
Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Structural Testing of Executables

Sébastien Bardin Philippe Herrmann

CEA-LIST, Software Reliability Lab.

S.Bardin, P.Herrmann Structural Testing of Executables 1/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Overview

Structural testing at the machine code level

automatic test data generation

goal: structural coverage or bug finding

do not address the problem of the oracle

Conceptual framework: symbolic/concolic execution

Three main contributions

show how to adapt existing techniques to machine code

combination of concolic execution and static analysis

implementation of the tool Osmose

Limitations

no floating-point numbers, no interruptions

S.Bardin, P.Herrmann Structural Testing of Executables 2/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Why binary-level analysis?

No source code available

Components Off the Shelf (COTS)

legacy code

mobile code, malware

certification of third-party software

Low confidence in the compiling process

compilers may contain bugs

optimisations preserve (?) correctness, what about security?

What You See Is Not What You eXecute

High precision of the analysis

quality of service (QoS): wcet, maximal stack height, etc.

security

S.Bardin, P.Herrmann Structural Testing of Executables 3/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Outline

Motivations

About machine code

The Osmose tool

Test data generation

Bit-level constraint solving

IR recovery

Experiments

Related work

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 4/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Outline

Motivations

About machine code

The Osmose tool

Test data generation

Bit-level constraint solving

IR recovery

Experiments

Related work

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 4/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

About machine code

The machine code is interpreted:

1. PC is the entry-point

2. decode instr at address PC

3. execute instr, update PC

4. goto 2

Instructions

data: +, -, ×, /, >>, <<, xor, and, not, . . .

control: if, goto 10, cgoto A

Memory / variables

registers and RAM (very large array)

PC contains next instruction

SP is the stack pointer

S.Bardin, P.Herrmann Structural Testing of Executables 5/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Machine code vs Structured language

Structured language

Variables

unbounded # of variables

types

Functions

binding of arguments

local context

return to the caller

generic function

Control-flow

structured

given a priori

Machine code

Variables

few registers + RAM

a single type: bit-vectors

Functions

goto callee addr

no context, no binding

goto caller addr

goto x, where x may vary

Control-flow

unstructured

discovered at run-time

S.Bardin, P.Herrmann Structural Testing of Executables 6/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Difficulties of binary-level analysis

No control-flow given a priori

the CFG has to be discovered on-the-fly (IR recovery)

cgoto x: which values of x are legal?

Unstructured control-flow

arbitrary goto

low-level mechanism for next instruction and function call

• interruptions

Bit-level instructions

machine arithmetic, signed and unsigned operations

bit-vector operations: rotate, extract, concat, etc.

• floating-point numbers

S.Bardin, P.Herrmann Structural Testing of Executables 7/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Outline

Motivations

About machine code

The Osmose tool

Test data generation

Bit-level constraint solving

IR recovery

Experiments

Related work

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 8/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Outline

Motivations

About machine code

The Osmose tool

Test data generation

Bit-level constraint solving

IR recovery

Experiments

Related work

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 8/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Osmose

Osmose = tool for automatic analysis of machine code

Reverse-engineering

Automatic test data generation

Input

+ environment
+ objective

Outputs

+ test suite
+ report

S.Bardin, P.Herrmann Structural Testing of Executables 9/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Current state

Architecture support

processors Motorola 6800, Intel 8051, Power PC 550

all instructions for 8051, all instructions but one for 6800,

most user-level instructions for PowerPC

Test objectives

structural coverage: paths / branches / instructions

quantitative objective

Environment

entry point

volatile memory

initialised memory

Output

test suite

control-flow graph, call graph

statistics (# branches, coverage, etc.)

S.Bardin, P.Herrmann Structural Testing of Executables 10/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Key technologies

Test data generation

Concolic execution

Bit-precise constraint solving

IR recovery

Combination of static and dynamic recovery

Multiple architecture support

internal normalised instruction set, parametrised by an

architecture template

template: size of a memory word, memory regions and

registers

S.Bardin, P.Herrmann Structural Testing of Executables 11/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Outline

Motivations

About machine code

The Osmose tool

Test data generation

Bit-level constraint solving

IR recovery

Experiments

Related work

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 12/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Outline

Motivations

About machine code

The Osmose tool

Test data generation

Bit-level constraint solving

IR recovery

Experiments

Related work

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 12/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Framework: symbolic execution

“Path-based” test data generation

1 Select a path π in the CFG

2 Compute the path predicate ϕπ

3 a solution to ϕπ = a test datum exercising the path

4 If still something to cover then goto 1

Recent approach for programs : PathCrawler, Dart, Cute, Exe

Parameters

How to explore the set of paths?

