
Structural Testing of Executables∗

Sébastien Bardin Philippe Herrmann

CEA, LIST
Software Reliability Lab

Bôıte 65, Gif-sur-Yvette, F-91191 France
E-mail:first.name@cea.fr

Abstract

Verification is usually performed on a high-level view of
the software, either specification or program source code.
However in certain circumstances verification is more rel-
evant when performed at the machine code level.This pa-
per focuses on automatic test data generation from a stan-
dalone executable. Low-level analysis is much more dif-
ficult than high-level analysis since even the control-flow
graph is not available and bit-level instructions have to
be modelled faithfully. We show how “path-based” struc-
tural test data generation can be adapted from structured
language to machine code, using both state-of-the-art tech-
nologies and innovative techniques. Our results have been
implemented in a tool namedOSMOSEand encouraging ex-
periments have been conducted.

1. Introduction

The verification task is generally performed at the spec-
ification level (functional testing, model checking) or at the
programming language level (structural testing, static anal-
ysis). In the latter case, by programming language we mean
structured languages such as C or Java. It may look surpris-
ing that verification techniques do not check the machine
code of the software under verification. After all, the ma-
chine code is truly what the computer executes. Actually,
binary-level analysis is considered more difficult than other
analyses, while being redundant with them.

We agree with the first point and explain why binary-level
analysis is difficult later in this section. However, we claim
that in certain circumstances machine code is (unfortu-
nately!) the most relevant level at which to perform veri-
fication.

∗Work partially funded by EDF and theSoftware Factory/MoDriVal
project of the French cluster SYSTEM@TIC PARIS-REGION.

Here are three industrial cases where an analysis on the
executable would be valuable.

1. In the critical systems’industry, a company may not
have access to the program source code of a piece of soft-
ware it has acquired. For example when the company is not
a major customer for the vendor. Then these executables
have to be certified without any programming language de-
scription.

2. In aeronautics, the DO-178B standard [15] imposes
that verification must be performed on the binary level as
soon as the conformity between the high level code and the
machine code cannot be ensured. Since this binary level
analysis is very expensive, constructors prefer to avoid any
technology which would blur the conformity. Including
optimising compilers, which would increase performances
and lower costs.

3. In the computer security domain, an optimising
compiler can produce a non-secure executable from secure
source code as reported in [5]. The problem is due to
very standard data-flow optimisations. For example, the
compiler removes an operation consisting in setting to zero
some memory value which is not used later in the program.
The trick is that this operation was intended to erase a pass-
word value copied in clear text. While this operation was
indeed useless from the functional point of view, it was es-
sential from the security point of view. A similar bug was
found during the Windows security push 2002 [12].

In the last case, a binary-level analysis is mandatory to
detect the bug since the program source code is absolutely
correct. This is known as the WYSINWYX phenomenon:
What You See Is Not What You eXecute[5].

Relevance of binary-level analysis. We claim that
binary-level analysis is relevant in at least two situations:
when no high-level source code is available or when the in-
crease of precision is essential. It is quite common that a
company cannot have access to a high-level documentation,
either the vendor does not provide the source code (Com-
mercial Off-The-Shelf software) or the source code is sim-

1

ply lost (legacy code). Standard source code analysis re-
lies on the assumption that the compiler preserves the pro-
gram semantics. While it is realistic for standard reachabil-
ity properties and standard compilation techniques, it can-
not be trusted anymore in the case of strong safety/security
requirements and highly sophisticated optimisations.

A third situation could be that of programs written in a
combination of a structured language and an assembly lan-
guage, typical of embedded systems. However this situation
is significantly different from a standalone executable anal-
ysis, since we can rely on additional high-level information
from both the compiler and the source code, like the symbol
table or possible values of aswitch-like instruction.

Major difficulties of binary-level analysis. Machine
code analysis is undoubtedly more difficult than any higher-
level analysis. The main problem is the so-calledInterme-
diate Representation recovery (IR recovery): since an exe-
cutable is nothing more than a sequence of bits (see below),
we have no information about any basic control-flow fact
(such as functions, loops or variables) usually given for free
in higher-level analysis.

Actually we do not even know the number of instructions in
the program since different instructions may have different
sizes, instructions can overlap, there is no syntactic differ-
ence between instructions and data and finally we cannot
determine reliably targets of dynamic jumps, i.e.goto in-
structions whose destination is evaluated at run-time.

Moreover, when performing binary-level analysis, low-
level mechanisms have to be taken into account precisely
while for higher-level analysis, coarser abstractions areusu-
ally sufficient. The most obvious one is machine arithmetic.
Machine integers behave differently from usual integers.
For example, considering 32-bit long unsigned integers, the
operation 4294967295+1 returns 0. Floating-point num-
bers also behave very differently from real numbers. Actu-
ally, while machine integers can be modelled quite precisely
by modulo arithmetic, there is no nice standard theory for
floating-point numbers. Another low-level construct diffi-
cult to analyse are hardware and software interrupts.

Finally there is a great diversity of hardware architec-
tures and instruction sets (ISA). They differ in terms of size
of memory words, physical memory layout, interrupts and

instructions. All ISA share some common operations such
as arithmetical or bit-wise logical operations but there exist
subtle variations (carry and overflow), optimised versions
and even “exotic” instructions like machine-code string
copy or decimal conversion.

Bit-vector theory. The bit-vector theory [6, 18] for-
malises standard machine instructions at the bit level. For-
mulae are interpreted over vectors of bits of a fixed length.
Instructions include basic read and write operations, signed
and unsigned views of bit-vectors, modulo arithmetic, logi-
cal bit-wise operations and other low-level instructions such
as shift, rotation or concatenation. Floating-point arithmetic
is usually not considered though it can be encoded. Satisfi-
ability in bit-vector theory is decidable since the interpreta-
tion domain is finite.

The OSMOSE tool. The OSMOSE tool aims at perform-
ing automatic test data generation on standalone executable
files. The test selection is white box since we do not con-
sider any information other than the executable itself. The
tool can be used to debug a program or to build a test
set achieving some structural coverage criteria based on
the control-flow graph, like instruction or branch coverage.
This kind of test set is mandatory in certain critical domains,
for example aeronautics [15]. The tool can find“intrinsic”
bugs, i.e. executions which are undoubtedly faulty indepen-
dently of the specification of the software, like division by
0, violation of the call-return policy, read of an unallocated
memory cell or jump to an incorrect instruction. Functional
bugs are out of scope since we do not have access to any
executable specification.

