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Software companies typically embed one or more secrets in their programs to protect their intellectual property
(IP) investment. These secrets are most often processed in code through evaluation of point functions, where
only the correct password, PIN, or registration/activation code will authorize an end-user to legally install or
use a product. Man-at-the-End (MATE) attacks can break assumptions of program security to find embedded
secrets because they involve legitimate software owners who have complete access to the software and its
execution environment. In this research, we present a novel approach to software MATE protection that
leverages gate-level hardware representation, namely software-based hardware abstraction (SBHA). As a
new proposed form of virtualization for software protection, SBHA demonstrates a light overhead — especially
compared to much costlier traditional virtualization transformations, while completely defeating almost all
symbolic execution-based attackers that were studied. Overall, SBHA bridges the gap between hardware and
software protection, paving the way for future developments.

1 INTRODUCTION

The software industry is one of the most important
sectors of the global economy and has progressed
tremendously in the past few decades. Intellectual
property (IP) rights are an integral part of the software
industry and have to be properly guarded; losses due
to intellectual property theft can indeed negatively
impact the global economy and even national secu-
rity. Legitimate software companies are faced with a
myriad of attacks such as software piracy', malicious
reverse engineering and tampering attacks [Falcarin
et al., 2011]. These attacks are generalized as Man-
at-the-End (MATE) attacks where the attacker can be
a legitimate end-user and has complete access to the
execution environment [Collberg and Nagra, 2009].
A recent BSA study? placed the global piracy rate at
39% and financial losses due to software piracy and
unlicensed software around $52.2 billion, with a sig-
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nificant impact on the global economy. Hence the
need for software IP protection.
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Figure 1: Notional Interpreters for Software Protection

Software obfuscation. For companies that cannot
rely fully on IP laws or that prefer a more proac-
tive approach in combating MATE attacks, software
obfuscation offers a technical solution. Apart from
theoretic impossibility limits proving that no general
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approach can achieve information theoretic security
[Barak et al., 2012], practical transformation algo-
rithms that drive up the time and cost required to il-
legally reverse engineer or crack legitimate software
provide the most readily available defense [Schrit-
twieser et al., 2016]. Still, recent works [Banescu
et al., 2016, Bardin et al., 2017] demonstrate that so-
called semantic attacks, based on advanced program
analysis such as dynamic symbolic execution (DSE)
[Cadar and Sen, 2013], are highly effective against
conventional obfuscation methods.

SBHA protections. This paper introduces and evalu-
ates the effectiveness of a novel approach to software
protection, called software-based hardware abstrac-
tion (SBHA), that leverages virtualization of soft-
ware constructs under the form of hardware-like con-
structs to impede reverse engineering or hinder adver-
sarial analysis. Virtualization essentially serves the
role of an interpreter, converting one target program
language into another. Virtual interpreters are often
used in program protection schemes [Cheng et al.,
2019], converting an original program into a new in-
struction set architecture (ISA), and then having the
transformed program act as an interpreter — in our
case a program that behaves like a CPU, but which
has its own instruction set, code and execution stack.
Fig. 1 illustrates a typical ISA abstraction transforma-
tion from code. We leverage the fundamental con-
cept first pointed out by [Vahid, 2007] that “every
program can be converted to a circuit and every cir-
cuit can be represented as a program” to implement a
software protection technique called Software-based
Hardware Abstraction (SBHA). We represent embed-
ded program constructs as combinational circuit ab-
stractions, but use software to represent that circuit
logic and execute it (Fig. 1).

Contributions. Our contributions include:

* We propose SBHA as a novel, low-overhead ob-
fuscation technique for transforming point func-
tions in C programs to hardware abstractions
(Sec. 4). SBHA provides a natural framework
where standard software obfuscation can be com-
bined with protections inspired from hardware cir-
cuit obfuscation (e.g., anti-SAT and anti-BDD),
making deobfuscation even more challenging as
it requires a dual software-hardware expertise;

* We demonstrate the dramatic effectiveness of
SBHA against state-of-the-art attacks by DSE en-
gines such as KLEE and Angr (Sec. 5), which had
only 1 success out of 320 test samples, despite a
120 hour time-out per sample;

e We evaluate the resilience (i.e. robustness to ad-
versarial reverse engineering) of SBHA in a com-

prehensive manner against worst-case scenarios in
regards to circuit recovery attacks, compiler opti-
mizations (representing deobfuscating attackers)
and path merging attacks. Adding anti-BDD or
anti-SAT methods from the hardware side dramat-
ically boost resilience here;

e Finally we establish SBHA as a low cost
technique with minimal overhead (Sec. 5) and
medium stealth (given supporting obfuscations)
transformation; our results establish SBHA as a
new form of software virtualization that demon-
strates only 10% runtime overhead, 3.5x source
code and 50% executable code overhead (for point
functions) — compared to much costlier traditional
virtualization.

SBHA unifies two historically disparate research ar-
eas: software obfuscation and hardware (circuit) ob-
fuscation. It provides a bridge to leverage more than a
decade of prior work and integrate the best of both re-
search communities in the context of improving soft-
ware protection, paving the way to completely new
software and circuit protection mechanisms. We pro-
vide additional benchmark data and descriptions at
https://soc.southalabama.edu/~mcdonald/SBHA.

