G0
List

Structural Testing of Executables

Sébastien Bardin Philippe Herrmann

CEA-LIST, Software Reliability Lab.

S.Bardin, P.Herrmann Structural Testing of Executables 1/ 29

Structural testing at the machine code level
(:@:1 m automatic test data generation
m goal: structural coverage or bug finding

m do not address the problem of the oracle

Conceptual framework: symbolic/concolic execution

Three main contributions

m show how to adapt existing techniques to machine code
m combination of concolic execution and static analysis
m implementation of the tool OSMOSE

Limitations

m no floating-point numbers, no interruptions

S.Bardin, P.Herrmann Structural Testing of Executables 2/ 29

Why binary-level analysis?

No source code available

Ce:] m Components Off the Shelf (COTS)
_— m legacy code
Ii't m mobile code, malware

m certification of third-party software

Motivations

Low confidence in the compiling process

® compilers may contain bugs
m optimisations preserve (?) correctness, what about security?
m What You See Is Not What You eXecute

High precision of the analysis

m quality of service (QoS): wcet, maximal stack height, etc.

W security

S.Bardin, P.Herrmann Structural Testing of Executables 3/ 29

— Motivations
ll’t About machine code
The OSMOSE tool
Test data generation
Machine code
Bit-level constraint solving
IR recovery

Experiments

Related work

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 4/ 29

R Motivations
ll’t About machine code
The OSMOSE tool
Test data generation
Machine code
Bit-level constraint solving
IR recovery

Experiments

Related work

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 4/ 29

The machine code is interpreted:

1
2
3.
4

PC is the entry-point
decode instr at address PC
execute instr, update PC

goto 2

:100D43000A0A4320636F6D70696C65722064656D78
:100D53006F6E7374726174696F6E2070726F6772F5
:100D6300616DOA0A00496E707574206F7065726157
:100D730074696F6E3A20272B272028414444292089
:100D83006F7220272D27202853554229203F20000A
:100CEA00759852758920758869758DF37BFF7A0D21
:100CFA007943120862120DDB8E648F65120DDBBE4A
:100D0A00668F677BFF7A0D7968120862120E0BEF05
:100D1A00B42B03D38001C3921130110CE56525670A
:100D2 FF
:090D3A009566FE120DF780BD2242

:100E1C00496E707574204E756D626572203F2000AE
.100DB. 120E0B, E56AAAAA

OBC3ES5 TFFE564FC

:100DCA00697002056914F9EF120C63FFEFB40AE6CT
:010DDA0022F6

Instructions

m data: +, -, X, /, >>, <<, xor, and, not, ...
m control: if, goto 10, cgoto A

Memory / variables

m registers and RAM (very large array)

m PC contains next instruction

m SP is the stack pointer

S.Bardin, P.Herrmann

Structural Testing of Executables

5/ 29

Structured language Machine code

Variables Variables

m unbounded # of variables m few registers + RAM

m types m a single type: bit-vectors
Functions Functions

m binding of arguments m goto callee_addr

m local context ® no context, no binding

m return to the caller m goto caller_addr

m generic function m goto x, where x may vary
Control-flow Control-flow

m structured ® unstructured

m given a priori m discovered at run-time

S.Bardin, P.Herrmann Structural Testing of Executables 6/ 29

Difficulties of binary-level analysis

No control-flow given a priori

Sy

- B cgoto x: which values of x are legal?
Llist

m the CFG has to be discovered on-the-fly (IR recovery)

Unstructured control-flow

b o m arbitrary goto

m low-level mechanism for next instruction and function call

o interruptions

Bit-level instructions
m machine arithmetic, signed and unsigned operations
B bit-vector operations: rotate, extract, concat, etc.

o floating-point numbers

S.Bardin, P.Herrmann Structural Testing of Executables 7/ 29

€SP

— Motivations
li’t About machine code
The OSMOSE tool
Test data generation
The OSMOSE Tool Bit-level constraint solving
IR recovery

