Structural Testing of Executables

Sébastien Bardin Philippe Herrmann

CEA, LIST
Software Reliability Lab
Boite 65, Gif-sur-Yvette, F-91191 France
E-mail:first. name@ea. fr

Abstract Here are three industrial cases where an analysis on the
executable would be valuable.

Verification is usually performed on a high-level view of 1. In the critical systems’industry, a company may not
the software, either specification or program source code. have access to the program source code of a piece of soft-
However in certain circumstances verification is more rel- ware it has acquired. For example when the company is not
evant when performed at the machine code level.This pa-a major customer for the vendor. Then these executables
per focuses on automatic test data generation from a stan-have to be certified without any programming language de-
dalone executable. Low-level analysis is much more dif- scription.
ficult than high-level analysis since even the control-flow 2. In aeronautics, the DO-178B standard [15] imposes
graph is not available and bit-level instructions have to that verification must be performed on the binary level as
be modelled faithfully. We show how “path-based” struc- soon as the conformity between the high level code and the
tural test data generation can be adapted from structured machine code cannot be ensured. Since this binary level
language to machine code, using both state-of-the-arttech analysis is very expensive, constructors prefer to avoyd an
nologies and innovative techniques. Our results have beentechnology which would blur the conformity. Including
implemented in a tool namedsmosEand encouraging ex- optimising compilers, which would increase performances
periments have been conducted. and lower costs.

3. In the computer security domain, an optimising
compiler can produce a non-secure executable from secure
source code as reported in [5]. The problem is due to
very standard data-flow optimisations. For example, the
compiler removes an operation consisting in setting to zero

The verification task is generally performed at the spec- some memory value which is not used later in the program.
ification level (functional testing, model checking) orla¢t The trick is that this operation was intended to erase a pass-
programming language level (structural testing, stated-an word value copied in clear text. While this operation was
ysis). In the latter case, by programming language we meanindeed useless from the functional point of view, it was es-
structured languages such as C or Java. It may look surprissential from the security point of view. A similar bug was
ing that verification techniques do not check the machine found during the Windows security push 2002 [12].
code of the software under verification. After all, the ma- In the last case, a binary-level analysis is mandatory to
chine code is truly what the computer executes. Actually, detect the bug since the program source code is absolutely
binary-level analysis is considered more difficult thaneoth correct. This is known as the WYSINWYX phenomenon:
analyses, while being redundant with them. What You See Is Not What You eXedbie

1. Introduction

We agree with the first point and explain why binary-level
analysis is difficult later in this section. However, we ofai
that in certain circumstances machine code is (unfortu-
nately!) the most relevant level at which to perform veri-
fication.

Relevance of binary-level analysis. We claim that
binary-level analysis is relevant in at least two situagion
when no high-level source code is available or when the in-
crease of precision is essential. It is quite common that a
company cannot have access to a high-level documentation,
“Work partially funded by EDF and thsoftware Factory/MobDrival €ither the vendor does not provide the source code (Com-
project of the French cluster SYSTEM@TIC PARIS-REGION. mercial Off-The-Shelf software) or the source code is sim-

ply lost (legacy code). Standard source code analysis re4nstructions. All ISA share some common operations such
lies on the assumption that the compiler preserves the pro-as arithmetical or bit-wise logical operations but theristex
gram semantics. While it is realistic for standard reachabil subtle variations (carry and overflow), optimised versions
ity properties and standard compilation techniques, it can and even “exotic” instructions like machine-code string
not be trusted anymore in the case of strong safety/securitycopy or decimal conversion.
requirements and highly sophisticated optimisations.
A third situation could be that of programs written in a

combination of a structured language and an assembly lanBit-vector theory. The bit-vector theory [6, 18] for-
guage, typical of embedded systems. However this situationmalises standard machine instructions at the bit level: For
is significantly different from a standalone executablé-ana mulae are interpreted over vectors of bits of a fixed length.
ysis, since we can rely on additional high-level informatio Instructions include basic read and write operations,esign
from both the compiler and the source code, like the symbol and unsigned views of bit-vectors, modulo arithmetic, ogi
table or possible values ofsam t ch-like instruction. cal bit-wise operations and other low-level instructionsts

as shift, rotation or concatenation. Floating-point amigtic
Major difficulties of binary-level analysis. Machine is usually not considered though it can be encoded. Satisfi-

code analysis is undoubtedly more difficult than any higher- @bility in bit-vector theory is decidable since the intefar

level analysis. The main problem is the so-callegtrme- tion domain is finite.

diate Representation recovery (IR recovergince an exe-

cutable is nothing more than a sequence of bits (see below),

we have no information about any basic control-flow fact The OSMOSE tool. The OsmosEtool aims at perform-

(such as functions, loops or variables) usually given feefr ing automatic test data generation on standalone exeeutabl

in higher-level analysis. files. The test selection is white box since we do not con-

sider any information other than the executable itself. The

:100D43000A0A4320636F6D70696C65722064656D78

:100D53006F6E7374726174696F6E2070726F6772F5
:100D63006 16 DOA0OA00496E707574206F7065726157
:100D730074696F6E3A20272B272028414444292089
:100D83006F7220272D27202853554229203F20000A
:100CEA00759852758920758869758DF37BFF7A0D21
:100CFA007943120862120DDB8E648F65120DDBBE4A
:100D0A00668F677BFF7A0D7968120862120E0BEF05
:100D1A00B42B03D38001C3921130110CE56525670A
:100D2A00FFE5643566FEB00BC3E5659567FFE564FC
:090D3A009566FEL20DF780BD2242
:100E1C00496E707574204E756D626572203F2000AE
:100DBAO0BB68BAE9896A120EOBAB6B056AES6AAAAA
:100DCA00697002056914F9EF120C63FFEFB40AE6C1
:010DDA0022F6

tool can be used to debug a program or to build a test
set achieving some structural coverage criteria based on
the control-flow graph, like instruction or branch coverage
This kind of test set is mandatory in certain critical donsain
for example aeronautics [15]. The tool can fititrinsic”

bugs, i.e. executions which are undoubtedly faulty indepen
dently of the specification of the software, like division by
0, violation of the call-return policy, read of an unalloaet

memory cell or jump to an incorrect instruction. Functional
Actually we do not even know the number of instructions in PUgs are out of scope since we do not have access to any
the program since different instructions may have differen €xecutable specification.

