Refinement-based CFG Reconstruction from
Executables***

Sébastien Bardin, Philippe Herrmann, and Franck Védrine

CEA, LIST,
Gif-sur-Yvette CEDEX, 91191 France
first.nane@ea. fr

Abstract. We address the issue of recovering a both safe and precisexapp-
tion of the Control Flow Graph (CFG) of a program given as aecefable file.
The problem is tackled in an original way, with a refinemeaséd static analy-
sis working over finite sets of constant values. Requirerpespagation allows
the analysis to automatically adjust the domain precisidy where it is needed,
resulting in precise CFG recovery at moderate cost. Figgtements, including
an industrial case study, show that the method outperfotamglard analyses in
terms of precision, efficiency or robustness.

Motivation. Automatic analysis of programs from their executable filas many po-
tential applications in safety and security, for examplgoaatic analysis of mobile
code and malware, security testing or worst case exectli@dstimation. We address
the problem of (safe) CFG reconstruction, i.e. constrgcéiboth safe and precise ap-
proximation of the Control Flow Graph (CFG) of a program givaess an executable
file. CFG reconstruction is a cornerstone of safe binargllamalysis: if the recovery
is unsafe, subsequent analyses will be unsafe too; if ibisaagh, they will be blurred
by too many unfeasible branches and instructions.

R1:= R2+1
A := @(R1)

145FEDBCADACBDAD459700346901
3456KAHA305G67H345BFFADECAD3
00113456735FFD451E13AB080DAD
344252FFAADBDA457345FD780001
FFF22546ADDAE989776600000000

true

R1 := R1+4

push A
A := @(R1)

Fig. 1. CFG reconstruction from an executable file

Challenges.Such an approximation is difficult to obtain mainly becausdymamic
jumps, i.e. jump instructions whose target expressiondgslved at run-time and may

* Work partially funded by ANR (grants ANR-05-RNTL-02606 aAdIR-08-SEGI-006).
** The material presented here is taken from a preliminanjoesf the VMCAI'11 paper [3].

vary from one execution to the other. Dynamic jumps are vensaive instructions
and a small loss in precision on target expressions maytaffamatically the quality
of the subsequent analysis, leading to vicious circles éetwalue analysis and CFG
reconstruction. Moreover, there is no reason why all vaigets of a dynamic jump
should follow a nice regular pattern. Indeed they are jusiresses in the executable
code, often arbitrarily assigned by a compiler. Hence aralyais based on popular
domains (i.e. convex domains possibly enhanced with cemgm information) will
introduce many false targets. For example, consider arugtgincgot o(x) with x
€ {1355,1356,2126}: such an analysis cannot recover better than [1355..2126],
reporting 99% of false targets.

Note that, unfortunately, dynamic jumps are ubiquitous ative code programs:
they are introduced at compile-time either for efficienewi(t ch in C) or by necessity
(return statements, function pointers in C, virtual methimdC++, etc.).

Related approachesindustrial tools like IDA RRo [10] or AIT [9] usually rely on
linear sweep decoding (brute force decoding of all codeesighs) or recursive traver-
sal (recursive decoding until a dynamic jump is encounferechanced with limited
constant propagation, pattern matching techniques bastteknowledge of the com-
piling chain process and user annotations. These techsareaunsafe on general pro-
grams, missing many legal targets and branches. The ondytsafiniques are those
by Repset al. [4,5] - based mainly on stride intervals propagation, andimder and
Veith [7, 8] - based on k-set (sets of bounded cardinalitgppgation. Experiments re-
ported by the authors show that while each approach perfionae better than current
industrial tools, both techniques still recover many fatsgets. Especially, stride inter-
vals cannot capture precisely sets of jump targets, andskase too sensitive to their
cardinality bound, potentially leading to either imprects expensive analyses.

Our approach. We propose an original refinement-based procedure to sdi¢ I€-
construction [3]. The procedure is built on two main stepfarevard k-set propagation
with local cardinality bounds (ranging frotup to a given parametéfmax), and a
refinement step controlling these cardinality bounds.

The forward propagation is mostly a standard one, enhandbdaxfew original
mechanisms: (1) abstract values are downcast accordingc#b ¢ardinality bounds,
permitting to lose information and increase efficiency; {)alues (i.e. abstract values
denoting the whole domain) are tagged with additional imfation recording their ori-
gin (for exampleT (; 3 12y denotes the abstractiontoof the k-sef{1, 3, 12}), allowing
to pinpoint thenitial sources of precision loss (ispl) and give clue for correction (cf. re-
finement); (3) alias, jump targets and branches that have fixeel during propagation
are recorded into pournal (cf. refinement).

Refinement is lazy and on-demand. When a jump expressionatealtoT, the
refinement mechanism takes place, trying to find out isplsaesible for the violation
(guided by backward data dependencies and journal infasmjeéind to correct them
by locally improving the domain precisions (usingflags).

Results.From a theoretical point of view, the procedure is sound and in polynomial-
time. Moreover it is as precise as standard k-set propagatica class of non-trivial
programs, including dynamic jumps and alias [3]. From a ficatpoint of view, the

procedure has been implemented and evaluated on an iradssfiety-critical program
(32 kloc) and on small handcrafted programs. It appears tedmonably efficient (tak-
ing less than 5 minutes for the industrial case study), veegipe (only7% of false
targets, beating standard approaches based on convexrdpomaseveral orders of
magnitude), and very robust: the procedure does need &l parameter, but its exact
value does not seem to matter.

References

1. Balakrishnan, G., Gruian, R., Reps, T. W., Teitelbaum, GodeSurfer/x86-A Platform for
Analyzing x86 Executables. In: CC 2005. Springer, Heide{2005)

2. Bardin, S., Herrmann, P.: Structural Testing of Exedetab In: IEEE ICST 2008. IEEE
Computer Society, Los Alamitos (2008)

3. Bardin, S., Herrmann, P., Védrine, F.: Refinement-b&¥€@ reconstruction from Unstruc-
tured Programs. In: VMCAI 2011. Springer, Heidelberg (2011

4. Balakrishnan, G., Reps, T. W.: Analyzing memory accegsr86 executables. In: CC 2004.
Springer, Heidelberg (2004)

5. Balakrishnan, G., Reps, T. W.: Analyzing Stripped Dexitever Executables. In: TACAS
2008. Springer, Heidelberg (2008)

6. Godefroid, P, Levin, M. Y., Molnar, D.: Automated Whit®bFuzz Testing. In: NDSS 2008.
The Internet Society (2008)

7. Kinder, J., Veith, H.: Jakstab: A Static Analysis Platfdor Binaries. In: CAV 2008. Springer,
Heidelberg (2008)

8. Kinder, J., Zuleger, F., Veith, H.: An Abstract Inter@éon-Based Framework for Control
Flow Reconstruction from Binaries. In: VMCAI 2009. Sprimgeeidelberg (2009)

9. Absint homepaght t p: / / ww. absi nt . com

10. IDA Pro homepaght t p: / / ww. hex- rays. coni i dapr o