2 Motivation

We detail here our attacker model (Sec. 2.1) and
present a motivating example (Sec. 2.2).

2.1 Attacker Model

We consider the general context of Man-at-the-end
(MATE) attacks (also termed white-box attacks): the
attacker has full access to the code under attack, but
only under its binary form and not as source code,
and seeks to discover program secrets embedded in
binary executable programs. These secrets can take
for example the form of embedded passwords, keys,
PIN codes, etc.

Capabilities. We consider a skilled and economically
motivated adversary [Ceccato et al., 2017], able to
take advantage of state-of-the-art static and dynamic
analysis tools such as decompilers, disassemblers, de-
buggers, tracers, slicers and emulators, among oth-
ers. Yet, this attacker has a limited budget for the at-
tack, and does not have the resource or will to develop
“beyond state-of-the-art” tools. Hence, an effective
strategy for the defender is to design protections mak-
ing manual reverse complicated and at the same time
breaking the best automated known attacks.
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Regarding automated attacks, we focus on attack-
ers with the capacity to use dynamic symbolic execu-
tion (DSE) engines [Cadar and Sen, 2013] to leak pro-
gram secrets — the technique has been shown highly
effective for deobfuscation [Schrittwieser et al., 2016,
Banescu et al., 2016, Salwan et al., 2018]. Note
that, in practice, DSE tools are correct (every discov-
ered path is actually feasible) but incomplete, for they
can be tricked into missing feasible paths [Yadegari
et al., 2015]. Interestingly, our experimental evalu-
ations (Sec. 5) consider some source-level tools as
well, while program analysers on source code are
more precise than on binary code [Balakrishnan and
Reps, 2010]. Hence, our experiments favor the at-
tacker even more, and, consequently, strengthen our
protection results.

Program 1 Function with PWD/PIN Checks

void SECRET (unsigned long input[1],
unsigned long output[l]) {;

char pwd[100] = "";
int failed = 0;
int strCompareResult, pincode ;
pincode = input[0UL];
printf ("Please enter password:");
scanf ("%s", pwd);
strCompareResult =

strncmp (pwd, "keyS$", 100UL); //pwd
failed |= strCompareResult != 0UL;
failed |= pincode != 1123UL; //pin
if (failed) { output[0] = 0UL; }
else { output [0] = 1UL; }

2.2 Motivating Example

A typical attack scenario consists in recovering pass-
words and specific triggering input, either for them-
selves or for enabling further progress in the deobfus-
cation process. Let us give an example. Program 1
elaborates the call to a SECRET function contain-
ing a point-function’ if-statement check for a pass-
word and activation code entered by the user. Re-
sults by [Banescu et al., 2016] and [Holder et al.,
2017] showed that state-of-the-art (SOTA) tools such
as KLEE* and Angr can easily recover the expected
secrets of such programs under analysis, even with
a wide assortment of obfuscations from Tigress® and
Obfuscator-LLVM [Junod et al., 2015] applied to the
original program. These studies also showed that the
addition of virtualization would drive up the run-time
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cost of KLEE and Angr, but no standard transforma-
tion combined with virtualization would absolutely
defeat the analyses — while yielding a significant over-
head to the protected program. For example, [Ollivier
et al., 2019a] report virtualization runtime overhead
as 1.5x increase for 1 level, between 15x and 50x for
2 levels, and between 100x and 1000x for 3 levels
of virtualization. We show in this paper that SBHA
completely defeats symbolic execution from KLEE
and Angr (no recovery of the password within 120h)
in such test programs, for only a negligible runtime
overhead and reasonable 10% code size overhead.

3 Background

We provide a brief overview of obfuscation, semantic
attacks and circuit abstractions.

3.1 Program Obfuscation

Obfuscation is a process of altering programs (soft-
ware or hardware) in such a way that MATE attackers
are hindered or prevented from analyzing, altering, or
pirating the program [Collberg and Nagra, 2009, Coll-
berg and Thomborson, 2002]. We can define an ob-
fuscator O : P — P as a transformation taking as input
a program P and producing a semantically equivalent
version P’, such that P(x) = P'(x) for all input x, and
P’ is (expected to) be harder to analyze than P.

Given enough time, an obfuscated program can
be reverse-engineered [Manikyam et al., 2016, Barak
et al., 2012, Collberg and Nagra, 2009]. In general,
programs are protected because of some inherent se-
cret information contained in them: we define such
information as a property of a given program (also
known as a program asset [Basile et al., 2019]).

Evaluated qualities. In their seminal early work on
defining software obfuscation, [Collberg et al., 1997]
identify four key metrics:

M1 Effectiveness: Analysis and modification of P’
should require more time than for the original
program;

M2 Resilience: The ability to resist adversarial re-
verse engineering. Especially, the protection it-
self should be hard to defeat through automated
means;

M3 Stealth: P’ should have the same statistical prop-
erties as the original program;

M4 Cost: The execution time and overhead due to
obfuscation should be minimized.