sizes, instructions can overlap, there is no syntactiediff We focus on reactive systems, commonly found in em-
ence between instructions and data and finally we cannotbedded software. Reactive systems can interact with an en-
determine reliably targets of dynamic jumps, get o in- vironmentvia sensors and actuators. In this case, a test data
structions whose destination is evaluated at run-time. is an initial valuation for input data and a sequence of value

Moreover, when performing binary-level analysis, low- read on each sensor. The user has to provide a description
level mechanisms have to be taken into account preciselyof the environment, declaring volatile memory addresses.
while for higher-level analysis, coarser abstractionsiare A very strong requirement of the SMOSEproject is to
ally sufficient. The most obvious one is machine arithmetic. be as independent as possible from any particular architec-
Machine integers behave differently from usual integers. ture or instruction set, so that users can add their own-archi
For example, considering 32-bit long unsigned integees, th tectures without any assistance from the developerssf O
operation 4294967295+1 returns 0. Floating-point num- MOSE. This is achieved through a generic software archi-
bers also behave very differently from real numbers. Actu- tecture arranged around a notion of generic machine code.
ally, while machine integers can be modelled quite pregisel The tool currently handles three processors: the Intel 8051
by modulo arithmetic, there is no nice standard theory for the Motorola 6800 and the Freescale PowerPC 550. The
floating-point numbers. Another low-level construct diffi- first two processors are 8-bit and the last one is 32-bit. A
cult to analyse are hardware and software interrupts. consequence of being generic is tha@aMDSEruns tests in

Finally there is a great diversity of hardware architec- simulation mode rather than in exact mode. This is essential
tures and instruction sets (ISA). They differ in terms o&siz unless running the tool on the exact architecture targeted b
of memory words, physical memory layout, interrupts and the executable under test.

Technologies. Binary-level analysers must first build a
high-level model of the software under investigation. Then
verification techniques may be used. Our verification tech-
nology is based on structural test data generation by com-
puting a path predicate from a control path and solving this
predicate. Our predicates are expressed in the bit-vector
theory, so we also need a constraint solver for this theory.

phase the high-level model is updated and a static anal-
ysis is re-launched. It does not need to be very pre-
cise since a complementary dynamic analysis is per-
formed, avoiding difficulties inherent to purely static
techniques [4, 5].

It turns out that the @MosEtool is organised around three Limitations. Like most test data generation tools [10,
basic technologies: 20, 23], we do not consider floating-point arithmetic con-

straints. Some solutions have been proposed in the con-
e Path-based test data generationVe generate tests straint programming community. But they mostly relax the

from a white box perspective, more precisely we fol- problem to real arithmetic [13] or suffers from slow conver-
low the recent and promising path-based test data gen-gence phenomenon [3]. We also do not address interrupts,
eration approach [10, 20, 23]. To the best of our knowl- and are not aware of any verification technology handling
edge itis the first time this approach is used for binary- this issue.

level testing. The core idea of the test data generation

technique is to select a first path in the control-flow

graph (here: in our high-level model) and extract its Contributions. There are three main contributions in this
path predicateP,,. The path predicate’; is a con- paper.

straint over the program input values such that any 1. Itis the first time a path-based structural test data gen-
test case whose input data satigfy will follow the eration technique is applied directly at the binary levalr O
pathz. A test data covering the path is found asa work pinpoints the main issues and shows how to adapt
solution of P,,. Then a new pathr, is selected and existing techniques from structured languages to machine
the process is iterated until the coverage objective hascode. We show also how the testing perspective simplifies
been achieved. crucial issues like IR recovery.

A major improvement of path-based test data gener- 2. We propose inn_ovative golutions for certain a_spects:
ation is the concept of concolic execution [20]. It an enhanced_concollc execu_’uon geared toward_s alias han-
means that a concrete execution is running in paral- dling, dynamic target detection and early pruning of the
lel to the symbolic execution, collecting relevant infor- Path search ; and a combination of static and dynamic ap-

mation along the concrete execution path to help the Pr0aches to solve the IR recovery problem. _
symbolic execution. In the original approach, the con- 3- These results have been implemented in the first struc-

crete execution is used to find a feasible initial path and tural test data generation tool for executables. Our imple-
to discover on-the-fly the program’s CFG [10, 20, 23], mentation and first experiments demonstrate the feasibil-

or to approximate complex instructions like non-linear ity of the approach. The tool is also largely architecture-

constraints or library function calls [10, 20]. independent and can currently handle three different archi
tectures and machine codes (8051, 6800, PowerPC 550).

Bit-vector constraint solving. The test generation

method described above relies on solving path predi-

cates. While test data generation tools from high-level Related work. We are not aware of any work dedicated
descriptions [10, 13, 20, 23] are usually based on inte- t0 structural test data generation on standalone exeestabl

ger constraints (classically bounded arithmetic [13, 23] SOMe verification tools work on low level description, but
or linear arithmetic [10, 20]), our constraints are ex- they have access to additional information from the program
pressed in the bit-vector theory. Our approach is basedSource code. We can cite for example jMoped [7, 19] or
on the constraint programming paradigm [1], which is t00Is from the commercial company Absint [21], geared to-
very flexible and allows us to encode all “exotic” in- Wards performance estimation rather than verification. Our
structions we may find in instruction sets. We write €Sting technology is inspired by the path-based approach

our own constraint solver on top of an existing one for With concolic execution pioneered in [23] and extended
usual integer constraints. in [10, 20]. However this work considers structured lan-

guages (C or Java) and ideal arithmetic. Finally IR recovery
IR recovery. We use an innovative combination of tools work on machine code, but do not perform any veri-
static and dynamic analysis to build an abstract high- fication task. While commercial tools like [22] have prob-
level model of the software. First, a static analysis lems with dynamic jumps, dedicated static analysis tech-
creates a coarse model. Then if new parts of the pro-niques have been developed recently [4, 5]. A more exten-
gram are discovered during the test data generationsive description of related work is given in section 6.

