
Constraint-Based Software Testing�

Sebastian Bardin1, Bernard Botella1, Frédéric Dadeau3, Florence Charreteur2,
Arnaud Gotlieb2, Bruno Marre1, Claude Michel4, Michel Rueher4, and Nicky

Williams1

1 CEA LSL, 91191 Gif sur Yvette
2 INRIA Rennes-Bretagne Atlantique, LANDE Project, 35042 Rennes Cedex

3 University of Franche-Comté, LIFC / INRIA CASSIS Project, 25030 Besançon
4 University of Nice-Sophia Antipolis, CeP project, Ecole Polytechnique, 06903

Sophia Antipolis cedex

Abstract. Constraint-Based Testing (CBT) is the process of generating
test cases from programs or models by using the Constraint Program-
ming technology. Recently, this method received much attention due to
several Research projects launched in France and abroad. This paper
aims at presenting the main CBT tools developped by four Research
labs: CEA Laboratoire de Sûreté des Logiciels, INRIA Lande research
team, Laboratoire d’Informatique de Franche-Comté, and CeP team of
University of Nice–Sophia Antipolis. The paper concludes by drawing
some perspectives on open problems in CBT.

1 Introduction

These last years, much attention has been devoted to the use of Constraint
Programming techniques in the automation of program verification. In 2000,
Podelski outlined [13] that program verification could be seen as an instanci-
ation of constraint solving while Flanagan proposed theoretic foundations to
constrained interpretations of programs [7]. Program verification often reduces
to the problem of showing that a constraint system is satisfiable or unsatisfiable.
For example, showing a particular property at a given point in a source code
leads to solve a constraint system that characterizes a path through a particular
state of the program. Recent work focussed on the use of constraint solvers for
bounded model checking of source code, but it is in automated software testing
that constraint solving for program verification has reached a certain level of
maturity.

In this domain, France has been a pioneer since the early work of Marre, Dick
and Faivre[11, 6]. Several research projects were launched such as the RNTL
projects INKA (2000-2002) and DANOCOPS (2004-2006), that initiated the
study of constraint-based testing techniques for embedded C and C++ pro-
grams. These projects resulted not only in the development of the INKA tool
which was the first to use constraint programming in automatic structural test

� partially granted by the SESUR CAVERN project ref. ANR-07-SESU-003.



data generation for C programs [9, 10] but also to the development of proto-
types tools for specification notations such as OCL and JML[3]. The ACI V3F
project (2003-2006) studied the problems of floating-point computations within
various Constraint-Based Testing approaches. Thanks to this project, we started
working together around the development of specialized floating-point constraint
solvers [2]. Another result of the ACI V3F was the first international CSTVA
workshop (Constraints in Software Testing, Verification and Analysis), we orga-
nized in Nantes in 2006. CSTVA5 brought together people of distinct commu-
nities to discuss fruitful ideas around the use of constraints in program testing.
From these discussions emerged the idea of exploiting abstractions to enhance
current constraint propagation in solvers dedicated to program testing. The cur-
rent SESUR–2007 CAVERN (Constraints and Abstractions for program VER-
ificatioN) project which started early 2008 aims to explore the combination of
Constraint Programming and Abstractions techniques for automated testing of
programs. The originality of this project lies in the use of abstractions to develop
dedicated propagation-based constraint solvers targeted to handle specific fea-
tures of imperative programs such as iterative computations, references, dynamic
structures and floating-point computations.

Since 2000, several Constraint-Based Testing tools have been developed to
investigate constrained models of programs or specification models with the goal
of generating test cases against various testing objectives. These tools share
some characteristics such as being based on constraint propagation, abstract
domains computations and labeling, The purpose of this short paper is to give an
overview of some of these tools: PathCrawler and Euclide for C, Cpbpv for
Java, Osmose for executable code, Jaut for Bytecode Java,Gatel for Lustre,
JMLTT for JML.

2 Tools

– PathCrawler [14] is a tool prototype developed by the LSL laboratory of
CEA List. PathCrawler automatically generates test-case inputs guaran-
teeing full structural coverage of the C function under test: all feasible paths,
all reachable branches, all k-paths,... PathCrawler runs an automatically-
instrumented version of the function under test on each test-case as soon as it
is generated in order to recover the path covered by this test-case and ensure
that the next test-case covers a path which is not covered yet. Test-case gen-
eration is implemented using constraint logic programming. To ensure that
PathCrawler can be used on real-life programs, current work focusses on
the treatment of called functions, the treatment of the precondition on the
effective input parameters under which the function is to be tested, the treat-
ment of pointer casts, the treatment of integer overflows and floating-point
numbers and the early detection of infeasible path prefixes.