We focus on reactive systems, commonly found in em-
bedded software. Reactive systems can interact with an en-
vironmentvia sensors and actuators. In this case, a test data
is an initial valuation for input data and a sequence of values
read on each sensor. The user has to provide a description
of the environment, declaring volatile memory addresses.

A very strong requirement of the OSMOSEproject is to
be as independent as possible from any particular architec-
ture or instruction set, so that users can add their own archi-
tectures without any assistance from the developers of OS-
MOSE. This is achieved through a generic software archi-
tecture arranged around a notion of generic machine code.
The tool currently handles three processors: the Intel 8051,
the Motorola 6800 and the Freescale PowerPC 550. The
first two processors are 8-bit and the last one is 32-bit. A
consequence of being generic is that OSMOSEruns tests in
simulation mode rather than in exact mode. This is essential
unless running the tool on the exact architecture targeted by
the executable under test.

2

Technologies. Binary-level analysers must first build a
high-level model of the software under investigation. Then
verification techniques may be used. Our verification tech-
nology is based on structural test data generation by com-
puting a path predicate from a control path and solving this
predicate. Our predicates are expressed in the bit-vector
theory, so we also need a constraint solver for this theory.
It turns out that the OSMOSEtool is organised around three
basic technologies:

• Path-based test data generation.We generate tests
from a white box perspective, more precisely we fol-
low the recent and promising path-based test data gen-
eration approach [10, 20, 23]. To the best of our knowl-
edge it is the first time this approach is used for binary-
level testing. The core idea of the test data generation
technique is to select a first pathπ1 in the control-flow
graph (here: in our high-level model) and extract its
path predicatePπ1

. The path predicatePπ is a con-
straint over the program input values such that any
test case whose input data satisfyPπ will follow the
pathπ. A test data covering the pathπ1 is found as a
solution ofPπ1

. Then a new pathπ2 is selected and
the process is iterated until the coverage objective has
been achieved.

A major improvement of path-based test data gener-
ation is the concept of concolic execution [20]. It
means that a concrete execution is running in paral-
lel to the symbolic execution, collecting relevant infor-
mation along the concrete execution path to help the
symbolic execution. In the original approach, the con-
crete execution is used to find a feasible initial path and
to discover on-the-fly the program’s CFG [10, 20, 23],
or to approximate complex instructions like non-linear
constraints or library function calls [10, 20].

• Bit-vector constraint solving. The test generation
method described above relies on solving path predi-
cates. While test data generation tools from high-level
descriptions [10, 13, 20, 23] are usually based on inte-
ger constraints (classically bounded arithmetic [13, 23]
or linear arithmetic [10, 20]), our constraints are ex-
pressed in the bit-vector theory. Our approach is based
on the constraint programming paradigm [1], which is
very flexible and allows us to encode all “exotic” in-
structions we may find in instruction sets. We write
our own constraint solver on top of an existing one for
usual integer constraints.

• IR recovery. We use an innovative combination of
static and dynamic analysis to build an abstract high-
level model of the software. First, a static analysis
creates a coarse model. Then if new parts of the pro-
gram are discovered during the test data generation

phase the high-level model is updated and a static anal-
ysis is re-launched. It does not need to be very pre-
cise since a complementary dynamic analysis is per-
formed, avoiding difficulties inherent to purely static
techniques [4, 5].

Limitations. Like most test data generation tools [10,
20, 23], we do not consider floating-point arithmetic con-
straints. Some solutions have been proposed in the con-
straint programming community. But they mostly relax the
problem to real arithmetic [13] or suffers from slow conver-
gence phenomenon [3]. We also do not address interrupts,
and are not aware of any verification technology handling
this issue.

Contributions. There are three main contributions in this
paper.
1. It is the first time a path-based structural test data gen-

eration technique is applied directly at the binary level. Our
work pinpoints the main issues and shows how to adapt
existing techniques from structured languages to machine
code. We show also how the testing perspective simplifies
crucial issues like IR recovery.
2. We propose innovative solutions for certain aspects:

an enhanced concolic execution geared towards alias han-
dling, dynamic target detection and early pruning of the
path search ; and a combination of static and dynamic ap-
proaches to solve the IR recovery problem.
3. These results have been implemented in the first struc-

tural test data generation tool for executables. Our imple-
mentation and first experiments demonstrate the feasibil-
ity of the approach. The tool is also largely architecture-
independent and can currently handle three different archi-
tectures and machine codes (8051, 6800, PowerPC 550).

Related work. We are not aware of any work dedicated
to structural test data generation on standalone executables.
Some verification tools work on low level description, but
they have access to additional information from the program
source code. We can cite for example jMoped [7, 19] or
tools from the commercial company Absint [21], geared to-
wards performance estimation rather than verification. Our
testing technology is inspired by the path-based approach
with concolic execution pioneered in [23] and extended
in [10, 20]. However this work considers structured lan-
guages (C or Java) and ideal arithmetic. Finally IR recovery
tools work on machine code, but do not perform any veri-
fication task. While commercial tools like [22] have prob-
lems with dynamic jumps, dedicated static analysis tech-
niques have been developed recently [4, 5]. A more exten-
sive description of related work is given in section 6.

3

Outline. The remaining part of the paper is organised as
follows. The next two sections describe our core technolo-
gies: test data generation in section 2 and IR recovery in
section 3. Section 4 presents the OSMOSE tool and its im-
plementation. Section 5 describes some experiments with
the tool. Finally section 6 discusses related work and sec-
tion 7 concludes and presents future work.

2. Test data generation

Our test data generation algorithm follows the path-
based principle: the idea is to enumerate all paths and for
each path to compute its path predicate and solve it. The
solution is a test data covering the path. The procedure
is parametrised by a structural termination criterion, like
instruction or branch coverage. Once the full coverage is
achieved, the test data generation stops. We use a bounded
depth-first traversal of the control-flow graph to enumerate
all paths in a recursive manner. This is a standard strat-
egy [10, 20, 23] which allows constraints to be added in-
crementally, and requires only a minimal change to get a
new path predicate by reusing the path prefix up to the last
choice point in the program.