Which theory for ϕπ?

Memory model and alias management

How to handle function calls?

S.Bardin, P.Herrmann Structural Testing of Executables 13/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Concolic execution

Concolic execution: combination of concrete and symbolic
executions [GKS 05, SMA 05, WMM 04]

Symbolic execution: path predicate generation

Concrete execution: help the symbolic execution

follow feasible paths only

approximate non-linear constraints

approximate library function calls

approximate multiple-level pointers

other?

S.Bardin, P.Herrmann Structural Testing of Executables 14/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Symbolic/Concolic execution in Osmose

Path enumeration : Bounded depth-first

Theory for path predicate : Bit-vector theory

modulo arithmetic, signed and unsigned view

extraction, concatenation, shift, and, or, xor, etc.

Functions : inlining

Concolic

follow feasible paths only

• detect legal alias relationship along a path

• detect legal targets of cgoto A

• semi-concrete execution to detect easy cases of unsat

Memory model and alias management: usually, for structured

languages, possible aliasing are found according to variable types

no notion of memory in our path predicate

• aliasing enforced a priori w.r.t. concrete execution

aliasing depending on memory layout rather than types

S.Bardin, P.Herrmann Structural Testing of Executables 15/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Outline

Motivations

About machine code

The Osmose tool

Test data generation

Bit-level constraint solving

IR recovery

Experiments

Related work

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 16/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Outline

Motivations

About machine code

The Osmose tool

Test data generation

Bit-level constraint solving

IR recovery

Experiments

Related work

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 16/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

About constraint programming (CP)

Constraint Programming: smart exploration of the space of
valuations to find a solution

Constraint Programming = search + propagation

Search : standard search algorithm (labelling, backtrack) in

the tree of possible valuations

Propagation : between two labelling steps, variable domains

are narrowed according to propagation rules.

Pros & cons

• very general framework: any constraint over finite domains

• trade-off: propagation rules +/- complex

• quite efficient to find solutions of “easy” formulas

• theory over finite domains

• not very good at proving UNSAT

S.Bardin, P.Herrmann Structural Testing of Executables 17/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Bit-level constraint solving in Osmose

Based on a CP solver for bounded arithmetic [Bruno Marre]

already used in the MBT tool Gatel for Lustre/Scade

efficient propagators for linear/non-linear constraints

mechanisms to detect UNSAT as soon as possible

We add a layer dedicated to the bit-vector theory

modulo arithmetic with overflow and carry flags

logical bit-wise operations

other exotic constraints, e.g. count leading zero

Our approach

rely on bounded arithmetic as much as possible

add optimisations according to experiments
◮ specific propagation rules: bit-wise operations and

masks
◮ specific constraints: compare(A,B,Res)

S.Bardin, P.Herrmann Structural Testing of Executables 18/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Outline

Motivations

About machine code

The Osmose tool

Test data generation

Bit-level constraint solving

IR recovery

Experiments

Related work

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 19/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Outline

Motivations

About machine code

The Osmose tool

Test data generation

Bit-level constraint solving

IR recovery

Experiments

Related work

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 19/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Static IR recovery

Basic static analysis [IDA Pro]

• sound (find only legal instructions)

• cheap and easy to implement

• really incomplete: stop at each cgoto A

Advanced static analysis [T. Reps]

• complete: all legal instructions/targets are covered

• unsound: may find (too many) unfeasible targets

• very difficult to implement and get precise: cgoto ⊤

S.Bardin, P.Herrmann Structural Testing of Executables 20/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

IR recovery in Osmose

Concolic execution for IR recovery

concrete execution may find new (legal) targets

at each cgoto A: predicate to find new (legal) targets

• sound: only legal targets are discovered

• incomplete

• CP solvers are not very good for 6=-constraints

Static analysis is used to cheaply provide the symbolic
execution with possible targets

constant propag. but ⊤ on alias and cgoto not propagated

• easy to implement, efficient

• neither sound nor complete

In Osmose: both techniques are interleaved

• still sound, more efficient on small tricky examples

• still incomplete (but test is incomplete in essence)

S.Bardin, P.Herrmann Structural Testing of Executables 21/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Outline