Especially, effectiveness captures the notion that
good obfuscating transformations should increase re-
sources (e.g., time) required for an analysis technique
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or tool to reveal the secret property. In our case, we
focus on the ability of a protection to protect a pro-
gram against automated semantic deobfuscation tech-
niques, namely symbolic execution.

3.2 Semantic Deobfuscation Techniques

So-called semantic or symbolic deobfuscation tech-
niques rely on advanced (semantic) program analysis
methods such as abstract interpretation [Rival and Yi,
2020] or symbolic execution [Cadar and Sen, 2013] to
overcome or simplify obfuscated constructs within a
protected program. Several existing work have estab-
lished the effectiveness of such methods against stan-
dard protection schemes [Banescu et al., 2016,Salwan
et al., 2018, Bardin et al., 2017], especially in an in-
teractive attack scenario where the attacker launches
local automated attacks on well-chosen parts of code.
See [Schrittwieser et al., 2016] for a survey . We focus
especially on Dynamic Symbolic Execution [Cadar
and Sen, 2013], whose ability to combine both the ro-
bustness of dynamic analysis (useful for, e.g., bypass
packing or self-modifying code) and the reasoning-
ability of symbolic methods (useful for, e.g., find trig-
gering inputs and cover the path space) makes it a
weapon of choice.

3.3 Hardware and Circuits

Combinational circuits implement Boolean logic
functions directly through a set of potential logic
gates (referred to as the basis set ) such as AND, OR,
XOR, NOT, NAND, NOR, and XNOR. Structurally,
circuits can be expressed in a number of ways includ-
ing textually in netlist languages such as BENCH for-
mat [Hansen et al., 1999] and visually in schematic
form. Fig. 2 illustrates a small 5 input, 2 output,
6 gate combinational circuit in schematic form with
corresponding BENCH netlist. A semantic truth table
represents the behavior of a n-input, m-output circuit
where a vector of input bits derives a vector of out-
put bits, corresponding to a set of Boolean functions
fi: B" = {0,1}, where i = 1..m [De Micheli, 1994].
Each row of a truth represents one of the 2" input vec-
tors and its corresponding output vector, with a subset
of I/O vectors illustrated in Fig. 2.

4 Software-Based Hardware
Abstraction

To introduce software-based hardware abstraction
(SBHA) and evaluate its potential as a software pro-
tection technique, we first examine its usefulness in

BENCH Netlist Circuit Schematic Truth Table
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Figure 2: Equivalent Circuit Representations

protecting point functions which are commonly used
to protect program access to only authorized, legiti-
mate end-users. Point functions typically are condi-
tional constructs in software. In this section, we pro-
vide a simple walk-through to illustrate the transfor-
mation process using C (source) to C (source). Basic
SBHA transformation requires three steps:

1. Given a program P in source code form, first iden-
tify the relevant point function software construct.

2. Virtualize the software construct into a semanti-
cally equivalent Boolean logic form, then synthe-
size it into a combinational logic circuit (C).

3. Implement the hardware construct (C) into source
code form and replace it in the original program,
creating an SBHA variant Py .

Program 2 1-Char Password C Program

int main( int argc, char *argv[] ) {
int compareResult = strncmp(argv[l], "%", 1);
if (compareResult != 0) {

printf ("0"); exit(-1);
}
else {
printf ("1"); runprogram();

}

Companion material with program code listings
and the full set of benchmarks is located at https:
/[soc.southalabama.edu/~mcdonald/SBHA.

4.1 Basic Algorithm

As an example, we illustrate a C program that takes
as input a 1-character password, seen in Program 2.
The program checks to see if the password matches
and outputs 0 then exits if it does not, and otherwise
outputs 1 and performs the remainder of the program
functionality otherwise. This example is abstract in
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the sense that normally passwords are verified against
cryptographic hashes, but nonetheless, only the cor-
rect password will allow the program to run correctly.

Given a software construct, such as an if-then-
else point function, a corresponding truth table or
Boolean function can be used to represent the seman-
tics of the construct. Fig. 3 illustrates 1. the corre-
sponding truth table; and 2. the corresponding circuit
structure/netlist that implements the function embod-
ied by the conditional statement of Program 2. From
a Boolean function or truth table, a circuit structure
can be derived using Sum-of-Products (SOP or dis-
junctive normal form) or Product-of-Sums (POS or
conjunctive normal form) synthesis. In the exam-
ple program, only one input (the ASCII character %)
produces true ASCII characters are 8-bit values:% is
0x25. or 0b00100101. In essence, the software con-
struct for the conditional statement can be represented
as a 8-input/l1-output combinational circuit. Fig. 3
shows that the SOP form of the truth table is directly
translated into a circuit. For each minterm or product
term (an input that produces a 1 output), the circuit
has an AND gate (a Boolean product) with inverted
inputs (NOT gates) for each O bit and normal inputs
for each 1 bit in the input vector. Since point functions
have only one minterm, there is a single AND gate
in the circuit. In SOP form, 0000100101 translates
to!8 * I7 * ¢ * I5 % 14 * 3+ 12 * 1 where
numbers correspond to numbers of input signals, and
! to inverted input values.