Compare to [10, 20, 23], we work on an (abstract)
control-flow graph (ACFG) rather than on the program it-
self. The ACFG allows us to use static techniques for IR
recovery in addition to the dynamic exploration of the ex-
ecutable. The test data generation algorithm and the IR
recovery mechanism are deeply interwoven and the ACFG
may be updated during the test generation. For the sake of
simplicity, we consider in this section that the ACFG is pre-
computed once and for all before the test data generation is
launched. The whole IR recovery mechanism is described
in section 3.

ACFG nodes can be either blocks (block) of basic in-
structions like common arithmetic and bit-wise logic op-
erations, function calls (call), conditional statements (ite),
static jumps to a predefined target (goto) or dynamic jumps
to a computed target (cgoto).

Algorithm 1 presents the basic idea of our test data gen-
eration algorithm. Choice points in a machine code pro-
gram are conditionals and dynamic jumps. For conditional,
we just force the search to take the“if ” or “else” branch
by adding to the path predicate the conditional or its nega-
tion. In the case of dynamic jumps, we explore each possi-
ble target by constraining the argument of the jump (usually
an arithmetic expression over registers) to take each pos-
sible value in turn. Static jump does not modify the path
predicate. Function calls are inlined and managed as static
jumps. Basic instructions are translated into formulae by the
procedureatomic. The ACFG is given by its nodes with
methods.addr and.next to access the address of the in-

struction (in the executable) and its successor nodes in the
ACFG. The external proceduresolve returns a solution
of a constraint or theunsat exception in case of unsatis-
fiability. We present the algorithm for an all-path coverage
termination criterion. To adapt the algorithm to other crite-
ria, the program must keep a set of uncovered itemsU , and
each time a path predicate is solved, items covered by the
execution are removed. The program stops as soon asU is
empty.

Some important implementation details are omitted.
First formulae are added incrementally to our solver to take
advantage of incremental solving and detect infeasible paths
early. Second the user can set up different parameters to
limit the search (depth bound or time-out for the constraint
solver). Finally aconcolic executionis preferred to a purely
symbolic execution.This feature is described below.

algorithm GENTEST1(nodeinit)
input : initial node nodeinit
parameter : atomic, node.addr, node.next
output: set of test data Res
1: Res← ∅
2: REC(nodeinit, ⊤)
3: return Res

procedure REC(node,Φ)
input : node, constraintΦ
parameter : Res, atomic, node.addr, node.next
output: no result, update Res
1: Casenodeof
2: | ε→ /* end node */
3: try Sp ← SOLVE(Φ) ; Res← Res∪ {Sp}
4: with unsat→ ();
5: end try
6: | block instr→ REC(node.next,Φ ∧ ATOMIC(instr))
7: | goto tnode→ REC(tnode,Φ)
8: | call fnode→ REC(fnode,Φ)
9: | ite(cond,inode,tnode)→

10: REC(inode,Φ ∧ cond);REC(tnode,Φ ∧ ¬cond)
11: | cgoto expr→
12: for all tnode∈ node.nextdo
13: REC(tnode,Φ ∧ expr= tnode.addr)
14: end for
15: end case

Algorithm 1: Basic test data generation algorithm

Concolic testing. We follow the concolic principle with
two executions (concrete and symbolic) running in paral-
lel. We enhance the approach by adding a third“semi-
concrete”execution dynamically detecting constant values
at each step of the execution (see Algo. 3 on page 11).

• The new semi-concrete execution is used to prune the
path search by detecting on-the-fly trivial cases of in-
feasible paths (e.g. conditional or dynamic jumps eval-
uated over constant values) and avoid calls to the con-
straint solver on inconsistent formulae.

• The concrete execution is classically used to detect a

4

first feasible path but also in an innovative way to han-
dle alias constraints (see below) and to dynamically
detect new targets for dynamic jumps (see section 3).

Alias. We say that two memory cells are in an alias re-
lationship when one of them contains the address of the
second. Aliasing is known to be a very difficult point in
software analysis since tracking variable modifications be-
comes much more problematic. In presence of aliases the
path predicate is no longer strong enough to ensure that the
right path will be followed at execution.

It turns out happily that aliasing is a bit less difficult
from a testing perspective than from a static one, since we
do not need to compute a safe approximation of all possi-
ble alias relationships. We use the following solution: the
concrete execution is analysed to extract the aliasing re-
lationships existing in the concrete trace and add them to
the path predicate. In a sense, our algorithm is modified to
deal with (path,alias)-predicates rather than path predicates
only. The good point is that the solution found (if any) is
sure to follow the right execution path. The bad point is
that this (path,alias)-predicate may be infeasible while the
path is feasible with another alias constraint. A solution is
to enumerate a fixed number of alternative alias constraints
for this path by relaxing some of the constraints. Then we
need to check that the generated data input does lead to an
execution following the right path.

This technique allows us to discover aliasing relation-
ships depending only on the memory layout. This is or-
thogonal to [20] where syntactic alias relationships are ex-
tracted from the C program, mainly from type declarations
and alias expressions in branch conditions.

Functions. Functions are inlined. Recursive functions are
allowed since the bounded depth first search prevents us
from infinite looping. A modular analysis of function calls
would be more satisfactory. However it is not clear how
to perform such a modular analysis for structural test data
generation. [11, 14] propose some solutions. The first one
seems to be quite inaccurate because of a very basic call-
context management, and the second one needs code anno-
tation which is unrealistic for machine code.

Constraint solving. We choose to rely on a generic solv-
ing technique, namely constraint programming [1], rather
than theory-specific algorithms. It is then easy to adapt new
instructions while keeping reasonable performance. Con-
straint programming is mainly limited to theories over finite
domains. Happily the bit-vector theory falls into this scope.