Outline. The remaining part of the paper is organised as struction (in the executable) and its successor nodes in the
follows. The next two sections describe our core technolo- ACFG. The external proceduiol ve returns a solution
gies: test data generation in section 2 and IR recovery inof a constraint or thensat exception in case of unsatis-
section 3. Section 4 presents theMDdsEtool and its im- fiability. We present the algorithm for an all-path coverage
plementation. Section 5 describes some experiments withtermination criterion. To adapt the algorithm to otheresrit
the tool. Finally section 6 discusses related work and sec-ria, the program must keep a set of uncovered itéimand

tion 7 concludes and presents future work. each time a path predicate is solved, items covered by the
execution are removed. The program stops as sodhias
2. Test data generation empty.

Some important implementation details are omitted.
First formulae are added incrementally to our solver to take
advantage of incremental solving and detect infeasiblespat
early. Second the user can set up different parameters to
limit the search (depth bound or time-out for the constraint
solver). Finally aconcolic executiofs preferred to a purely
symbolic execution.This feature is described below.

Our test data generation algorithm follows the path-
based principle: the idea is to enumerate all paths and for
each path to compute its path predicate and solve it. The,
solution is a test data covering the path. The procedure
is parametrised by a structural termination criteriong lik
instruction or branch coverage. Once the full coverage is
achieve_zd, the test data generation stops. We use a bound ngrithm GENTESTL(nodeiniD
depth-first traversal of the control-flow graph to enumerate input : initial node nodshnit
all paths in a recursive manner. This is a standard strat-parameter : atomic, node.addr, node.next
egy [10, 20, 23] which allows constraints to be added in-| °UtPut: setof test data Res
crementally, and requires only a minimal change to get a ; Res—0

. . . : REC(nodeinit, T)
new path predicate by reusing the path prefix up to the last 3. return Res

choice point in the program. procedure REC(node,®)

input : node, constraind
Compare to [10, 20, 23], we work on an (abstract)| parameter : Res, atomic, node.addr, node.next

control-flow graph (ACFG) rather than on the program it- | output: no result, update Res

self. The ACFG allows us to use static techniques for IR| 1: Casenodeof

recovery in addition to the dynamic exploration of the ex- g le g r* ens"o’lg‘é?g’) Rese Resu (S,
ecutable. The test data generation algorithm and the IR - o7 " 0 - P
recovery mechanism are deeply interwoven and the ACFG s: end try

may be updated during the test generation. For the sake 0f6: | block instr— REQ(node.next® A ATOMIC(instr))
simplicity, we consider in this section that the ACFG is pre-| ” I ggltlof:;‘é‘ée::EEO‘éL”o%d:g)

computed once and for all before the test data generation isg. | ite(cond,inode,tnodey

launched. The whole IR recovery mechanism is describedio: REC(inode,® A cond)REC(tnode,® A —~cond)

0 ~

in section 3. 11| CQOfto e>|<|pr—>d d y
; [12: or all tnodec node.nextdo
AC'FG npdes can be elyher bllocldslc(clg) of basic in- 19 REC(tnOde.d A expr — tnode.addr)
structions like common arithmetic and bit-wise logic op- | 14 end for
erations, function callscéll), conditional statementste), 15: end case
static jumps to a predefined targgobfo) or dynamic jumps Algorithm 1: Basic test data generation algorithm

to a computed targetgoto).

Algorithm 1 presents the basic idea of our test data gen-
eration algorithm. Choice points in a machine code pro- Concolic testing. We follow the concolic principle with
gram are conditionals and dynamic jumps. For conditional, tWO executions (concrete and symbolic) running in paral-
we just force the search to take tfi€ or “else” branch ~ el. We enhance the approach by adding a ttiseimi-
by adding to the path predicate the conditional or its nega- concrete”execution dynamically detecting constant values
tion. In the case of dynamic jumps, we explore each possi-at €ach step of the execution (see Algo. 3 on page 11).
ble target by constraining the argument of the jump (usually
an arithmetic expression over registers) to take each pos-
sible value in turn. Static jump does not modify the path
predicate. Function calls are inlined and managed as static
jumps. Basic instructions are translated into formulaeney t
procedureat om c. The ACFG is given by its nodes with
methods addr and. next to accessthe address ofthein- e The concrete execution is classically used to detect a

e The new semi-concrete execution is used to prune the
path search by detecting on-the-fly trivial cases of in-
feasible paths (e.g. conditional or dynamic jumps eval-
uated over constant values) and avoid calls to the con-
straint solver on inconsistent formulae.

first feasible path but also in an innovative way to han- of V' to find a solution to¢. Two main steps are inter-
dle alias constraints (see below) and to dynamically leaved and iterated until a solution is found (or the absence
detect new targets for dynamic jumps (see section 3). of solution is proved):searchand constraint propagation
The search is a standard depth-first one with labelling and
backtracking. At each step a variable is assigned a value
from its domain. Once all variables are assigned, the valu-
ation is checked against the formula. If it is not a solution,

2 : . e backtracking allows to make new choices. When neither la-
software analysis since tracking variable modifications be : . .
belling nor backtrack are possible, the formula is proved to

mes much more problematic. In presence of ali h g s .
comes much more problematic presence of allases t e unsatisfiable. To avoid “blind” labelling as much as pos-

Egthrl g:tzﬁ I\(/:veilltlebs fgﬁ(l)s\,r;%e;f gfgfuﬁgﬁugh to ensure that thesible and speed up the search, constraint propagation mech-

It turns out happilv that aliasing is a bit less difficult anisms reduce variable domains at each step of the search
from a testin erFs)pe{:tive than fro?n a static one, since Wethrough propagation rules. For example, consider the for-
9 persp N ' . mulay < z and supposes that the domainyafquals to the
do not need to compute a safe approximation of all possi-

ble alias relationships. We use the following solution: the interval [0, 1000] and that variable- has just been labelled

concrete execution is analysed to extract the aliasin re—With the valuet2. Then the domain of is reduced t40, 42]
y 9 by propagation rules.

lationships existing in the concrete trace and add them to Constraint brogramming is a flexible paradiam to model
the path predicate. In a sense, our algorithm is modified to Prog glise b'e paradig i