87654321 20 ASCIl ‘%’
_________________ =0x25
00000000 0 =00100101
00000001 0
00000010 0
00000011 0
0

1
1
1
00000100 I
1
VY VVYY :
00100100 0 H
00100101 1 !
1
i :
! 1
! 1
! 1

00100110 0
11111100
11111101

11111110
11111111

©o o o o

20 =18 % 17 %6 % 15 % 14 % 3 % 12 %1
Figure 3: Circuit for Checking Character %

Given the circuit (C) that represents the function
of the software construct embodied in program P,
SBHA then translates this back into software form
to produce the variant Pyw. To accomplish this,
we created and used a custom Boolean logic library
(logiclib) that has corresponding C code for each
logic gate type. For gates with fan-in greater than 2,
there are functions allowing the evaluation of multiple
(more than 2) inputs. In the C program, Boolean val-
ues correspond directly to the logic values computed

by functions of Boolean logic gates found in a circuit
structure.

Program 3 SBHA Point Function Program

void runcircuit (bool input[], bool out[]) {
bool v8 = input[0], v7 = input[1],
. v2 = input[6], vl = input[7];
bool v9 = not(v8), v10 = not(v7),
v1ll = not(v5), v12 = not(v4d), v13 = not(v2);
bool v20in[8];

v20in[0] = v9; v20in[l] = v10;
v20in[2] = v6; v20in[3] = vl1l;
v20in[4] = v12; v20in[5] = v3;
v20in[6] = v13; v20in[7] = vl;
v20 = andmulti(v20in,8);

out [0] = v20;

The translation of the circuit results in C code
that is now semantically equivalent to the condi-
tional statement in the original program. Program 3
shows the equivalent C code, embodied in a function
runcircuit. Input and output takes the form of bool
arrays, with the encoding of the circuit directly repre-
sented by logiclib functions.

Program 4 Final SBHA Variant Code

int main( int argc, char *argv[] ) {
bool circuitinput[8];
bool circuitoutput[l];
convertString(argv[l],circuitinput,1);
runcircuit (circuitinput, circuitoutput);
if (circuitoutput[0]) {

printf ("0"); exit(-1); }
else {
printf ("1"); runprogram(); }

In order to utilize the runcircuit function, the
original character input of the C program must be
converted into a Boolean value array representation.
We accomplish this translation using a conversion
function that takes as input the original character
string variable (here argv[1]) and the input size in
characters (in our example, 1 character), and initial-
izes a provided Boolean array with the correspond-
ing ASCII bit values of the corresponding character
string. Program 4 shows the corresponding C code for
input conversion in our example program. The SBHA
transformation is thus a source-to-source translation
that virtualizes software constructs in program P and
produces a variant Pyy that is semantically equiva-
lent. As Program 4 illustrates, the output of the SBHA
virtualization can be directly used to provide support-
ing functionality consistent with the original code.



4.2 Extended Algorithm

The basic SBHA algorithm involves the straight trans-
lation of software constructs into hardware equivalent
forms, while still retaining software source code rep-
resentation. In this paper, we answer partially the
ramifications of hardware-based virtualization on tra-
ditional program analysis tools and techniques where
SBHA performs a straight translation of point func-
tions in the standard three step process P — C — Py .
Fig. 4 illustrates how SBHA will bring unification
of two disparate fields of research: circuit/hardware
(HW) obfuscation and software (SW) obfuscation.
We analyze first the effects of standard SBHA, but
also consider the possibility that 1) the hardware
netlist representation (C) can be further transformed
via gate-level circuit obfuscation algorithms (to pro-
duce variant C') and 2) the SBHA source variant
(Pyw) can be further transformed via software obfus-
cation algorithms to produce a final variant P’. Hard-
ware specific protections include:

1. Anti-BDD: one of the basic adversarial tech-
niques is to use Binary Decision Diagram (BDD)
reduction to express logic components into com-
pact functional representations. However, BDD
complexity and construction overhead [Woelfel,
2005,Beyer and Stahlbauer, 2014] depends on the
structure of the underlying circuit, and thus avails
itself to countermeasures. Our anti-BDD tech-
nique uses multiplier circuit constructs known to
have an exponential lower bound for BDD encod-
ing [Bryant, 1991, Woelfel, 2005];

2. Anti-SAT: a well-known technique in hardware
deobfuscation is the use of (Boolean) Satisfiabil-
ity Solvers (SAT-solvers) for representing logic
networks to find reduced functional expressions or
solve unknown values. Our anti-SAT algorithm is
based upon [Subramanyan et al., 2015]’s, which
was suggested as a possible means to improve re-
sistance to logic encryption attacks ((see technical
report mentioned Page 4 for more details).

=
o - UENE -
e

Figure 4: Extended SBHA Implementation

SBHA stands alone as a new form of obfuscat-
ing transformation, but has a higher potential for re-
silience and stealth when combined with both SW and

HW obfuscations. We discuss our evaluation method-
ology and key metrics for SBHA next.

5 Experimental evaluation

We seek to experimentally assess the four following

Research Questions:

RQ1 What is the effectiveness of SBHA transforma-
tions against DSE attacks?