– Euclide [8] is a new Constraint-Based Testing tool for verifying safety-
critical C programs. By using a mixture of symbolic and numerical analyses

5 http://www.irisa.fr/manifestations/2006/CSTVA06



(namely static single assignment form, constraint propagation, integer linear
relaxation and search-based test data generation), it addresses three distinct
applications in a single framework: structural test data generation, counter-
example generation and partial program proving. The core algorithm of the
tool takes as input a C program and a point to reach in the code. As a
result, it outcomes either a test datum that reaches the selected point, or
an “unreachable” indication showing that the selected point is unreachable.
Optionally, the tool takes as input additional safety properties that can be
given under the form of pre/post conditions in ACSL or assertions directly
written in the code. In this case, Euclide can either prove that these proper-
ties or assertions are verified or find a counter-example when there is one. As
these problems are undecidable in the general case, Euclide only provides
a semi-correct procedure (when it terminates, it provides the right answer)
for them. Current Research works around the tool focus on modular integers
and floating-point computations and better constraint solving procedures
based on relational abstract domains computations.

– Cpbpv [5] is a novel constraint-programming framework for bounded pro-
gram verification. The Cpbpv framework uses constraint stores to repre-
sent the specification and the program and explores execution paths non-
deterministically. The input program is partially correct if each constraint
store so produced implies the post-condition. Cpbpv does not explore spu-
rious execution paths as it incrementally prunes execution paths early by
detecting that the constraint store is not consistent. Cpbpv is parameter-
ized with a list of solvers which are tried in sequence, starting with the
least expensive and less general. Experimental results often produce orders
of magnitude improvements over earlier approaches, running times being of-
ten independent of the variable domains. Moreover, Cpbpv was able to de-
tect subtle errors in some programs while other frameworks based on model
checking have failed.

– OSMOSE [1] is a tool dedicated to machine code analysis. Potential ap-
plications include validation of COTS and mobile codes as well as malware
comprehensive analysis. There are two main specific challenges in machine
code analysis: low-level semantics of data (bitwise instructions, machine
arithmetics with overflows and flags, etc.), and unstructured control-flow
(e.g. goto x, where x is only known at run-time). From a test data genera-
tion perspective, OSMOSE follows both the path-based approach and the
concolic execution paradigm, mixing concrete execution and symbolic rea-
soning. The tool is geared toward full coverage of branches or instructions.
The main original features of the test data generation technology are the
following: (1) path predicates are expressed in the bit-vector theory, and a
novel CLP-based approach has been developped to solve such constraints;
(2) the concolic paradigm has been adapted to unstructured control-flow,
and it appears to be both a very powerful and easy to implement mean of
recovering a high-level view (CFG) of the program. (3) specific heuristics
have been designed to discard a priori paths redundant with the current
coverage objective.



– Jaut (Java Automatic Unit Testing) [4] is a test data generator for programs
in bytecode Java. Given a bytecode instruction of the method under test,
it aims to find an input memory state (values of the parameters and of the
instances in the heap) to cover this instruction. Repeating this process, the
structural coverage criterion of all-the-statements can be fulfilled. In Jaut,
bytecode instructions are modelled with constraints, as well as the conditions
that permit to reach the goal. An input memory state to cover the goal
instruction can so be found by constraint solving. The tool currently deals
with arithmetic operations on integers, heap manipulation and conditional
instructions. The implementation of a strategy to avoid enumerating all the
paths that lead to the goal until finding an executable one is in progress.
Current work also includes dealing with polymorphic function calls.

– Gatel [12] is a test environment for synchronous models of reactive systems
described in Lustre/SCADE. The core of the tool is a CLP interpretation
of the Lustre language, together with a resolution procedure dedicated to
the underlying linear temporal logic. This framework allows to automate a
wide range of usual testing activities. Initially designed for generating test
sequences according to a test objective, Gatel also addresses symbolic sim-
ulation, model debug, conformance checking, coverage analysis/completion,
test suite evaluation. Current work is twofold: updating the CLP interpreta-
tion and procedure to the latest version of the SCADE Suite (enriched with
built-in state machines), upgrading the procedure with powerful abstractions
to scale up to real-life industrial models.