. . . . and solve problems, and it is quite efficient at finding
deal with (path,alias)-predicates rather than path patelc uicklv a solution for “easv-to-solve” formulae. i.e. f
only. The good point is that the solution found (if any) is q ¢ casy . , 1.€. TOm
sure to follow the right execution path. The bad point is lae having many solutions. However it can suffer from the

X . . " . . so-called'slow convergence phenomenoah “difficult-to-
that this (path,alias)-predicate may be infeasible whike t N . . .

solve” formulae and inconsistent formulae. It is why we try

path is feasible V.V'th another alias const'ralnt.' A SOIUtEm.I to get rid of infeasible path predicates early in the teshdat
to enumerate a fixed number of alternative alias constraints

for this path by relaxing some of the constraints. Then we generation algorithm rather than in the constraint solver.

need to check that the generated data input does lead to an We' V\(rote_ a constrglnt solver for p|t-vectors on.top of
execution following the right path. an existing library for integer constraint programming de-

This technique allows us to discover aliasing relation- veloped in the model-based testing tool GATeL. [13]. See

. . o section 4 for more implementation details.
ships depending only on the memory layout. This is or-
thogonal to [20] where syntactic alias relationships are ex
tracted from the C program, mainly from type declarations 3. IR recovery
and alias expressions in branch conditions.

Alias. We say that two memory cells are in an alias re-
lationship when one of them contains the address of the
second. Aliasing is known to be a very difficult point in

We use an innovative combination of static and dynamic
Functions. Functions are inlined. Recursive functions are analysis to build an ACFG of the software. The static anal-
allowed since the bounded depth first search prevents ug/sis does not need to be either complete or correct since the
from infinite looping. A modular analysis of function calls dynamic analysis will distinguish between valid jump tar-
would be more satisfactory. However it is not clear how gets and invalid ones. Hence the static analysis relies on
to perform such a modular analysis for structural test datalight-weight techniques and its goal is to cheaply guide the
generation. [11, 14] propose some solutions. The first onedynamic analysis. The dynamic technique is based on slight
seems to be quite inaccurate because of a very basic callmodifications of the test data generation algorithm.
context management, and the second one needs code anno-

tation which is unrealistic for machine code. Algorithm 2 presents our technigue. The static algorithm

(STATICPROPAGATION) and the dynamic one (a modified
version of GENTEST) are interleaved and iterated in the
Constraint solving. We choose to rely on a generic solv- following manner. SATICPROPAGATION updates a map
ing technique, namely constraint programming [1], rather from dynamic jump instructions to potential address target
than theory-specific algorithms. It is then easy to adapt new(Tar get Cache). The map itself is used as an entry of
instructions while keeping reasonable performance. Con-STATICPROPAGATION so that targets discovered in earlier
straint programming is mainly limited to theories over #nit calls to the procedure are not forgotten in later calls be-
domains. Happily the bit-vector theory falls into this seop cause ofT spreading. Then the straightforward procedure
Considering a formula (or constraint)on a set of vari- BuILD creates an ACFG from the executable, the jump-to-
ablesV in a boundeddomain D, constraint programming target map and the entry-point of the file. Finally the test
is essentially a clever exploration of all partial valuaso generation algorithm ENTESTIs launched on the ACFG.

When a new target is discovered dynamically, #xeep- However, the data input generation algorithm ensures that
tion newTar get is thrown and caught by the top-level al- false targets will not generate false tests, and it may dis-
gorithm, the jump-to-target map is updated and the whole cover missing targets dynamically. One could add an ad-
process is iterated starting on the new map. We describeditional safe static analysis to detect whether or not all dy

STATICPROPAGATION and the modification of GNTEST namic jumps are saturated, i.e. all their targets have been

below. discovered. This is not yet done in our tool.

algorithm IR-RECOV(exec,iadd)

input: executable exec, initial address iadd DlSCUSSlon Purely static tech_nl_ques for IR recovery are

output: a test suite and the ACFG either too coarse or very sophisticated [4, 5] and difficult t

1: TargetCache— 0 implement for the non-expert because they aim at comput-

2: Loop , ing a both safe and tight overapproximation. In a dynamic

3: TargetCache- STATICPROPAGexec,iadd, TargetCache) perspective completeness can be relaxed

4: ACFG« BUILD(exec,iadd,TargetCache) ! N

5 try On the other hand, a purely dynamic discovery of the

6. return (GENTEST(ACFG.initnode),ACFG) executable structure is feasible but suffers from two draw-

g' W't‘hn’zﬁ};gz? (ump.taddy- backs. First, dynamic methods cannot ensure that all

o: TargetCache- TargetCacheJ {(jump,taddr} dyn_amlc targets _have been explored.. Second, in con-

10: endtry straint programming, equality constraints are more effi-

11: end loop ciently solved than disequality constraints. It is therefo
Algorithm 2: IR recovery mechanism more efficient to discover quickly possible targets andary t

reach them by solving equality constraints than iterafivel
Static analysis. Our static analysis is mostly a standard solving disequality constraints to discover targets.
constant propagation (over finite sets of constants rather
than singleton) except that: (1) when abstract dynamic jump4. The OsSMOSE tool
targets are not precise enough (i.e. evaluafé to the ab-
stract) we do not propagate values to all instructions ; (2) oyr results have been implemented in thev@sEtool.
when abstract alias relationship are not precise enough weggyoseis an automatic binary-level analyser. It takes as
do not propagate values to all aliased memory cells. input the executable (currently: Intel 8051, Motorola 6800

Hence this static analysis does not compute a safe overy poyerPC 550), the name of the hardware architecture and

apprquat!on of the program. In our pontext, MIssIng tar- nstryction set, a structural coverage objective (culyent
gets is an issue because we may miss some paths of thstryctions, branches or paths) and, optionally, a descri
program, but having too many false targets is also an is-(ion of the environment. Outputs are mainly a high-level

sue because this will lead to many infeasible paths in the enresentation of the software under analysis, a set of test
ACFG, and the test generation technique may suffer from ya¢5 and a report stating the bugs encountered, the cover-

slow-convergence phenomena. Since missing targets Mayge achieved by the test suite and unreached branches or
be discovered dynamically, we adapt the static analysis t0;,structions. The user view is described in figure 1.
avoid the second case, at the price of incompleteness.