RQ2 What is the resiliency of SBHA transforma-
tions against adversarial reverse engineering?

RQ3 What is the stealth of SBHA transformations
when used in typical code?

RQ4 What is the cost (runtime and code size) over-
head induced by SBHA transformations?

5.1 Computing Environment

We developed a custom virtualized container-
based tool named Argonhttps://github.com/elm3nt/
argon-cli which contains KLEE version 2.0 and Angr
version 8.19.4.5. Experiments for RQ1 were exe-
cuted using a dense memory cluster (DMC) provided
by the Alabama Super Computing Center’. Most ex-
periments were performed with a 2.1 GHz Skylake-
SP processor, 6TB RAM, and 18 cores. Other experi-
ments were done on a Dell Precision T5600 worksta-
tion with 2 Intel Xeon E5-2630 processors (6 Core
2.2GHz) and 128GB RAM, running Linux Ubuntu
14.04 in a Docker container under Windows 7.

5.2 Benchmarks

Our experiments use two sets of benchmarks, one
from the literature and another that we created.

Phase Ordering. This set comprises the 6 original
programs from [Holder et al., 2017], and then we ap-
plied Tigress transformations by single type (abstract,
control, data) on the 6 target programs one at a time,
followed by application of all permutations of the ob-
fuscation types (abstract, control, data), and finally,
virtualization applied in combination with each per-
mutation resulting in 21 different sequences of trans-
formations. This resulted in 126 obfuscated programs
plus the 6 original, for a total of 132 sample programs.

Tigress Pass/Code. This set includes 288 programs
we created: 16 generated with the random program
option from Tigress with a single password check
ranging from 1 to 16 characters, 16 programs with
single PIN code with size ranging from 1 to 16 digits,

http:/www.asc.edu
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and 256 programs with both password and PIN rang-
ing from 1 to 16 characters and digits each.

5.3 Effectiveness (RQ1)

Methodology. We repeat the experimental analy-
sis of [Holder et al., 2017] and extend their results
by analyzing the Phase Ordering Benchmarks us-
ing both KLEE and Angr. Our results produce dif-
ferent (longer) times than reported by Holder et al.
(mainly due to a difference in Tigress version as we
used version 2.2), but still confirm that no sequence
of obfuscation types from Tigress could effectively
prevent the recovery of the embedded program se-
cret/property (password or PIN code). Most trans-
formation sequences increase analysis time but some
are ineffective, requiring roughly the same amount of
analysis time on the unprotected original programs,
and some even defective, actually reducing the analy-
sis time. Full data can be found in the technical report
and benchmarks (URL given Page 4). In summary,
regarding our 132 test programs, KLEE and Angr fin-
ished analysis in all experiments with a max runtime
of 9935 seconds (2.75 hours) for Angr and 42 seconds
for KLEE. In all cases, KLEE and Angr revealed the
embedded secrets (password and PIN) of the sample
program (132/132 attack successes for each tool).

Runtime (sec)
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Figure 5: Tigress Pass/Code Only Benchmarks analysis

We also evaluate the unobfuscated programs in the
Tigress Pass/Code Benchmark set using KLEE and
Angr. Fig. 5 to 7 illustrate the overall results of the
study. Tabular results of the data are provided in the
separate technical report and benchmarks (mentioned
in Page 4). We were able to retrieve the password
from all single password programs (Pass1-Pass16) us-
ing both Angr and KLEE within 5 seconds. For single

Klee Effectiveness
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Figure 6: Tigress Pass/Code Combined Benchmarks analy-
sis
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Figure 7: Tigress Pass/Code Combined Benchmarks analy-
sis

PIN code programs, Angr is able to retrieve the code
from all the programs (codel-codel6) whereas KLEE
only retrieves code from a portion (codel-codell).
Angr takes up to 42950 seconds (11.9 hours) and
KLEE. 131190 seconds (36.4 hours). On average, the
mean time to crack for Angr was 3.55 sec for pass-
words and 11,908 sec for passcodes; for KLEE it was
2.17 sec for passwords and 13,485 sec for passcodes.
The minimum time for Angr was 2.39 and 26.5 secs
for passwords and codes; the min time for KLEE was
0.36 and 1.85 for passwords and codes. We allowed
a timeout of 120 hours for both KLEE and Angr in
failure cases.

For programs that had both password and PIN
code, Fig. 6 and 7 shows results for KLEE and Angr
analysis. Tabular results are provided in a sepa-
rate technical report. We evaluated 288 unprotected
samples in 576 experiments; for password and code
only programs Angr leaked the password in 32 of 32
cases, KLEE leaked the password in 27 of 32 cases;
for combined pwd/pin programs, KLEE leaked both
pwd/pin in 120 of 256 cases and Angr leaked both
pwd/pin in 169 of 256 cases. We allowed a timeout of
120 hours for both KLEE and Angr in failure cases.
Angr had a maximum analysis time of 5.3 hours and
KLEE had a maximum analysis time of 79.3 hours.
KLEE and Angr achieves high attack success rates
(resp. 142/288 and 201/288).