Considering a formula (or constraint)φ on a set of vari-
ablesV in a boundeddomainD, constraint programming
is essentially a clever exploration of all partial valuations

of V to find a solution toφ. Two main steps are inter-
leaved and iterated until a solution is found (or the absence
of solution is proved):searchandconstraint propagation.
The search is a standard depth-first one with labelling and
backtracking. At each step a variable is assigned a value
from its domain. Once all variables are assigned, the valu-
ation is checked against the formula. If it is not a solution,
backtracking allows to make new choices. When neither la-
belling nor backtrack are possible, the formula is proved to
be unsatisfiable. To avoid “blind” labelling as much as pos-
sible and speed up the search, constraint propagation mech-
anisms reduce variable domains at each step of the search
through propagation rules. For example, consider the for-
mulay ≤ x and supposes that the domain ofy equals to the
interval [0, 1000] and that variablex has just been labelled
with the value42. Then the domain ofy is reduced to[0, 42]
by propagation rules.

Constraint programming is a flexible paradigm to model
and solve problems, and it is quite efficient at finding
quickly a solution for “easy-to-solve” formulae, i.e. formu-
lae having many solutions. However it can suffer from the
so-called“slow convergence phenomenon”on “difficult-to-
solve” formulae and inconsistent formulae. It is why we try
to get rid of infeasible path predicates early in the test data
generation algorithm rather than in the constraint solver.

We wrote a constraint solver for bit-vectors on top of
an existing library for integer constraint programming de-
veloped in the model-based testing tool GATeL [13]. See
section 4 for more implementation details.

3. IR recovery

We use an innovative combination of static and dynamic
analysis to build an ACFG of the software. The static anal-
ysis does not need to be either complete or correct since the
dynamic analysis will distinguish between valid jump tar-
gets and invalid ones. Hence the static analysis relies on
light-weight techniques and its goal is to cheaply guide the
dynamic analysis. The dynamic technique is based on slight
modifications of the test data generation algorithm.

Algorithm 2 presents our technique. The static algorithm
(STATICPROPAGATION) and the dynamic one (a modified
version of GENTEST) are interleaved and iterated in the
following manner. STATICPROPAGATION updates a map
from dynamic jump instructions to potential address targets
(TargetCache). The map itself is used as an entry of
STATICPROPAGATION so that targets discovered in earlier
calls to the procedure are not forgotten in later calls be-
cause of⊤ spreading. Then the straightforward procedure
BUILD creates an ACFG from the executable, the jump-to-
target map and the entry-point of the file. Finally the test
generation algorithm GENTEST is launched on the ACFG.

5

When a new target is discovered dynamically, theexcep-
tion newTarget is thrown and caught by the top-level al-
gorithm, the jump-to-target map is updated and the whole
process is iterated starting on the new map. We describe
STATICPROPAGATION and the modification of GENTEST

below.

algorithm IR-RECOV(exec,iadd)
input: executable exec, initial address iadd
output: a test suite and the ACFG
1: TargetCache← ∅
2: Loop
3: TargetCache← STATICPROPAG(exec,iadd,TargetCache)
4: ACFG← BUILD (exec,iadd,TargetCache)
5: try
6: return (GENTEST(ACFG.init node),ACFG)
7: with exception
8: | newTarget (jump,taddr)→
9: TargetCache← TargetCache∪ {(jump,taddr)}

10: end try
11: end loop

Algorithm 2: IR recovery mechanism

Static analysis. Our static analysis is mostly a standard
constant propagation (over finite sets of constants rather
than singleton) except that: (1) when abstract dynamic jump
targets are not precise enough (i.e. evaluate to⊤ in the ab-
stract) we do not propagate values to all instructions ; (2)
when abstract alias relationship are not precise enough we
do not propagate values to all aliased memory cells.

Hence this static analysis does not compute a safe over-
approximation of the program. In our context, missing tar-
gets is an issue because we may miss some paths of the
program, but having too many false targets is also an is-
sue because this will lead to many infeasible paths in the
ACFG, and the test generation technique may suffer from
slow-convergence phenomena. Since missing targets may
be discovered dynamically, we adapt the static analysis to
avoid the second case, at the price of incompleteness.

Dynamic analysis. The ACFG is also discovered on-the-
fly. This requires modifying thecgotocase of the concolic
test data generation algorithm. When a new target is discov-
ered, an exception is thrown and caught by the IR recovery
algorithm. The ACFG is updated accordingly and the test
data generation algorithm continues. There are two reasons
why a new target can be discovered: (1) it can be discovered
by the concrete execution; (2) once all targets have been
treated, an additional path predicate is computed constrain-
ing the target expression to take an undiscovered value. We
present in Algorithm 3 on page 11 a precise description of
the test data generation algorithm, including concolic exe-
cution and IR recovery mechanisms.

Correction and completeness. Our static analysis is nei-
ther complete (missing targets) nor correct (false targets).

However, the data input generation algorithm ensures that
false targets will not generate false tests, and it may dis-
cover missing targets dynamically. One could add an ad-
ditional safe static analysis to detect whether or not all dy-
namic jumps are saturated, i.e. all their targets have been
discovered. This is not yet done in our tool.

Discussion Purely static techniques for IR recovery are
either too coarse or very sophisticated [4, 5] and difficult to
implement for the non-expert because they aim at comput-
ing a both safe and tight overapproximation. In a dynamic
perspective, completeness can be relaxed.

On the other hand, a purely dynamic discovery of the
executable structure is feasible but suffers from two draw-
backs. First, dynamic methods cannot ensure that all
dynamic targets have been explored. Second, in con-
straint programming, equality constraints are more effi-
ciently solved than disequality constraints. It is therefore
more efficient to discover quickly possible targets and try to
reach them by solving equality constraints than iteratively
solving disequality constraints to discover targets.