scenarii,

Dynamic analysis. The ACFG is also discovered on-the- Sosnai,
fly. This requires modifying thegoto case of the concolic H

test data generation algorithm. When a new target is discov- Tou | -(—
ered, an exception is thrown and caught by the IR recovery lw

algorithm. The ACFG is updated accordingly and the test
data generation algorithm continues. There are two reasons

executable
file

b/

bugs,

threats Refinement

Osmose

high-level
model

i

why a new target can be discovered: (1) it can be discovered
by the concrete execution; (2) once all targets have been
treated, an additional path predicate is computed constrai

| tool | | output

ing the target expression to take an undiscovered value. We]
present in Algorithm 3 on page 11 a precise description of
the test data generation algorithm, including concolic-exe Figure 1: User view of @MOSE

cution and IR recovery mechanisms.

Correction and completeness. Our static analysis is nei- Generic machine code and simulation. To ensure the
ther complete (missing targets) nor correct (false tajgets independence of the tool from any specific hardware ar-

chitecture and machine code, we work on a generic ma-over-approximation (because of false targets) of the real
chine code parametrised by a generic architecture descripCFG and the coverage measure is an under-approximation
tion. The concrete machine code is first translated into thewhich the user can rely on. In the other case, the ACFG
generic machine code by a translation module. All analysesmay contain both false and missing targets due to unsatu-
are performed on the generic machine code and one needsated dynamic jumps. The ACFG cannot be used as a safe
only to write a specialised translation module to integrate over-approximation anymore. The ACFG still provides in-
a new architecture. The processors currently supported byteresting information to the user, but the coverage measure
OsMmoskEare listed in table 1. is not faithful anymore. A solution is to add a standard safe
static analysis to detect whether or not all dynamic jumps

Processor Manufacturer | Date | Generation . -

5800 Motorola 1975 T 8 bits are saturated and report it to the user. This is not done yet.
8051 Intel 1980 | 8 hits

PowerPC 550| Freescale 1997 | 32 bits

Architecture. The software architecture is presented in

Figure 2. The tool engine uses two external modules: a
translation module from dedicated machine code to our
generic one and a bit-vector theory constraint solver.

Table 1. Processors supported by OSMOSE

The generic machine code implies tha$ MOSEruns tests
in simulation mode rather than in exact mode like other

structural test tools. This is mandatory unlessM®SEcan || || |
be run on the exact architecture targeted by the executable [[
under test, which is unrealistic for most processors. INPUT

Machi ne code ﬁh
Input/output. Inputs are the executable, the hardware ar- |wooo | Transiar o ;\;og SETDATHLEE
chitecture name and a description of the environment. Out-|"

puts are mainly the set of test data with the coverage mea-
surement and a ACFG of the software. The interface is cur- outeur
rently textual. gt eve

model
+

new

A

discovered ?

Environment. The environment is modelled by defining 'r"g;;'”"*
some memory cells as volatile, meaning that they corre-
spond to inputs and can be modified randomly at any step

of execution. Algorithms of sections 2 and 3 are modified

to handle read-operations on volatile memory cells. They Canscat
return the “top” value in the static analysis, a random value
in the concrete execution and a new variable in the symbolic

execution. In the presence of an environment, a test data is Figure 2: Software architecture ofSPIOSE
composed of a valuation of input values and a sequence of

read values for each volatile memory cell.

Test Data
Generation

Simulation

Parameters. The tool provides command-line options Implementation. OsMOSEis written in OCaml, a func-
and a configuration file to set different parameters of the tjgnal language with strong static typing and high-level
analysis algorithms. For example the depth of the path-features like functors (parametrised modules) which have
search (test data generation), the time-out value (constra proven very useful for the generic software architecture.
solver) or the size of the abstract domain (constant propa-The constraint resolution engine is built upon the bounded
gation). A particular programming effort has been devoted arithmetic solver developed for the model-based testiol to
to extracting from the code as many parameters as possiblegATeL [13]. We wrote a layer implementing the bit-vector
so that the user can easily set up their values. theory on top of it. GATeL and our extension are written in

the constraint logic programming system ECLiPSe [2]. The
Which guarantees? While reported bugs are guaranteed resolution engine is plugged into the OCaml source code
to be real bugs in the simulation mode o§@osE(valida- using the C language as an intermediate. The program con-
tion on the concrete hardware architecture may be required)tains 22 kloc of OCaml (6kloc more for the three translation
the ACFG and the coverage measure are approximations. limodules), 3.5 kloc of ECLiPSe and 1.5 kloc of glue in C.
all dynamic jumps are saturated then the ACFG is a safeOsmosEhas been tested on an Intel PC running Linux.

5. Experiments name [C | Branch cover| Time
msquare X3 | 272 | 23 | 82%-100% | 5.2

msquare 4«4 | 274 | 23 86%-100% 129

We evaluate @M0OsEon a set of small C programs com- hysteresis 91 | 8 100% 35
piled to the 8051 and to the PowerPC 550. These experi- merge 56 | 12 100% 110
ments do not intend to prove thas@osEis able to gener- triangle 102 | 19 | 52%-100% | 0.5
ate test data for real-life programs, but rather to dematestr ﬁ:t" ig g 18802 ig

the feasibility of the ideas exposed in this paper.

We consider six different programesquar e (40 loc)
reads a volatile square matrix and check if the matrix is
magic or not. The number of constraints grows exponen-
tially with the size of the square matrikyst er esi s (30

I: #instructions, C: #conditional branches, Time in seconds

Table 2. Experiments for 8051 (8 bits)

loc) simulates a finite-state machine reading growing isput ”mas’gjare 3 2'26 fs Bg;g;‘:qgg(‘;er Té";e
. 0- (1] .
unt!l a mgx_mal threshold_ls reached, then decreasing snput msquare &4 | 226 | 15 5 =300
until a minimal threshold is reached, and so on. The rate of hysteresis 76 | 8 100% 36
variation is bounded. This example needs an environment merge 188 | 8 100% 25
and long sequence of tests (about 30 input readings and 250 t“f'?lngle ‘Ig Z 1882//0 8-‘71
Y H ce 0 .
branch conditions)rer ge (60 loc) is the well-known sort = =13 100% 1

ing algorithm. The program contains functions, vectors and
aliases.cel | (20 loc) is a small but tricky example (alias
constraints) taken from [10%.r i angl e (20 loc) is a stan-
dard academic puzzld.i st (20 loc) is a small example
manipulating linked lists.