Experiments

Related work

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 8/ 29

Sy

R Motivations
li’t About machine code
The OSMOSE tool
Test data generation
The OsviosE Tool Bit-level constraint solving
IR recovery

Experiments

Related work

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 8/ 29

G0
List

The OsMOSE Tool

S.Bardin, P.Herrmann

OSMOSE

OSMOSE = tool for automatic analysis of machine code J

m Reverse-engineering

m Automatic test data generation

Input Outputs

:100D: D70696C657:
:100L 73747261 70726F6772F5
: 16L 726157

:100D7300° 72B27.
:100D83006F7220272D:

+100CH D21
:100CFA0079431208621. 1. A
:100D(77BFF’ 08621

:100D1 1€3921130110C A

:100D2A00FFE5643566FEB00BC3E5659567 FFES64FC 1
:090D3A009566FE120DF780BD2242 + teSt SUIte

:100E1C00496E707574204E756D626572203F2000AE
: 1 AA

;100DCADDSS7002056914F9EF120C63FFEFB40AE6C1 » + re p Ort
:010DDA0022F6

+ environment
+ objective

Structural Testing of Executables 9/ 29

Current state

Architecture support
Ce:] m processors Motorola 6800, Intel 8051, Power PC 550
m all instructions for 8051, all instructions but one for 6800,
—— most user-level instructions for PowerPC
list

Test objectives
m structural coverage: paths / branches / instructions
B quantitative objective

The OsmoOsE Tool
Environment

m entry point
m volatile memory
m initialised memory

Output
m test suite
m control-flow graph, call graph
m statistics (# branches, coverage, etc.)

S.Bardin, P.Herrmann Structural Testing of Executables 10/ 29

Key technologies

G0
List

The OsMOSE Tool

Test data generation
m Concolic execution

m Bit-precise constraint solving

IR recovery
m Combination of static and dynamic recovery

Multiple architecture support
m internal normalised instruction set, parametrised by an
architecture template
m template: size of a memory word, memory regions and

registers

S.Bardin, P.Herrmann

Structural Testing of Executables

11/ 29

— Motivations
li’t About machine code
The OSMOSE tool

Test data generation

Bit-level constraint solving

Test data
generation

IR recovery
Experiments

Related work

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 12/ 29

Motivations
li’t About machine code
The OSMOSE tool

Test data generation

Bit-level constraint solving

Test data
generation

IR recovery
Experiments

Related work

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 12/ 29

Framework: symbolic execution

Ce:] “Path-based” test data generation
1 Select a path 7 in the CFG
- 2 Compute the path predicate
Llist | o
3 a solution to ¢, = a test datum exercising the path

4 If still something to cover then goto 1

Recent approach for programs : PathCrawler, Dart, Cute, Exe

Test data
generation

Parameters
m How to explore the set of paths?
m Which theory for ¢, 7
m Memory model and alias management

m How to handle function calls?

S.Bardin, P.Herrmann Structural Testing of Executables 13/ 29

Concolic execution

Sy

—— Concolic execution: combination of concrete and symbolic
list executions [GKS 05, SMA 05, WMM 04]

Symbolic execution: path predicate generation

Concrete execution: help the symbolic execution

Test data
generation]

follow feasible paths only
approximate non-linear constraints
approximate library function calls
approximate multiple-level pointers

other?

S.Bardin, P.Herrmann

Structural Testing of Executables 14/ 29

Symbolic/Concolic execution in OSMOSE

G0
List

Test data
generation

Path enumeration : Bounded depth-first

Theory for path predicate : Bit-vector theory
m modulo arithmetic, signed and unsigned view
m extraction, concatenation, shift, and, or, xor, etc.