4. The OSMOSE tool

Our results have been implemented in the OSMOSEtool.
OSMOSE is an automatic binary-level analyser. It takes as
input the executable (currently: Intel 8051, Motorola 6800
or PowerPC 550), the name of the hardware architecture and
instruction set, a structural coverage objective (currently:
instructions, branches or paths) and, optionally, a descrip-
tion of the environment. Outputs are mainly a high-level
representation of the software under analysis, a set of test
data and a report stating the bugs encountered, the cover-
age achieved by the test suite and unreached branches or
instructions. The user view is described in figure 1.

e x e c u t a b l e
f i l e

t e s t s u i t e

b u g s ,
t h r e a t s

h i g h - l e v e l
m o d e l

i n p u t o u t p u tt o o l

R e f i n e m e n t

o t h e r o p t i o n s

s c e n a r i i ,
o b j e c t i v e s

O s m o s e

R e f i n e m e n t

G U I e n v i r o n m e n t

Figure 1: User view of OSMOSE

Generic machine code and simulation. To ensure the
independence of the tool from any specific hardware ar-

6

chitecture and machine code, we work on a generic ma-
chine code parametrised by a generic architecture descrip-
tion. The concrete machine code is first translated into the
generic machine code by a translation module. All analyses
are performed on the generic machine code and one needs
only to write a specialised translation module to integrate
a new architecture. The processors currently supported by
OSMOSEare listed in table 1.

Processor Manufacturer Date Generation
6800 Motorola 1975 8 bits
8051 Intel 1980 8 bits
PowerPC 550 Freescale 1997 32 bits

Table 1. Processors supported by OSMOSE

The generic machine code implies that OSMOSEruns tests
in simulation mode rather than in exact mode like other
structural test tools. This is mandatory unless OSMOSEcan
be run on the exact architecture targeted by the executable
under test, which is unrealistic for most processors.

Input/output. Inputs are the executable, the hardware ar-
chitecture name and a description of the environment. Out-
puts are mainly the set of test data with the coverage mea-
surement and a ACFG of the software. The interface is cur-
rently textual.

Environment. The environment is modelled by defining
some memory cells as volatile, meaning that they corre-
spond to inputs and can be modified randomly at any step
of execution. Algorithms of sections 2 and 3 are modified
to handle read-operations on volatile memory cells. They
return the “top” value in the static analysis, a random value
in the concrete execution and a new variable in the symbolic
execution. In the presence of an environment, a test data is
composed of a valuation of input values and a sequence of
read values for each volatile memory cell.

Parameters. The tool provides command-line options
and a configuration file to set different parameters of the
analysis algorithms. For example the depth of the path-
search (test data generation), the time-out value (constraint
solver) or the size of the abstract domain (constant propa-
gation). A particular programming effort has been devoted
to extracting from the code as many parameters as possible,
so that the user can easily set up their values.

Which guarantees? While reported bugs are guaranteed
to be real bugs in the simulation mode of OSMOSE(valida-
tion on the concrete hardware architecture may be required),
the ACFG and the coverage measure are approximations. If
all dynamic jumps are saturated then the ACFG is a safe

over-approximation (because of false targets) of the real
CFG and the coverage measure is an under-approximation
which the user can rely on. In the other case, the ACFG
may contain both false and missing targets due to unsatu-
rated dynamic jumps. The ACFG cannot be used as a safe
over-approximation anymore. The ACFG still provides in-
teresting information to the user, but the coverage measure
is not faithful anymore. A solution is to add a standard safe
static analysis to detect whether or not all dynamic jumps
are saturated and report it to the user. This is not done yet.

Architecture. The software architecture is presented in
Figure 2. The tool engine uses two external modules: a
translation module from dedicated machine code to our
generic one and a bit-vector theory constraint solver.

generic assembly

 language

Mov A,10

Goto 20

 test suite

test 1: input1=1,input2=1

test 2: input1=0,input2=1

test 3: input1=5,input2=0

...

 high-level

 representation
 new

instructions
discovered ?

Static AnalysisTranslator

Simulation
Test Data

Generation

Constraint
Resolution

translation module
PPC

translation module
8051

translation module
6800

Machine code

01100011110

00011110101

01010111000

 high-level

 model

 +

 test suite

 +

 run-time

 report

INPUT

OUTPUT

Figure 2: Software architecture of OSMOSE

Implementation. OSMOSE is written in OCaml, a func-
tional language with strong static typing and high-level
features like functors (parametrised modules) which have
proven very useful for the generic software architecture.
The constraint resolution engine is built upon the bounded
arithmetic solver developed for the model-based testing tool
GATeL [13]. We wrote a layer implementing the bit-vector
theory on top of it. GATeL and our extension are written in
the constraint logic programming system ECLiPSe [2]. The
resolution engine is plugged into the OCaml source code
using the C language as an intermediate. The program con-
tains 22 kloc of OCaml (6kloc more for the three translation
modules), 3.5 kloc of ECLiPSe and 1.5 kloc of glue in C.
OSMOSEhas been tested on an Intel PC running Linux.

7

5. Experiments

We evaluate OSMOSEon a set of small C programs com-
piled to the 8051 and to the PowerPC 550. These experi-
ments do not intend to prove that OSMOSEis able to gener-
ate test data for real-life programs, but rather to demonstrate
the feasibility of the ideas exposed in this paper.

We consider six different programs.msquare (40 loc)
reads a volatile square matrix and check if the matrix is
magic or not. The number of constraints grows exponen-
tially with the size of the square matrix.hysteresis (30
loc) simulates a finite-state machine reading growing inputs
until a maximal threshold is reached, then decreasing inputs
until a minimal threshold is reached, and so on. The rate of
variation is bounded. This example needs an environment
and long sequence of tests (about 30 input readings and 250
branch conditions).merge (60 loc) is the well-known sort-
ing algorithm. The program contains functions, vectors and
aliases.cell (20 loc) is a small but tricky example (alias
constraints) taken from [10].triangle (20 loc) is a stan-
dard academic puzzle.list (20 loc) is a small example
manipulating linked lists.

We used the following cross-compilers:sdcc for the
8051 andgcc for the PowerPC. We turned off optimisa-
tions to avoid too many modifications of the program. No-
ticeably, unoptimised executables appear to be more diffi-
cult to analyse than optimised ones. It is also worth noting
that onmerge andtriangle, the two executables are
very different. Thesdcc compiler tends to add many func-
tion calls and bit-wise operations, especially in the presence
of C pointers.