Results with SBHA. We apply SBHA to all programs
in the Phase Ordering Benchmark set, on top of 12
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Figure 8: SBHA Effectiveness against Angr/KLEE

out of each 22 obfuscated variants and each original
program: we could not create the remaining variants
as the obfuscation transformations generated by Ti-
gress did not allow precise location of the point func-
tion. The 39 variants (13*3) were analyzed with both
Angr and KLEE, with a timeout of 120 hours for every
sample file analyzed. In summary, adding SBHA on
top of existing transformation sequences in the Phase
Ordering Benchmark resulted in a complete defeat
of the attacker tools Angr and KLEE (no attack suc-
cess, 0/39 for both tool). Similarly, for the Tigress
Pass/Code benchmark set no analysis retrieved either
the single password, single PIN code, or combined
password/PIN from any of the SBHA variants, ex-
cept for KLEE recovering the single digit PIN code
from the PIN code-only set of SBHA transformed
programs, as Fig. 8 illustrates. In summary, we ana-
lyzed 288 SBHA-only protected programs with KLEE
and Angr; KLEE and Angr were given a 120-hour
timeout period; for both tool the attack succeeded
only in 1/288 case, which was a single-password pro-
tected program with a 1 character password.

RQ1 Conclusion. SBHA is extremely effective
against DSE attacks. Indeed, both Angr and KLEE
were unable to retrieve passwords from any but one
(1/327) of the protected variants including the SBHA
version of the original programs (despite a huge 120h
time-out per sample), where these tools recover a sig-
nificant part of the passwords without SBHA (KLEE:
181/327, Angr: 240/327).

5.4 Resilience (RQ2)

Methodology. We measure the strength of SBHA ob-
fuscation transformations against simplification or de-
obfuscation in the following 3 manners.

Since Tigress programs are C source code, we
used GCC optimization levels to gauge how much
code is reduced by the compiler, as an indication of
how much obfuscated code is reduced.

Assuming that an attacker could successfully re-
cover the circuit netlist from the application bi-
nary code, we utilize two tools (ABC [Brayton and

mm
| Phase
| Ordering

Benchmarks
{ enchmal ¥ SBHA

S

0-@-8-e
¥ A 4 4
abc
JoD
¥ 4
/PINI? PINT?
L BDD size/ ttime  BDD size/ uct time
[2.43 EXE

binary size binary size
Symbolic Symbolic
Analysis Analysis
Password/PIN?? Password/PIN??
runtime runtime

Figure 9: Evaluation Case Study for Resilience

Mishchenko, 2010] and JDD8) to evaluate whether
circuit-based analyzers can recover the embedded
password from the circuit itself. Fig. 9 illustrates our
evaluation framework for resilience.

SBHA can be used to target the path explosion
weakness inherent in typical DSE engines. However
advanced DSE somewhat counters that explosion by
using path merging [Kuznetsov et al., 2012]. We ap-
proximate path merging attacks by evaluating SBHA
C programs where Boolean operators (!, ||, &&) are
used instead of conditional statements, as seen in the
example code in Program 3.

Compiler Optimizations. We use GCC optimization
levels (0, 1, 2, 3, s, fast) to estimate both resilience
and overhead. An optimizing compiler like GCC can
be seen as a basic adversarial attacker that would de-
obfuscate an obfuscated program by optimizing away
the included protections. We transformed the origi-
nal 6 Phase Order Benchmark programs with SBHA,
compiled them under the 6 different GCC optimiza-
tion levels, and then analyzed the 36 program using
Angr. After 120 hours of computation for each vari-
ant, the tool still found no solution. We thus claim
that SBHA abstractions are resilient to compiler op-
timizations since they do not improve analysis by an
automated adversarial tool like Angr. Additional de-
tails can be found the companion technical report.

Optimizations refactor logic circuit abstraction
code into different instructions, but do not opti-
mize netlists enough to thwart the protection.

Circuit Recovery Attacks. We now turn to evaluat-
ing the resilience of our circuit netlists against adver-
sarial analysis (see Fig. 9 for a summary). We assume
that our adversary has recovered the circuit netlist:

8https://bitbucket.org/vahidi/jdd/src/master/
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can they retrieve the original point function from that
representation? Since the hardware abstraction uses a
circuit netlist to represent the conditional point func-
tion check, we assumed that an adversary would re-
cover some form of the circuit netlist from the binary
code. For analyzing resilience, we used ABC and
JDD as two representative tools that can be used to re-
cover the point (password) from the netlist once it is
recovered. We applied both anti-SAT and anti-BDD
transformations (as explained in Sec. 4.2) to repre-
sentative SBHA point function netlists to characterize
the success of attacks using these tools.

We first generated point-function circuits with in-
put size as low as 8 bits (1 character) up to 14000
bits (1750 characters): ABC was able to return a PLA
definition of every circuit between 1 and 35 seconds,
where the PLA reveals the single input required to
produce a 1 (or true) for the circuit. JDD was able to
produce a ROBDD for every circuit as well for every
point function circuit, and the ROBDD directly shows
the point (sequence of inputs) that would produce the
true result of the circuit.

