
Refinement-based CFG Reconstruction from
Executables⋆,⋆⋆

Sébastien Bardin, Philippe Herrmann, and Franck Védrine

CEA, LIST,
Gif-sur-Yvette CEDEX, 91191 France

first.name@cea.fr

Abstract. We address the issue of recovering a both safe and precise approxima-
tion of the Control Flow Graph (CFG) of a program given as an executable file.
The problem is tackled in an original way, with a refinement-based static analy-
sis working over finite sets of constant values. Requirementpropagation allows
the analysis to automatically adjust the domain precision only where it is needed,
resulting in precise CFG recovery at moderate cost. First experiments, including
an industrial case study, show that the method outperforms standard analyses in
terms of precision, efficiency or robustness.

Motivation. Automatic analysis of programs from their executable files has many po-
tential applications in safety and security, for example: automatic analysis of mobile
code and malware, security testing or worst case execution time estimation. We address
the problem of (safe) CFG reconstruction, i.e. constructing a both safe and precise ap-
proximation of the Control Flow Graph (CFG) of a program given as an executable
file. CFG reconstruction is a cornerstone of safe binary-level analysis: if the recovery
is unsafe, subsequent analyses will be unsafe too; if it is too rough, they will be blurred
by too many unfeasible branches and instructions.

Fig. 1. CFG reconstruction from an executable file

Challenges.Such an approximation is difficult to obtain mainly because of dynamic
jumps, i.e. jump instructions whose target expression is resolved at run-time and may

⋆ Work partially funded by ANR (grants ANR-05-RNTL-02606 andANR-08-SEGI-006).
⋆⋆ The material presented here is taken from a preliminary version of the VMCAI’11 paper [3].



vary from one execution to the other. Dynamic jumps are very sensitive instructions
and a small loss in precision on target expressions may affect dramatically the quality
of the subsequent analysis, leading to vicious circles between value analysis and CFG
reconstruction. Moreover, there is no reason why all valid targets of a dynamic jump
should follow a nice regular pattern. Indeed they are just addresses in the executable
code, often arbitrarily assigned by a compiler. Hence any analysis based on popular
domains (i.e. convex domains possibly enhanced with congruence information) will
introduce many false targets. For example, consider an instructioncgoto(x) with x
∈ {1355, 1356, 2126}: such an analysis cannot recover better thanx ∈ [1355..2126],
reporting 99% of false targets.

Note that, unfortunately, dynamic jumps are ubiquitous in native code programs:
they are introduced at compile-time either for efficiency (switch in C) or by necessity
(return statements, function pointers in C, virtual methods in C++, etc.).

Related approaches.Industrial tools like IDA PRO [10] or AI T [9] usually rely on
linear sweep decoding (brute force decoding of all code addresses) or recursive traver-
sal (recursive decoding until a dynamic jump is encountered), enhanced with limited
constant propagation, pattern matching techniques based on the knowledge of the com-
piling chain process and user annotations. These techniques are unsafe on general pro-
grams, missing many legal targets and branches. The only safe techniques are those
by Repset al. [4, 5] - based mainly on stride intervals propagation, and byKinder and
Veith [7, 8] - based on k-set (sets of bounded cardinality) propagation. Experiments re-
ported by the authors show that while each approach performsmuch better than current
industrial tools, both techniques still recover many falsetargets. Especially, stride inter-
vals cannot capture precisely sets of jump targets, and k-sets are too sensitive to their
cardinality bound, potentially leading to either imprecise or expensive analyses.

Our approach. We propose an original refinement-based procedure to solve CFG re-
construction [3]. The procedure is built on two main steps: aforward k-set propagation
with local cardinality bounds (ranging from0 up to a given parameterKmax), and a
refinement step controlling these cardinality bounds.

The forward propagation is mostly a standard one, enhanced with a few original
mechanisms: (1) abstract values are downcast according to local cardinality bounds,
permitting to lose information and increase efficiency; (2)⊤ values (i.e. abstract values
denoting the whole domain) are tagged with additional information recording their ori-
gin (for example⊤〈1,3,12〉 denotes the abstraction to⊤ of the k-set{1, 3, 12}), allowing
to pinpoint theinitial sources of precision loss (ispl) and give clue for correction (cf. re-
finement); (3) alias, jump targets and branches that have been fired during propagation
are recorded into ajournal (cf. refinement).

Refinement is lazy and on-demand. When a jump expression evaluates to⊤, the
refinement mechanism takes place, trying to find out ispls responsible for the violation
(guided by backward data dependencies and journal information) and to correct them
by locally improving the domain precisions (using⊤-flags).

Results.From a theoretical point of view, the procedure is sound and runs in polynomial-
time. Moreover it is as precise as standard k-set propagation on a class of non-trivial
programs, including dynamic jumps and alias [3]. From a practical point of view, the



procedure has been implemented and evaluated on an industrial safety-critical program
(32 kloc) and on small handcrafted programs. It appears to bereasonably efficient (tak-
ing less than 5 minutes for the industrial case study), very precise (only7% of false
targets, beating standard approaches based on convex domains by several orders of
magnitude), and very robust: the procedure does need an initial parameter, but its exact
value does not seem to matter.

References

1. Balakrishnan, G., Gruian, R., Reps, T. W., Teitelbaum, T.: CodeSurfer/x86-A Platform for
Analyzing x86 Executables. In: CC 2005. Springer, Heidelberg (2005)

2. Bardin, S., Herrmann, P.: Structural Testing of Executables. In: IEEE ICST 2008. IEEE
Computer Society, Los Alamitos (2008)

3. Bardin, S., Herrmann, P., Védrine, F.: Refinement-basedCFG reconstruction from Unstruc-
tured Programs. In: VMCAI 2011. Springer, Heidelberg (2011)

4. Balakrishnan, G., Reps, T. W.: Analyzing memory accessesin x86 executables. In: CC 2004.
Springer, Heidelberg (2004)

5. Balakrishnan, G., Reps, T. W.: Analyzing Stripped Device-Driver Executables. In: TACAS
2008. Springer, Heidelberg (2008)

6. Godefroid, P., Levin, M. Y., Molnar, D.: Automated Whitebox Fuzz Testing. In: NDSS 2008.
The Internet Society (2008)

7. Kinder, J., Veith, H.: Jakstab: A Static Analysis Platform for Binaries. In: CAV 2008. Springer,
Heidelberg (2008)

8. Kinder, J., Zuleger, F., Veith, H.: An Abstract Interpretation-Based Framework for Control
Flow Reconstruction from Binaries. In: VMCAI 2009. Springer, Heidelberg (2009)

9. Absint homepagehttp://www.absint.com/
10. IDA Pro homepagehttp://www.hex-rays.com/idapro