Results. Evaluations have been performed on a PC
equipped with an Intel Pentium M 2Ghz and 1.2 GBytes
of RAM, running Linux Ubuntu 6.10. The time-out for the
solver was set up to 1 minute. Results are summarised in
Table 2 for the 8051 and Table 3 for the PowerPC 550. For
each C program, we report statistics about the executable
(number of instructions and branch conditions), the branch
coverage achieved and the computation time (in seconds).
This coverage is exact since there are only easy-to-solve
dynamic jumps in these programs. When two coverages are
mentioned, the first one is reported by OSMOSEand the sec-
ond one is evaluated w.r.t. feasible branches only. Memory
consumption is not reported since it was very low, always
smaller than 10 MBytes.

Comments. The tool performs well on almost all exam-
ples, with a computation time often smaller than 10 seconds
and a 100% coverage of feasible branches on all examples
but one. Noticeably, performances are almost always simi-
lar for the two processors while the size of variable domains
grows from28 for the 8051 to232 for the PowerPC. This is

name I C Branch cover Time
msquare 3×3 272 23 82%-100% 5.2
msquare 4×4 274 23 86%-100% 129
hysteresis 91 8 100% 35
merge 56 12 100% 110
triangle 102 19 52%-100% 0.5
cell 23 4 100% 2.4
list 13 3 100% 1.2

I: #instructions, C: #conditional branches, Time in seconds

Table 2. Experiments for 8051 (8 bits)

name I C Branch cover Time
msquare 3×3 226 15 93%-100% 3.8
msquare 4×4 226 15 ?? ≥ 300
hysteresis 76 8 100% 36
merge 188 8 100% 2.5
triangle 40 9 100% 0.7
cell 18 4 100% 0.4
list 15 3 100% 1.1

I: #instructions, C: #conditional branches, Time in seconds

Table 3. Experiments for PowerPC (32 bits)

surprising since a main issue of constraint programming is
the scalability w.r.t. the domain size. An explanation may
be that most path predicates are solved with small values.

OSMOSEperforms badly on two examples:merge for
8051 andmsquare 4×4 for PowerPC. In both cases, the
compilation step adds many bit-wise operations which are
not efficiently handled by our constraint solver.

6. Related work

We are not aware of any other technique specialised in
test data generation at the binary level, with the executable
as the only input. However, a few tools work on low-level
code with additional high-level information. There are also
tools linked to different aspects of our work, mainly test
data generation and IR recovery.

Low-level code verification. Some verification tools may
be thought of as working at low level. However they are
different from OSMOSE since they have access to high-
level information from the program source code or the com-
piler, like the symbol table, targets of dynamic jumps for
switch-like instructions and so on. In this category, we
can cite jMoped and the tools from the Absint company.
jMoped [7, 19] is a verification tool for Java programs work-
ing mainly at the bytecode level. While former versions
aimed at full verification, the last one is devoted to test data
generation. The core technology is based on BDD model-
checking of weighted pushdown systems. Note that Java
bytecode is rather high-level compared to usual machine

8

code. Tools from the Absint company [21] work on assem-
bly languages with information from the C program. Their
products are actually geared towards non-functional prop-
erties like estimation of maximal stack height or worst-case
execution time. Their core technology is based on static
analysis.

IR recovery (on executables). Commercial tools like
IDA Pro [22] have problems with dynamic jumps. Specific
static analysis techniques have been developed recently for
this issue [4, 5]. Since the goal is to compute statically a
safe and tight over-approximation, the technology is very
sophisticated. The same team has also developed a verifi-
cation technology based on model-checking the recovered
abstract model [17] but we are not aware of any practical
experiments and evaluation. These IR recovery techniques
are difficult to implement for the non-expert because they
target both completeness and tightness of approximations.

Since we consider the problem from a testing perspec-
tive, we can relax the completeness requirement. Moreover,
thanks to our combination of static and dynamic steps, we
can also relax the correctness requirement on the static step.
This greatly simplifies the implementation of the static part,
while correctness is (easily) ensured by the dynamic step.

Path-based structural test data generation. Our test
data generation technology is inspired by tools like
DART [10], CUTE [20] and PATHCRAWLER [23]. They
work at the programming language level (C for all three and
also Java for CUTE). All of these three tools rely on path
predicate solving, bounded depth-first search and concolic
execution. Premises of concolic execution can be found
in PATHCRAWLER to find a feasible initial path and dis-
cover the CFG on-the-fly, while the current concept has
been explicitly introduced and popularised by DART and
CUTE. Each of these tools has its own specific features.
DART and PATHCRAWLER have specific techniques to han-
dle functions in a modular way [11, 14]. CUTE provides an
hybrid test generation algorithm mixing both structural gen-
eration and random generation, which is proved to enhance
the achieved coverage and the bug detection abilities [16].

Compared to OSMOSE, these tools work on a structured
language and do not have to face the IR recovery problem.
Considering only the test data generation technique, there
are three other main differences.

• Machine arithmetic. Both DART and CUTE work
on linear arithmetic (with simplex-based solvers
and approximations of non-linear constraints) and
PATHCRAWLER works on bounded full arithmetic
(with constraint programming). OSMOSEis in a sense
more complete than these tools since non-linear con-
straints are not approximated and low-level mecha-

nisms of machine arithmetic like overflows are taken
into account. This increase in precision has a cost but
it seems imperative to discover typical security flaws.

• Alias. CUTE and PATHCRAWLER take advantage of
the C program under verification to discover syntac-
tic potential alias relationships, typically through type
declarations and pointer expressions in branch condi-
tions. However they cannot detect alias relationships
depending only on the memory layout. On the con-
trary, OSMOSEdoes not have access to any high-level
information but the concolic execution is modified to
discover on-the-fly some alias relationships depending
on the memory layout.

• Concolic execution. The concolic execution has been
first used to find a feasible initial path and explore the
program on-the-fly [23], and then to approximate “dif-
ficult instructions” [10, 20] like non-linear constraints
and library function calls. We enhance the concolic
execution with a third semi-concrete execution used to
detect infeasible paths early and prune the path search.
We also take advantage of the concrete execution to
discover alias relationships and dynamic jump targets.

Constraint-based structural test data generation.
InKa [8, 9] performs structural test data generation on C
programs through constraint solving. In this approach the
whole program is translated into an equivalent constraint
programming problem, while the techniques presented so
far translate only one path a time for efficiency issues.
Noticeably, InKa includes a solver for floating-point
arithmetic constraints [3].