We applied anti-SAT transformations to the Ti-
gress Pass/Code benchmark circuits produced during
SBHA transformation and evaluated those in the same
manner. Our anti-SAT transformations caused ABC
to fail to produce a PLA, even on the lowest sized
point-function circuits (1 character or 8 bits). Like-
wise, the anti-BDD transformation caused JDD to fail
to create a BDD (heap and stack overflows based on
memory) for the same, including the lowest point-size
function (1 character or 8 bits). Our analysis indicates
that both of our anti-SAT and anti-BDD approaches
provide high resilience against the two circuit based
analysis tools that we studied.

SBHA equipped with anti-SAT and anti-BDD
transformations is resilient to circuit recovery
attacks.

bool and(bool a, bool b) {

if (b)
return true;

) bool and(bool a, bool b) {
// 10 return a & b;
else { }

return false;

// 01
// 00
return false;

Figure 10: Path Merging Boolean Library

Path Merging Attacks. Fig. 10 shows snippets from
the Boolean code library used to simulate a path
merging attack, showing the reduced form of the

AND or OR functions in C code. By splitting op-
erators and getting rid of IF statements, we are essen-
tially getting rid of paths taken in the code, which is
equivalent to what an optimizing DSE engine would
do to counter path explosion. In this regard, we
are experimenting with a worst case attack, where
other forms of obfuscation of the Boolean library it-
self (many different alternate forms for each Boolean
logic function in C code, obfuscating the Boolean data
type itself, etc.) have failed and the reverse engi-
neering has achieved path merging [Kuznetsov et al.,
2012].

We first tested the 8 character password-only pro-
gram that simulates a path-merging attack (Fig. 10)
using KLEE and Angr. KLEE failed to return a pass-
word in 24 hours while Angr cracked the 8 character
password in & 1 hour computation time for the same
sample. Nonetheless, 1 and 2 character password sim-
plified SBHA C programs with circuit-based counter-
measures for the point function resisted against KLEE
and Angr runs during 24 hours (a descriptive figure
for anti-SAT blocks is provided in the technical re-
port). This result illustrates that a worst-case path-
merging attack requires additional protective mea-
sures, which, when added, can effectively counter the
initial attacker.

Path-merging can somewhat threaten SBHA,
but this can be recovered by adding (HW-
inspired) anti-SAT and anti-BDD techniques.

RQ2 Conclusion. SBHA offers high resilience to
compiler optimizations, and high resilience to circuit
recovery attacks and path-merging techniques when
equipped with HW-inspired protections.

5.5 Stealth (RQ3)

Methodology. Our approach is two-fold: 1) we
use the MOSS program similarity checker [Schleimer
et al., 2003] to see the similarity between the original
programs and obfuscated variants, and 2) we com-
pute op-code distributions of the original versus ob-
fuscated programs. We use programs in the Phase Or-
dering Benchmark set to analyze stealth.

Results. Fig. 11 provides an appropriate view on how
well SBHA code blends into existing code. SBHA
is not stealthy because circuit abstractions are un-
usual w.r.t. other surrounding code. Our comparison
of original point function programs to SBHA trans-
formed executables show that certain opcodes provide
a signature for the presence of SBHA (mov, movzx for
example). Applying SBHA consistently across other
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Figure 11: Comparative Opcode Analysis

code constructs than point functions in a target pro-
gram would certainly help in hiding its presence to
protect the identified program assets.

RQ3 Conclusion. SBHA alone does not have good
stealth, because the presence of a custom Boolean li-
brary and an embedded circuit definition are tell-tale
indicators of SBHA use. Using SBHA in conjunc-
tion with other traditional software-based obfuscating
transformations can normalize the presence of SBHA
code. Likewise, using SBHA in multiple locations
throughout the code would at least normalize the pres-
ence of SBHA-based statements, but requires trans-
formation of general program code sequences.

5.6 Cost (RQ4)

Methodology. We calculate cost in terms of source
lines of code (LOC), memory overhead, and exe-
cution time overhead of the SBHA obfuscated pro-
grams. We used the Phase Ordering Benchmark set to
estimate cost.

Table 1: Overhead Analysis: Original vs SBHA

Original SBHA
Loc size |Runtime[| LOC | xLoc | size | xsize |Runtime| Delta
Passb| 174 12816 | 0.084 709 | 3.07 | 17704 | 38% | 0.084 | 0.00
Pass9| 113 8720 | 0.081 750 | 564 | 17704 | 103% | 0.084 | 0.0

Pass 12 195 12816 0.083 938 3.81 21800 70% 0.082 0.00
Pass3Code2 256 12824 0.001 773 2.02 17784 39% 0.001 0.00
Pass3Code3 186 12824 0.091 731 2.93 17784 39% 0.083 0.01
Pass4Coded 172 12824 0.091 789 3.59 17784 39% 0.082 0.01