We used the following cross-compilersdcc for the
8051 andgcc for the PowerPC. We turned off optimisa-
tions to avoid too many modifications of the program. No-
ticeably, unoptimised executables appear to be more diffi-
cult to analyse than optimised ones. It is also worth noting
that onmer ge andtri angl e, the two executables are
very different. Thesdcc compiler tends to add many func-
tion calls and bit-wise operations, especially in the pnese
of C pointers.

I: #instructions, C: #conditional branches, Time in seconds

Table 3. Experiments for PowerPC (32 bits)

surprising since a main issue of constraint programming is
the scalability w.r.t. the domain size. An explanation may
be that most path predicates are solved with small values.

OsmosE performs badly on two exampleser ge for
8051 andrsquar e 4x4 for PowerPC. In both cases, the
compilation step adds many bit-wise operations which are
not efficiently handled by our constraint solver.

6. Related work

Results. Evaluations have been performed on a PC

equipped with an Intel Pentium M 2Ghz and 1.2 GBytes We are not aware of any other technique specialised in
of RAM, running Linux Ubuntu 6.10. The time-out for the test data generation at the binary level, with the execatabl
solver was set up to 1 minute. Results are summarised inas the only input. However, a few tools work on low-level
Table 2 for the 8051 and Table 3 for the PowerPC 550. For code with additional high-level information. There areoals
each C program, we report statistics about the executabldools linked to different aspects of our work, mainly test
(number of instructions and branch conditions), the branchdata generation and IR recovery.

coverage achieved and the computation time (in seconds).

This coverage is exact since there are only easy-to-solve| gw-level code verification. Some verification tools may
dynamic jumps in these programs. When two coverages areye thought of as working at low level. However they are
mentioned, the first one is reported bg@oseand the sec- (ifferent from CsMOSE since they have access to high-
ond one is evaluated w.r.t. feasible branches only. Memory|eyel information from the program source code or the com-
consumption is not reported since it was very low, always pjler, like the symbol table, targets of dynamic jumps for
smaller than 10 MBytes. swi t ch-like instructions and so on. In this category, we
can cite jMoped and the tools from the Absint company.
Comments. The tool performs well on almost all exam- jMoped [7, 19] is a verification tool for Java programs work-
ples, with a computation time often smaller than 10 secondsing mainly at the bytecode level. While former versions
and a 100% coverage of feasible branches on all examplesimed at full verification, the last one is devoted to tesadat
but one. Noticeably, performances are almost always simi-generation. The core technology is based on BDD model-
lar for the two processors while the size of variable domains checking of weighted pushdown systems. Note that Java
grows from2?® for the 8051 ta23? for the PowerPC. Thisis bytecode is rather high-level compared to usual machine

code. Tools from the Absint company [21] work on assem-
bly languages with information from the C program. Their
products are actually geared towards non-functional prop-
erties like estimation of maximal stack height or worstecas
execution time. Their core technology is based on static
analysis.

IR recovery (on executables). Commercial tools like
IDA Pro [22] have problems with dynamic jumps. Specific
static analysis techniques have been developed recently fo
this issue [4, 5]. Since the goal is to compute statically a
safe and tight over-approximation, the technology is very
sophisticated. The same team has also developed a verifi-
cation technology based on model-checking the recovered
abstract model [17] but we are not aware of any practical
experiments and evaluation. These IR recovery techniques
are difficult to implement for the non-expert because they
target both completeness and tightness of approximations.
Since we consider the problem from a testing perspec-
tive, we can relax the completeness requirement. Moreover,
thanks to our combination of static and dynamic steps, we
can also relax the correctness requirement on the stapic ste
This greatly simplifies the implementation of the statictpar
while correctness is (easily) ensured by the dynamic step.

Constraint-based structural test
InKa [8, 9] performs structural test data generation on C
programs through constraint solving. In this approach the
whole program is translated into an equivalent constraint
programming problem, while the techniques presented so
far translate only one path a time for efficiency issues.
Noticeably,
arithmetic constraints [3].

Path-based structural test data generation. Our test
data generation technology is inspired by tools like
DART [10], CuTE [20] and RTHCRAWLER [23]. They
work at the programming language level (C for all three and
also Java for OTE). All of these three tools rely on path
predicate solving, bounded depth-first search and concolic
execution. Premises of concolic execution can be found
in PATHCRAWLER to find a feasible initial path and dis-

nisms of machine arithmetic like overflows are taken
into account. This increase in precision has a cost but
it seems imperative to discover typical security flaws.

Alias. CuTE and RTHCRAWLER take advantage of
the C program under verification to discover syntac-
tic potential alias relationships, typically through type
declarations and pointer expressions in branch condi-
tions. However they cannot detect alias relationships
depending only on the memory layout. On the con-
trary, OsmosEedoes not have access to any high-level
information but the concolic execution is modified to
discover on-the-fly some alias relationships depending
on the memory layout.

Concolic executionThe concolic execution has been
first used to find a feasible initial path and explore the
program on-the-fly [23], and then to approximate “dif-
ficult instructions” [10, 20] like non-linear constraints
and library function calls. We enhance the concolic
execution with a third semi-concrete execution used to
detect infeasible paths early and prune the path search.
We also take advantage of the concrete execution to
discover alias relationships and dynamic jump targets.

data generation.