7. Conclusion and future works

Verification at the binary level is much more difficult
than higher-level analysis mainly due to the absence of any
exact control-flow graph. However, this machine-code anal-
ysis may be the most relevant one in case of strong se-
curity requirements or even the only option left when no
higher-level documentation is available. We have shown in
this paper how to perform path-based structural test data
generation on a standalone executable. We adapt existing
technologies to the specific issues appearing in binary-level
analysis, and we also develop innovative techniques, for ex-
ample to solve the IR recovery problem. The results have
been implemented in a tool named OSMOSEand encourag-
ing experiments have been conducted.

This work is just a preliminary step demonstrating the vi-
ability of automatic structural test data generation on stan-
dalone executables. There are at least three directions for
future work. First, we need to improve our test data genera-
tion technology to scale up to real-life programs. There are

9

different possibilities, from modular generation [11, 14]to
hybrid generation [16] or dedicated constraint solving tech-
niques. Second, we aim at improving the user interface of
the tool to allow more interaction. No verification tool can
claim to be completely automatic and user guidance has
proven to be useful. Finally, safe (static) IR recovery tech-
niques [4, 5] could give assurance about the quality of the
abstract control-flow graph by detecting unsaturated jumps.

Detailed test data generation algorithm

Our test data generation algorithm is presented in sec-
tion A, including concolic execution and dynamic IR re-
covery. Some parts are still omitted like alias management.

References

[1] K. R. Apt. Principles of Constraint Programming. Cambridge
University Press, 2003.

[2] K. R. Apt and M. Wallace. Constraint Logic Programming
using Eclipse. Cambridge University Press, 2007.

[3] B. Botella, A. Gotlieb and C. Michel. Symbolic execution of
floating-point computations. InSTVRvol. 16, 2006.

[4] G. Balakrishnan and T. Reps. Analyzing memory accesses in
x86 executables. InCC 2004. Springer.

[5] G. Balakrishnan, T. Reps, D. Melski and T. Teitelbaum. WYS-
INWYX: What You See Is Not What You eXecute. InIFIP
Working Conference on Verified Software: Theories, Tools,
Experiments. 2005.

[6] D. Cyrluk, O. Möller and H. Rueß. An Efficient Decision
Procedure for the Theory of Fixed-Sized Bit-Vectors. InCAV
1997, Springer.

[7] J. Esparza and S. Schwoon. A BDD-based Model Checker for
Recursive Programs. InCAV 2001, Springer.

[8] A. Gotlieb, B. Botella and M. Rueher. Automatic Test Data
Generation Using Constraint Solving Techniques. InISSTA
1998. ACM.

[9] A. Gotlieb, B. Botella and M. Watel. Inka: Ten years after the
first ideas. InICSSEA 2006.

[10] P. Godefroid, N. Klarlund and K. Sen. DART: Directed Au-
tomated Random Testing. InPLDI’2005. ACM.

[11] P. Godefroid. Compositional dynamic test generation. In
POPL 2007. ACM.

[12] M. Howard. Some bad news and some good
news. Microsoft Developer Network, October
2002, http://msdn2.microsoft.com/en-us/
library/ms972826.aspx.

[13] B. Marre and A. Arnould. Test sequences generation from
LUSTRE descriptions: GATeL. InASE 2000. IEEE.

[14] P. Mouy. Automatisation du test de tous-les-chemins en
présence d’appels de fonctions. PhD thesis, INSTN, 2007.

[15] Software Considerations in Airborne Systems and Equip-
ment Certification.RTCA 1992.

[16] R. Majumdar and K. Sen. Hybrid Concolic Testing. InICSE
2007. IEEE.

[17] T. Reps, S. Schwoon, S. Jha and D. Melski. Weighted
pushdown systems and their application to interprocedural
dataflow analysis. In SCP, october 2005.

[18] A. Stump, C. W. Barret, D. Dill and J. Levitt. A Decision
Procedure for an Extensional Theory of Arrays. InLICS 2001,
IEEE.

[19] D. Suwimonteerabuth, F. Berger, S. Schwoon and J. Esparza.
jMoped: A Test Environment for Java programs. InCAV 2007,
Springer.

[20] K. Sen, D. Marinov and G. Agha. CUTE: A Concolic Unit
Testing Engine for C. InESEC/FSE 2005. ACM.

[21] http://www.absint.com/

[22] http://www.datarescue.com/

[23] N. Williams, B. Marre and P. Mouy. On-the-Fly Generation
of K-Path Tests for C Functions. InASE 2004. IEEE.

10

A Detailed test data generation algorithm

Our test data generation algorithm is presented in Algo. 3, includ-
ing concolic execution and dynamic IR recovery. Some parts are
still omitted like alias management.

algorithm GENTEST2(nodeinit)
input : initial node nodeinit
parameter : atomic, node.addr, node.next, meminit
output: set of test data Res
1: Res← ∅
2: REC(nodeinit, ⊤,meminit,mem init)
3: return Res

procedure REC(node,Φ, C, S)
input : node, formulaΦ, concrete state C, semi-concrete state S
parameter : Res, atomic, node.addr, node.next, update, eval,addr.node
exception: newTarget(node,addr)
output: no result, the procedure updates Res
1: if (termination orΦ unsat or depthbound)then return ();
2: else
3: Casenodeof
4: | ε→
5: try Sp ← solve(Φ) ; Res← Res∪ {Sp}
6: with unsat or timeout→ ();
7: end try
8: | block instr→
9: REC(node.next,Φ∧ atomic(instr),update(C,instr),update(S,instr))