Functions : inlining

Concolic
m follow feasible paths only
e detect legal alias relationship along a path
o detect legal targets of cgoto A
® semi-concrete execution to detect easy cases of unsat

Memory model and alias management: usually, for structured
languages, possible aliasing are found according to variable types
m no notion of memory in our path predicate
e aliasing enforced a priori w.r.t. concrete execution
m aliasing depending on memory layout rather than types

S.Bardin, P.Herrmann

Structural Testing of Executables

15/ 29

R Motivations
li’t About machine code

The OSMOSE tool

Test data generation
Bit-level constraint solving
IR recovery

Experiments

Related work

Bit-vector solver

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 16/ 29

R Motivations
li’t About machine code

The OSMOSE tool

Test data generation
Bit-level constraint solving
IR recovery

Experiments

Related work

Bit-vector solver

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 16/ 29

About constraint programming (CP)

Constraint Programming: smart exploration of the space of
valuations to find a solution

list Constraint Programming = search + propagation

m Search : standard search algorithm (labelling, backtrack) in
the tree of possible valuations

m Propagation : between two labelling steps, variable domains
are narrowed according to propagation rules.

_ Pros & cons
Bit-vector solver
e very general framework: any constraint over finite domains
e trade-off: propagation rules + /- complex
e quite efficient to find solutions of “easy” formulas
e theory over finite domains

e not very good at proving UNSAT

S.Bardin, P.Herrmann Structural Testing of Executables 17/ 29

Bit-level constraint solving in OSMOSE

G0
List

Bit-vector solver

Based on a CP solver for bounded arithmetic [Bruno Marre]
m already used in the MBT tool Gatel for Lustre/Scade
m efficient propagators for linear/non-linear constraints

m mechanisms to detect UNSAT as soon as possible

We add a layer dedicated to the bit-vector theory
m modulo arithmetic with overflow and carry flags
m logical bit-wise operations

B other exotic constraints, e.g. count_leading zero

Our approach
m rely on bounded arithmetic as much as possible
m add optimisations according to experiments
> specific propagation rules: bit-wise operations and
masks
» specific constraints: compare(A,B,Res)

S.Bardin, P.Herrmann

Structural Testing of Executables 18/ 29

R Motivations
li’t About machine code

The OSMOSE tool

Test data generation
Bit-level constraint solving
IR recovery

Experiments

Related work

IR recovery

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 19/ 29

eS?

R Motivations
li’t About machine code

The OSMOSE tool

Test data generation
Bit-level constraint solving
IR recovery

Experiments

Related work

IR recovery

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 19/ 29

Static IR recovery

Basic static analysis [IDA Pro]
Ii't e sound (find only legal instructions)
e cheap and easy to implement

e really incomplete: stop at each cgoto A

Advanced static analysis [T. Reps]
e complete: all legal instructions/targets are covered
IR recovery e unsound: may find (too many) unfeasible targets

e very difficult to implement and get precise: cgoto T

S.Bardin, P.Herrmann Structural Testing of Executables 20/ 29

IR recovery in OSMOSE

Concolic execution for IR recovery

(:e:] m concrete execution may find new (legal) targets
m at each cgoto A: predicate to find new (legal) targets

Ii,t e sound: only legal targets are discovered

incomplete

e (P solvers are not very good for #-constraints

Static analysis is used to cheaply provide the symbolic
execution with possible targets
m constant propag. but T on alias and cgoto not propagated
T ® casy to implement, efficient
e neither sound nor complete
In OSMOSE: both techniques are interleaved
e still sound, more efficient on small tricky examples

o still incomplete (but test is incomplete in essence)

S.Bardin, P.Herrmann Structural Testing of Executables 21/ 29

eS?

R Motivations
li’t About machine code

The OSMOSE tool

Test data generation
Bit-level constraint solving
IR recovery

Experiments

Related work

Experiments

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 22/ 29

R Motivations
li’t About machine code

The OSMOSE tool

Test data generation
Bit-level constraint solving
IR recovery

Experiments

Related work

Experiments

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 22/ 29

6 small C programs cross-compiled to PowerPC 550 (gcc)

Cm and Intel 8051 (sdcc)

Programs

m msquare (40 loc, 1 fun): # constraints is exponential

B hysteresis (30 loc, 2 fun): need long sequences of inputs
merge (60 loc, 3 fun)
triangle (20 loc, 3 fun)
cell (20 loc, 3 fun): small tricky program given in [GKS 05]
list (20 loc, 1 fun)