InKa includes a solver for floating-point

cover the CFG on-the-fly, while the current concept has /- Conclusion and future works

been explicitly introduced and popularised by®&r and

CuTE. Each of these tools has its own specific features. Verification at the binary level is much more difficult
DART and RTHCRAWLER have specific techniques to han- than higher-level analysis mainly due to the absence of any
dle functions in a modular way [11, 14]..GE provides an exact control-flow graph. However, this machine-code anal-
hybrid test generation algorithm mixing both structuralge ysis may be the most relevant one in case of strong se-
eration and random generation, which is proved to enhancecurity requirements or even the only option left when no
the achieved coverage and the bug detection abilities [16]. higher-level documentation is available. We have shown in
Compared to @MOSE these tools work on a structured this paper how to perform path-based structural test data
language and do not have to face the IR recovery problem.generation on a standalone executable. We adapt existing
Considering only the test data generation technique, thergechnologies to the specific issues appearing in binamgtlev
are three other main differences. analysis, and we also develop innovative techniques, for ex
ample to solve the IR recovery problem. The results have
e Machine arithmetic Both DART and QUTE work been implemented in a tool named@oseand encourag-
on linear arithmetic (with simplex-based solvers ing experiments have been conducted.
and approximations of non-linear constraints) and This work is just a preliminary step demonstrating the vi-
PATHCRAWLER works on bounded full arithmetic ability of automatic structural test data generation omsta
(with constraint programming). SMOSEis in a sense dalone executables. There are at least three directions for
more complete than these tools since non-linear con-future work. First, we need to improve our test data genera-
straints are not approximated and low-level mecha- tion technology to scale up to real-life programs. There are

different possibilities, from modular generation [11, 1d] [15] Software Considerations in Airborne Systems and Equip-
hybrid generation [16] or dedicated constraint solvinditec ment CertificationRTCA 1992

niques. Second, we aim at improving the user interface of [16] R.Majumdar and K. Sen. Hybrid Concolic Testing.|GCSE
the tool to allow more interaction. No verification tool can 2007 IEEE.

claim to be completely automatic and user guidance has[17] T. Reps, S. Schwoon, S. Jha and D. Melski. Weighted

proven to be useful. Finally, safe (static) IR recovery tech pushdown systems and their application to interprocedural
niques [4, 5] could give assurance about the quality of the gataflow analysis. In SCP, october 2005.

abstract control-flow graph by detecting unsaturated jumps [18] A. Stump, C. W, Barret, D. Dill and J. Levitt. A Decision

Procedure for an Extensional Theory of ArraysLIES 2001
Detailed test data generation algorithm IEEE.

[19] D. Suwimonteerabuth, F. Berger, S. Schwoon and J. Esparza.
Our test data generation algorithm is presented in sec- jMoped: A Test Environment for Java programsQAV 2007
tion A, including concolic execution and dynamic IR re- Springer.
covery. Some parts are still omitted like alias management. [20] K. Sen, D. Marinov and G. Agha. CUTE: A Concolic Unit
Testing Engine for C. IESEC/FSE 2005ACM.

References [21] http://ww. absi nt. conl
[22] http://ww. dat ar escue. conl
[1] K. R Apt. Principles of Constraint Programming. Cambridge [23] N. Williams, B. Marre and P. Mouy. On-the-Fly Generation
University Press, 2003. of K-Path Tests for C Functions. IWSE 2004IEEE.

[2] K. R. Apt and M. Wallace. Constraint Logic Programming
using Eclipse. Cambridge University Press, 2007.

[3] B. Botella, A. Gotlieb and C. Michel. Symbolic execution of
floating-point computations. IBTVRvol. 16, 2006.

[4] G. Balakrishnan and T. Reps. Analyzing memory accesses in
x86 executables. 1€C 2004 Springer.

[5] G.Balakrishnan, T. Reps, D. Melskiand T. Teitelbaum. WYS-
INWYX: What You See Is Not What You eXecute. IRIP
Working Conference on Verified Software: Theories, Tools,
Experiments2005.

[6] D. Cyrluk, O. Moller and H. Ruel3. An Efficient Decision
Procedure for the Theory of Fixed-Sized Bit-Vectors CAV
1997 Springer.

[7] J. Esparza and S. Schwoon. A BDD-based Model Checker for
Recursive Programs. @AV 2001 Springer.

[8] A. Gotlieb, B. Botella and M. Rueher. Automatic Test Data
Generation Using Constraint Solving Techniques.ISBTA
1998 ACM.

[9] A. Gotlieb, B. Botella and M. Watel. Inka: Ten years after the
first ideas. INCSSEA 2006

[10] P. Godefroid, N. Klarlund and K. Sen. DART: Directed Au-
tomated Random Testing. RLDI’2005. ACM.

[11] P. Godefroid. Compositional dynamic test generation. In

POPL 2007 ACM.
[12] M. Howard. Some bad news and some good
news. Microsoft Developer Network, October

2002, http://nsdn2. m crosoft. con en- us/
I'i brary/ nms972826. aspx.

[13] B. Marre and A. Arnould. Test sequences generation from
LUSTRE descriptions: GATeL. IASE 2000IEEE.

[14] P. Mouy. Automatisation du test de tous-les-chemins en
présence d'appels de fonctions. PhD thesis, INSTN, 2007.

10

A Detailed test data generation algorithm

B Details on experiments

Our test data generation algorithm is presented in Algo. 3, includ- The s quar e program
ing concolic execution and dynamic IR recovery. Some parts are

still omitted like alias management.

#define taille 4

algorithm GENTEST2(nodeinit)

input : initial node nodenit

parameter : atomic, node.addr, node.next, niitm

output: set of test data Res

1: Res— 0

2: REC(nodeinit, T,meminit,memninit)

3: return Res

procedure REC(node,®, C, S)

input : node, formulab, concrete state C, semi-concrete state S
parameter : Res, atomic, node.addr, node.next, updateaednode
exception: newTarget(node,addr)
output: no result, the procedure updates Res

1: if (termination or® unsat or depttbound)then return ();

