraint of the first path standardly reaching the target
in our 4 case studies of Sec. 6.2. We arbitrarily choose a0 satisfying ∃x. pc(a0, x),
and compare the time to (dis)prove ∀x. pc(a0, x) with Z3 to the time to ap-
proximate r(a0) with two of the few model counters supporting SMTlib2 input
in the QF BV theory: SearchMC [39] (with tolerance ε = 0.8 and confidence
1 − δ = 0.95) and SMTApproxMC [11] (with tolerance ε = 0.8 and 1 itera-
tion). We found no tool supporting arrays, so arrays were blasted. As shown in
Tab. 5, the quantitative approach is orders of magnitude slower in all cases, and
especially in the one case where it is indeed significantly more precise than our
qualitative approach (u-boot).

Table 5: All-or-nothing (Z3) vs quantitative (SearchMC, SMTApproxMC) ap-
proaches: runtime and lower bound on r(a0). Timeout (TO) is 2, 400 seconds.

doas libvncserver u-boot mongoose

Z3 0.02s, 0% 0.01s, 0% 0.07s, 0% 0.04s, 100%
SearchMC 9.4s, 10−13 4.8s, 10−12 190.6s, 25% 35.1s, 59%

SMTApproxMC TO, — TO, — TO, — TO, —

Quantifier alternations. We want to model a leak in ASLR in libvncserver
(Sec. 6.2): the attacker knows about an address z and wants to use the bug
to jump to z. The corresponding property is: for all values4 of z, there exists
an attacker input a such that for all other uncontrolled inputs x, control flow
is diverted to z. This uses another universal quantifier, which we exclude in
our definition of robust reachability to keep satisfiability queries tractable. We
implemented this for libvncserver (additional quantification on the target jump
address) and doas (additional quantification on the user and group ID of the
attacker, and the typoed user name): RSE+ does not terminate within 24h.

4 Without a null byte, but we ignore this detail for the sake of simplicity.
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