Motivations

About machine code

The Osmose tool

Test data generation

Bit-level constraint solving

IR recovery

Experiments

Related work

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 22/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Outline

Motivations

About machine code

The Osmose tool

Test data generation

Bit-level constraint solving

IR recovery

Experiments

Related work

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 22/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Experiments I

6 small C programs cross-compiled to PowerPC 550 (gcc)

and Intel 8051 (sdcc)

Programs

msquare (40 loc, 1 fun): # constraints is exponential

hysteresis (30 loc, 2 fun): need long sequences of inputs

merge (60 loc, 3 fun)

triangle (20 loc, 3 fun)

cell (20 loc, 3 fun): small tricky program given in [GKS 05]

list (20 loc, 1 fun)

Remarks

more machine code instructions than C instructions

compiler optimisations are turned off (more difficult here)

executables may vary greatly from one architecture to

another (merge and sort)

S.Bardin, P.Herrmann Structural Testing of Executables 23/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Experiments II

Intel Pentium M 2Ghz, 1.2 GBytes RAM, Linux

Time out for the solver: 1 minute

Processor 8051 (8 bits)

program I C Branch cover Time
msquare 3×3 272 23 82%-100% 5.5
msquare 4×4 274 23 86%-100% 129
hysteresis 91 8 100% 45
merge 56 12 100% 13
triangle 102 19 52%-100% 0.8
cell 23 4 100% 0.4
list 13 3 100% 0.5

I: #instructions, C: #conditional branches, Time in seconds

S.Bardin, P.Herrmann Structural Testing of Executables 24/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Experiments II

Intel Pentium M 2Ghz, 1.2 GBytes RAM, Linux

Time out for the solver: 1 minute

Processor PowerPC 550 (32 bits)

program I C Branch cover Time
msquare 3×3 226 15 93% - 100% 7
msquare 4×4 226 15 82% 40
hysteresis 76 8 100% 66
merge 188 8 100% 0.5
triangle 40 9 100% 0.7
cell 18 4 100% 0.5
list 15 3 100% 0.5

I: #instructions, C: #conditional branches, Time in seconds

S.Bardin, P.Herrmann Structural Testing of Executables 24/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Outline

Motivations

About machine code

The Osmose tool

Test data generation

Bit-level constraint solving

IR recovery

Experiments

Related work

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 25/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Outline

Motivations

About machine code

The Osmose tool

Test data generation

Bit-level constraint solving

IR recovery

Experiments

Related work

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 25/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Some related work

Commercial tools from the Absint company

static analysis for QoS properties

critical systems, annotated C program, table of symbols

[Esparza-Schwoon et al. 01,07]

structural testing of Java byte-code via model checking

Java byte-code is very high-level compare to machine code

[Reps-Balakrishnan 04,05]

static analysis for IR recovery and verification

complementary to our technique

Structural testing via concolic execution

many tools and teams: Cute, Dart, Exe, PathCrawler

we share the same conceptual framework

all these works consider C programs

S.Bardin, P.Herrmann Structural Testing of Executables 26/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Outline

Motivations

About machine code

The Osmose tool

Test data generation

Bit-level constraint solving

IR recovery

Experiments

Related work

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 27/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Outline

Motivations

About machine code

The Osmose tool

Test data generation

Bit-level constraint solving

IR recovery

Experiments

Related work

Conclusion

S.Bardin, P.Herrmann Structural Testing of Executables 27/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Conclusion

About Osmose

The tool performs well on small experiments

First time structural testing is applied on machine code

Lessons learned

Automatic testing of machine code seems feasible

Concolic execution and CP are our key concepts

Concolic execution dramatically simplifies IR recovery

CP can handle all operations on bit-vectors. Quick

prototyping of all constraints, then optimise the bottlenecks

S.Bardin, P.Herrmann Structural Testing of Executables 28/ 29



Motivations

Machine code

The Osmose Tool

Test data
generation

Bit-vector solver

IR recovery

Experiments

Related work

Conclusion

Future work

Experiments on real-size problems

currently: case-studies from aeronautics and energy

Technical improvements

better interface

use infos from the table of symbols

Scientific challenges

alias and memory management

floating-point arithmetic

interruptions

scalability

S.Bardin, P.Herrmann Structural Testing of Executables 29/ 29


	Motivations
	About machine code
	The Osmose Tool
	Test data generation
	Bit-vector solver
	IR recovery
	Experiments
	Related work
	Conclusion