2: else

3: Casenodeof

4: |e—

5 try Sp < solve(®) ; Res— ResU {S,}
6: with unsat or timeout — ();
7 end try
8: | block instr—
9: REC(node.nextp A atomic(instr),update(C,instr),update(S,ins|
10: | goto thode— REC(tnode®,C,S)
11: | call fnode— ReEC(fnode®,C,S)
12: | ite(cond,inode,tnode)>
13: caseeval(cond,Spf
14: | true— REC(inode®,C,S); /* constant value */
15: | false— REC(tnode®,C,S); /* constant value */
16: | symbolic— /* non-constant value */
17: REC(inode,® A cond,C,S);
18: REC(tnode,® A —~cond,C,S)
19: end case
20: | cgoto expr—
21: if eval(expr,C¥ node.nexthen /* new target discovered */
22: exceptionnewTarget(node,eval(expr,C));
23: else
24: caseeval(expr,Spf
25: | constant add— REc(addr.nodep,C,S) /* constant value */
26: | symbolic— /* non-constant value */
27: for all tnodee node.nextlo
28: REC(tnode,® A expr= tnode.addr,C,S)
29: end for /* the following line forces to discover new target *
30: REC(tnode,® A A\, cpogenex€XPr # t.addr,C,S)
31: end case
32: end if
33: end case
34: end if

vol atile char entry[taille][taille];

int main() {
char sum = 0;

char
char
char

matrix[taille][taille];
suncol [taille];
sumig[taille];

char sundi ag[2] ;
char i,j,mgi c_nunber, success;
for(i=0; i <taille ; ++i)
for(j=0; j <taille ; ++)
matrix[i][j] = entry[i][j];
for(i=0; i <taille ; i++) {
sumig[i] = O;
suncol [i] = O;
}
for(i=0; i <taille ; i++)
) for(j=0; j < taille ; j++)
sumig[i]l += matrix[i]l[j];
for(i=0; i <taille ; i++)
for(j=0; j < taille ; j++)
suncol [i] += matrix[j][i];
sundi ag[0] = O;
sundi ag[1] = 0;
for(i=0; i <taille ; ++i) {

sundi ag[0] += matrix[i][i];
sundi ag[1] += matrix[i][taille-i-1];
}

for(i=0; i < taillextaille ; ++i)
for(j=i+1; j < taillextaille ; ++j)
if (matrix[i/taille][i%aille]
matrix[j/taille]l[j%aille]

)

goto end;

magi c_nunber sundi ag[0] ;
if (sunmdiag[1]
goto end;

I'= magi c_nunber)

Algorithm 3: Detailed test data generation algorithm

for(i=0;
if (
(suncol [i]
(sumig[i]
)

goto end;

(i <taille) ; ++)

I = magi c_nunber)
!'= magi c_nunber)

success
return 1;

1;

end:
success = 0;
return O;

}

11

The hyst er esi s program The ner ge program

volatile int portln; #i ncl ude<i ost r ean
volatile int mnSeuil, maxSeuil; #define SIZE 4
int getPort(void) { volatile int tab_in[SIZE;
return portln;
} void nerge(int tab_to_nmerge[],int limt,int size){
int tab_copy[SI ZE] ;
typedef enum{ Down, Up} tstate; int i, tnmpl, tnp2;
int »xptrl, *ptr2, *plimt, xpsize, xpdest;
int main() { ptrl = tab_to_nerge;
int readval, predval = 0; plimt = tab_to nerge + limt;
tstate currentState = Down; ptr2 = plimt;
tstate predState = Down; psize = tab_to_merge + size;
pdest = tab_copy;
while(l) {
readval = getPort(); while((ptrl <plimt) && (ptr2 < psize)) {
i f ((readVal >predVal +10) | | (predVal >r eadVal +10)) tnpl = xptril;
got o bad_spec; tnmp2 = *ptr2;

i f ((current State==Down) &&(readVal >maxSeuil))
currentState = Up;

if (tnpl > tnp2) {
*pdest = tnp2;

else if ((currentState==Up)&&(readVal <m nSeuil)) ptr2++;
current State = Down; } else {

if ((predState==Up)&&(currentState==Down)) xpdest = tnpl;
goto end; ptrl++;

predState = current State;

predval = readVal; pdest ++;

} }
while(ptrl < plimt) {
end: *pdest = *ptrl;
return 1; ptrl++;
pdest ++;
bad_spec: }
return -1;

} while(ptr2 < psize) {
xpdest = xptr2;
Thetri angl e program pLr2++;
pdest ++;
vol atil e unsi gned char ain, bin,cin; }
typedef enum { NORMAL, EQUI,1SO } ttriangle;
typedef unsigned char uchar; for(i =0 ; i <size; ++)

voi d swap(uchar =*a, uchar =*b) {
unsi gned char tnp = *a;
*a = *b;
*b = tnp;

}

ttriangl e get Type(uchar a,uchar b, uchar c){
ttriangle ret = NORMAL;
if (a <b) swap(&a, &);

tab_to_merge[i] = tab_copy[i];
}

void nmergesort(int tab_to_sort[],
int ihalf,i;
if (size <= 1) return;
ihal f = size /2;
nergesort(tab_to_sort, ihalf);
mergesort(tab_to_sort + ihalf,
merge(tab_to_sort, ihalf, size);

if (a <c) swap(&a, &c); }
if (b <c) swap(&b, &c);
if (a==Dh) int main() {

if (b===c) ret = EQJ; int i;

else ret = 1SQ int tab[SlZE];
else if (b ===¢c) ret =180 for(i =0 ; i <SIZE; ++i) tab[i]
return ret; ner gesort (tab, Sl ZE) ;

} return O;
}

int main() {
if ((ain ==0) & (bin == 0) & (cin == 0))
return -1,
return get Type(ain, bin,cin);

}

12

int size) {

size-ihalf);

Thecel | program

typedef struct cell {

int v;
struct cell =*next;
} cell;
int g(int v) {
return 2xv + 1;
}
int testme(cell =*p, int x) {
if (x >0)
if (p'!'=0)

if (g(x) == p->v)
if (p->next == p)
while(1) {}
return O;

}

cell =*pcellinit;
int xinit;

int main(){
testme(pcellinit,xinit);
return 1,

}

Thel i st program

#def i ne GOAL_LENGTH 10

struct nylist {
struct nylist* next;

h
volatile struct nylist pentrylist;

int main() {
struct nylist* pcurrent = &pentrylist;
int i,success;

for(i =0 ; i < GOAL_LENGTH ; ++i) {
if (pcurrent == 0) goto end;

pcurrent = pcurrent-> next;

}

if (pcurrent !'= 0) goto end;
else { success =1 ; while(l) {} }

end:
success = 0;
return O;

}

13