Remarks
m more machine code instructions than C instructions
m compiler optimisations are turned off (more difficult here)

B executables may vary greatly from one architecture to
another (merge and sort)

S.Bardin, P.Herrmann Structural Testing of Executables 23/ 29

Sy

S.Bardin, P.Herrmann

Intel Pentium M 2Ghz, 1.2 GBytes RAM, Linux

Time out for the solver: 1 minute

program I C | Branch cover | Time
msquare 3x3 | 272 | 23 | 82%-100% 55
msquare 4x4 | 274 | 23 | 86%-100% 129
hysteresis 91 | 8 100% 45
merge 56 | 12 100% 13
triangle 102 | 19 | 52%-100% 0.8
cell 23 | 4 100% 0.4
list 13 3 100% 0.5

I: #instructions, C: #conditional branches, Time in seconds

Structural Testing of Executables

24/ 29

Sy

S.Bardin, P.Herrmann

Intel Pentium M 2Ghz, 1.2 GBytes RAM, Linux

Time out for the solver: 1 minute

program I C | Branch cover | Time
msquare 3x3 | 226 | 15 | 93% - 100% 7
msquare 4x4 | 226 | 15 82% 40
hysteresis 76 | 8 100% 66
merge 188 | 8 100% 0.5
triangle 40 | 9 100% 0.7
cell 18 | 4 100% 0.5
list 15 3 100% 0.5

I: #instructions, C: #conditional branches, Time in seconds

Structural Testing of Executables

24/ 29

R Motivations
li’t About machine code

The OSMOSE tool

Test data generation
Bit-level constraint solving
IR recovery

Experiments

Related work

Conclusion

Related work

S.Bardin, P.Herrmann Structural Testing of Executables 25/ 29

eS?

R Motivations
li’t About machine code

The OSMOSE tool

Test data generation
Bit-level constraint solving
IR recovery

Experiments

Related work

Conclusion

Related work

S.Bardin, P.Herrmann Structural Testing of Executables 25/ 29

Some related work

Commercial tools from the Absint company

(:e:] m static analysis for QoS properties

m critical systems, annotated C program, table of symbols

List [Esparza-Schwoon et al. 01,07]
m structural testing of Java byte-code via model checking

m Java byte-code is very high-level compare to machine code

[Reps-Balakrishnan 04,05]
B static analysis for IR recovery and verification
m complementary to our technique
R Structural testing via concolic execution
m many tools and teams: Cute, Dart, Exe, PathCrawler
m we share the same conceptual framework

m all these works consider C programs

S.Bardin, P.Herrmann Structural Testing of Executables 26/ 29

eS?

R Motivations
li’t About machine code

The OSMOSE tool

Test data generation
Bit-level constraint solving
IR recovery

Experiments

Related work

Conclusion

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 27/ 29

eS?

R Motivations
li’t About machine code

The OSMOSE tool

Test data generation
Bit-level constraint solving
IR recovery

Experiments

Related work

Conclusion

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 27/ 29

Conclusion

g=>9 About OSMOSE)]
list

The tool performs well on small experiments

First time structural testing is applied on machine code

Lessons learned)

m Automatic testing of machine code seems feasible

m Concolic execution and CP are our key concepts

m Concolic execution dramatically simplifies IR recovery
]

CP can handle all operations on bit-vectors. Quick
prototyping of all constraints, then optimise the bottlenecks

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 28/ 29

Ce:] Experiments on real-size problems

m currently: case-studies from aeronautics and energy

Technical improvements
m better interface

m use infos from the table of symbols

Scientific challenges
m alias and memory management
m floating-point arithmetic
m interruptions

Conclusion B Sca |a blllty

S.Bardin, P.Herrmann Structural Testing of Executables 29/ 29

	Motivations
	About machine code
	The Osmose Tool
	Test data generation
	Bit-vector solver
	IR recovery
	Experiments
	Related work
	Conclusion