AvgxLOC: 3.51 AvgSize: 55%

Results. Table 1 provides a summary of the key met-
rics (LOC, size, runtime) between original programs
and SBHA variants. Fig. 12 shows further analysis
of with executable size and LOC with Tigress obfus-
cations added. Virtualization techniques are usually
very expensive, both in terms of code size increase
and runtime penalty [Ollivier et al., 2019b]. SBHA
does not suffer as much from these known drawbacks.
Runtime difference of executables is low: we record
a maximum of 0.01 seconds (10%) between original
and SBHA variants. Since the programs evaluated
were only authentication based, the overhead repre-
sents a pure assessment of SBHA. Source lines of

code (SLOC) provide a measure of overall code in-
crease, with 3.5x average overhead for SBHA trans-
formation (min 2.02x, max 5.64xx ). SLOC and ex-
ecutable size have a mostly linear relationship. Exe-
cutable size at the unoptimized compilation level in-
creases =~ 55% onaverage, with a minimum of 38%
and maximum of 103%.
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Figure 12: Code Size Analysis With Tigress Obfuscation

Fig. 12 shows extended analysis of SBHA vari-
ants that were further obfuscated using Tigress trans-
formations (A, C, D, ACD, ADC, CAD, CDA, DAC,
DCA). In these cases, we chose to do SBHA transfor-
mation after Tigress was applied, and therefore virtu-
alized versions were not considered. Overall, SBHA
provides a predictable constant increase in LOC and
binary executable size (in bytes). The results illus-
trate the varying overhead of various combinations
of Tigress obfuscations, but a constant overhead from
SBHA included.

RQ4 Conclusion. SBHA is a low-cost transforma-
tion for point-function constructs, even more so for a
virtualization techniques. Based on observed data, we
surmise that SBHA 1is a cheap (linear) transformation,
based on Collberg et al. scale [Collberg and Nagra,
2009].

6 Related work

Protections against dynamic symbolic execution
(DSE) have been well studied in the last decade, as
well as proposed techniques to protect point function
constructs in particular. [Schrittwieser et al., 2016]
provide a recent exhaustive survey that highlights the
unreasonable efficiency of DSE-based deobfuscation
[Bardin et al., 2017, Yadegari et al., 2015, Coogan
et al., 2011, Salwan et al., 2018]. [Banescu et al.,
2016, Banescu et al., 2015] provided one of the
first comprehensive evaluations of DSE tools (KLEE,
Angr) against variants of password programs using



obfuscators such as Tigress and ObfuscatorLLVM.
Their evaluation was seminal in terms of highlight-
ing the great weakness of standard protections against
DSE. [Manikyam et al., 2016] performed a similar
study on commercial obfuscators such as Themida,
Code Virtualizer, and VMProtect. The impact on
symbolic deobfuscation through the complexification
of constraints has also been studied by [Banescu et al.,
2017], where they showed machine learning could be
used to predict effectiveness of obfuscating transfor-
mation in terms of increasing runtime of DSE-based
attacks. More recently, [Ollivier et al., 2019b] pro-
vided successful results for the so-called class of path-
oriented protections that target the weakest spot of
DSE, namely path exploration. Their target of in-
terest also included password-based programs simi-
lar to our study in this paper. The same authors also
propose a survey of anti-DSE protections [Ollivier
et al., 2019a]. Before this, several obfuscating trans-
forms were proposed by [Biondi et al., 2017] and [Ey-
rolles et al., 2016] based on Mixed Boolean Arith-
metic expressions [Zhou et al., 2007] to protect point-
functions. [Bruni et al., 2018] also proposed a mathe-
matically proven obfuscation against Abstract Model
Checking attacks.

[Lan et al., 2018] is the closest related work in
software protection: they evaluate an obfuscator that
replaces sensitive conditional instructions with se-
mantically equivalent function calls with a more com-
plicated execution model. This work showed similar
success with defeating symbolic analysis attacks us-
ing KLEE. SBHA can be seen as path-oriented pro-
tection [Ollivier et al., 2019b], enjoying the (strong)
so-called property of ”Single-Value Path” defined by
Ollivier et al. Intuitively, SVP protections turn DSE
search into mere fuzzing. Only a very few tractable
SVP path-oriented protection schemes are known,
making SBHA a new defense. Also, contrary to the
work by [Ollivier et al., 2019b], SBHA opens the way
to a whole class of such schemes (the principle is not
limited to point functions). SBHA presents program
abstractions that are fundamentally abnormal for a
software-minded human attacker, more so than stan-
dard path-oriented protections present. In addition, it
now provides potential reuse of circuit-based protec-
tions in the context of software.

7 Conclusion and Future Work

We introduce SBHA-based software transformation
as a completely new approach to software protection.
Our initial study on protecting point-function pro-
grams, particularly against DSE-based attacks, shows
great promise. Experimental results point to the effec-
tiveness of SBHA in defeating DSE, with relatively

high resilience and low overhead. SBHA has expect-
edly low stealth in terms of blending into surround-
ing code, yet we anticipate that application to general
code would help to normalize its presence throughout
a code base. Still, our work demonstrate the potential
of the technique. Interestingly, SBHA provides a way
to unify two normally disparate worlds or research:
software and hardware protection. Whereas obfusca-
tion is generally frowned upon in the hardware world
because of constrained power, space, or timing de-
mands, the equivalent representation in software may
not be at all. Future work include expanded study
of SBHA in larger program contexts and subjective
study of human-based reverse engineering limitations
when encountering SBHA variation.
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