10: | goto tnode→ REC(tnode,Φ,C,S)
11: | call fnode→ REC(fnode,Φ,C,S)
12: | ite(cond,inode,tnode)→
13: caseeval(cond,S)of
14: | true→ REC(inode,Φ,C,S); /* constant value */
15: | false→ REC(tnode,Φ,C,S); /* constant value */
16: | symbolic→ /* non-constant value */
17: REC(inode,Φ ∧ cond,C,S);
18: REC(tnode,Φ ∧ ¬cond,C,S)
19: end case
20: | cgoto expr→
21: if eval(expr,C)6∈ node.nextthen /* new target discovered */
22: exceptionnewTarget(node,eval(expr,C));
23: else
24: caseeval(expr,S)of
25: | constant addr→ REC(addr.node,Φ,C,S) /* constant value */
26: | symbolic→ /* non-constant value */
27: for all tnode∈ node.nextdo
28: REC(tnode,Φ ∧ expr= tnode.addr,C,S)
29: end for /* the following line forces to discover new target */
30: REC(tnode,Φ ∧

V

t∈node.nextexpr 6= t.addr,C,S)
31: end case
32: end if
33: end case
34: end if

Algorithm 3: Detailed test data generation algorithm

B Details on experiments

The msquare program

#define taille 4
volatile char entry[taille][taille];

int main() {
char sum = 0;

char matrix[taille][taille];
char sumcol[taille];
char sumlig[taille];
char sumdiag[2];
char i,j,magic_number, success;

for(i=0 ; i < taille ; ++i)
for(j= 0 ; j < taille ; ++j)

matrix[i][j] = entry[i][j];

for(i=0 ; i < taille ; i++) {
sumlig[i] = 0;
sumcol[i] = 0;

}

for(i=0 ; i < taille ; i++)
for(j=0 ; j < taille ; j++)

sumlig[i] += matrix[i][j];

for(i=0 ; i < taille ; i++)
for(j=0 ; j < taille ; j++)

sumcol[i] += matrix[j][i];

sumdiag[0] = 0;
sumdiag[1] = 0;
for(i=0 ; i < taille ; ++i) {
sumdiag[0] += matrix[i][i];
sumdiag[1] += matrix[i][taille-i-1];

}

for(i=0 ; i < taille*taille ; ++i)
for(j=i+1; j < taille*taille ; ++j)

if (matrix[i/taille][i%taille] ==
matrix[j/taille][j%taille]
)
goto end;

magic_number = sumdiag[0];

if (sumdiag[1] != magic_number)
goto end;

for(i=0; (i < taille) ; ++i)
if (

(sumcol[i] != magic_number) ||
(sumlig[i] != magic_number)

)
goto end;

success = 1;
return 1;

end:
success = 0;
return 0;

}

11

The hysteresis program

volatile int portIn;
volatile int minSeuil, maxSeuil;

int getPort(void) {
return portIn;

}

typedef enum { Down, Up} tstate;

int main() {
int readVal,predVal = 0;
tstate currentState = Down;
tstate predState = Down;

while(1) {
readVal = getPort();
if ((readVal>predVal+10)||(predVal>readVal+10))

goto bad_spec;
if ((currentState==Down)&&(readVal>maxSeuil))

currentState = Up;
else if ((currentState==Up)&&(readVal<minSeuil))

currentState = Down;
if ((predState==Up)&&(currentState==Down))

goto end;
predState = currentState;
predVal = readVal;

}

end:
return 1;

bad_spec:
return -1;

}

The triangle program

volatile unsigned char ain,bin,cin;
typedef enum { NORMAL,EQUI,ISO } ttriangle;
typedef unsigned char uchar;

void swap(uchar *a, uchar *b) {
unsigned char tmp = *a;

*a = *b;

*b = tmp;
}

ttriangle getType(uchar a,uchar b,uchar c){
ttriangle ret = NORMAL;
if (a < b) swap(&a,&b);
if (a < c) swap(&a,&c);
if (b < c) swap(&b,&c);
if (a == b)
if (b == c) ret = EQUI;
else ret = ISO;

else if (b == c) ret = ISO;
return ret;

}

int main() {
if ((ain == 0) && (bin == 0) && (cin == 0))
return -1;

return getType(ain,bin,cin);
}

The merge program

#include<iostream>
#define SIZE 4

volatile int tab_in[SIZE];

void merge(int tab_to_merge[],int limit,int size){
int tab_copy[SIZE];
int i, tmp1, tmp2;
int *ptr1, *ptr2, *plimit, *psize, *pdest;
ptr1 = tab_to_merge;
plimit = tab_to_merge + limit;
ptr2 = plimit;
psize = tab_to_merge + size;
pdest = tab_copy;

while((ptr1 < plimit) && (ptr2 < psize)) {
tmp1 = *ptr1;
tmp2 = *ptr2;
if (tmp1 > tmp2) {

*pdest = tmp2;
ptr2++;

} else {

*pdest = tmp1;
ptr1++;

}
pdest++;

}
while(ptr1 < plimit) {

*pdest = *ptr1;
ptr1++;
pdest++;

}

while(ptr2 < psize) {

*pdest = *ptr2;
ptr2++;
pdest++;

}

for(i = 0 ; i < size ; ++i)
tab_to_merge[i] = tab_copy[i];

}

void mergesort(int tab_to_sort[], int size) {
int ihalf,i;
if (size <= 1) return;
ihalf = size /2;
mergesort(tab_to_sort, ihalf);
mergesort(tab_to_sort + ihalf, size-ihalf);
merge(tab_to_sort, ihalf, size);

}

int main() {
int i;
int tab[SIZE];
for(i = 0 ; i < SIZE ; ++i) tab[i] = tab_in[i];
mergesort(tab,SIZE);
return 0;

}

12

The cell program

typedef struct cell {
int v;
struct cell *next;

} cell;

int g(int v) {
return 2*v + 1;

}

int testme(cell *p, int x) {
if (x > 0)
if (p != 0)

if (g(x) == p->v)
if (p->next == p)

while(1) {}
return 0;

}

cell *pcellinit;
int xinit;

int main(){
testme(pcellinit,xinit);
return 1;

}

The list program

#define GOAL_LENGTH 10

struct mylist {
struct mylist* next;

};

volatile struct mylist pentrylist;

int main() {
struct mylist* pcurrent = &pentrylist;
int i,success;

for(i = 0 ; i < GOAL_LENGTH ; ++i) {
if (pcurrent == 0) goto end;

pcurrent = pcurrent-> next;
}

if (pcurrent != 0) goto end;
else { success = 1 ; while(1) {} }

end:
success = 0;
return 0;

}

13