– JML-Testing-Tools is an automated animation and test generation tool
based on JML annotations [3]. The animation feature is used to simulate
the execution of the model, using constraint solving techniques, in order
to ensure the conformance of the model behaviors w.r.t. the informal re-
quirements. The test generation part works by first computing boundary
test targets, satisfying JML preconditions of the Java methods, according to
specific object-oriented data coverage criteria, such as null pointers, alias-
ings, etc. coupled with a boundary analysis of numerical values. It then
builds complete execution sequences, in terms of method invocations, using
the symbolic animation of the model, in order to cover these targets, thus
producing the test cases.

3 Perspectives

Scalability is the main challenge that the tools presented here have to face to.
Dealing with more than hundred of thousands lines of code, with dynamic con-
structions such as huge dynamic data structures, with non-linear numerical con-
straints extracted from complex statements are some of the problems we have
to deal with. Research works were launched to address these problems in all the
research teams mentionned in this paper. Next step will be the dissemination of
the Constraint Programming technology in Program Verification to Industry.



References

1. Sebastien Bardin and Philippe Herrmann. Structural testing of executables. In
1th Int. Conf. on Software Testing, Verification and Validation (ICST’08), pages
22–31, 2008.

2. B. Botella, A. Gotlieb, and C. Michel. Symbolic execution of floating-point com-
putations. The Software Testing, Verification and Reliability journal, 16(2):pp
97–121, June 2006.

3. F. Bouquet, F. Dadeau, and B. Legeard. Automated boundary test generation
from JML specifications. In FM’06, 14th Int. Conf. on Formal Methods, volume
4085 of LNCS, pages 428–443, Hamilton, Canada, August 2006. Springer-Verlag.

4. F. Charreteur and A. Gotlieb. Raisonnement contraintes pour le test de byte-
code java. In quatrimes Journes Francophones de Programmation par Contraintes
(JFPC’08), pages 11–20, Nantes, France, Juin 2008.

5. H. Collavizza, M. Rueher, and P. Van Hentenryck. Cpbpv: A constraint-
programming framework for bounded program verification. In Proc. of CP2008,
LNCS 5202, pages 327–341, 2008.

6. J. Dick and A. Faivre. Automating the generation and sequencing of test cases from
model-based specifications. In Proc. of the FME’03: Industrial Strength Formal
Methods, LNCS 670, 1993.

7. Cormac Flanagan. Automatic software model checking via constraint logic. Sci.
Comput. Program., 50(1-3):253–270, 2004.

8. A. Gotlieb. Euclide: A constraint-based testing platform for critical c programs.
In 2th International Conference on Software Testing, Validation and Verification
(ICST’09), Denver, CO, Apr. 2009.

9. A. Gotlieb, B. Botella, and M. Rueher. A clp framework for computing structural
test data. In Proceedings of Computational Logic (CL’2000), LNAI 1891, pages
399–413, London, UK, July 2000.

10. A. Gotlieb, T. Denmat, and B. Botella. Goal-oriented test data generation for
pointer programs. Information and Software Technology, 49(9-10):1030–1044, Sep.
2007.

11. Bruno Marre. Toward Automatic Test Data Set Selection using Algebraic Speci-
fications and Logic Programming. In Koichi Furukawa, editor, Proc. of the Eight
ICLP, pages 202–219, Paris, Jun. 1991. MIT Press.

12. Bruno Marre and Benjamin Blanc. Test selection strategies for lustre descriptions
in gatel. Electronic Notes in Theoretical Computer Science, 111:93 – 111, 2005.

13. Andreas Podelski. Model checking as constraint solving. In Jens Palsberg, editor,
Proceedings of SAS: Static Analysis Symposium, volume 1824 of LNCS, pages 22–
37. Springer-Verlag, 2000.

14. N. Williams, B. Marre, P. Mouy, and M. Roger. Pathcrawler: Automatic generation
of path tests by combining static and dynamic analysis. In In Proc. Dependable
Computing - EDCC’05, pages 281–292, 2005.


