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Abstract—Automatic test data generation (ATG) is a major
topic in software engineering. In this paper, we bridge the gap
between the coverage criteria supported by state-of-the-art white-
box ATG technologies, especially Dynamic Symbolic Execution,
and advanced coverage criteria found in the literature. We define
a new testing criterion, label coverage, and prove it to be both
expressive and amenable to efficient automation. We propose
several innovative techniques resulting in an effective black-
box support for label coverage, while a direct approach induces
an exponential blow-up of the search space. Experiments show
that our optimisations yield very significant savings, allowing to
leverage ATG to label coverage with only a slight overhead.
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I. I NTRODUCTION

Context and problem. Automatic test data generation (ATG)
is a major concern in software engineering and program
analysis. Recent progress in automated theorem proving ledto
significant improvements of symbolic approaches for white-
box ATG, such as Dynamic Symbolic Execution (DSE) [13],
[36], [40]. Tools have been developed [5], [7], [8], [14], [37]
and impressive case-studies have been carried out [7], [8],[16].

We consider the case where ATG aims at generating a test
suite which is then passed to one or several external oracles,
in order to assess for example functional correctness, security
or performance. The more behaviours the test suite exercise,
the better. A standard way of measuring this diversity passes
through coverage criteria [2], [42]. Many such criteria have
been defined along the years, from control-flow or data-flow
criteria to mutation [11], input domain partitions and MCDC.

DSE mostly follows an exhaustive exploration of the path
space of the program under test, covering all execution paths
up to a given bound. While this path-oriented criterion proves
successful in some contexts, it is well known that the resulting
test suite can miss interesting behaviours related to data
rather than control. Moreover, standard DSE does not support
coverage objectives defined over artifacts not explicitly present
in the source code, such as multiple-condition coverage, while
they could efficiently guide test generation.

Goal. Our main objective is to bridge the gap between cover-
age criteria supported by symbolic ATG tools, especially DSE,
and advanced coverage criteria found in the literature. Recent
works aim at leveraging DSE to other coverage criteria [18],
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[32], [33], [34], [35], [43] or improving DSE bug-detection
abilities by making explicit run-time error conditions [9], [15],
[20]. These approaches are mainly based on instrumentation
and allow for black-box reuse of existing technologies. How-
ever, they come at a high price since they may induce a
blow-up of the path space and a significant overhead (a recent
paper [18, Table 2] reports on a 272x average time-overhead,
with a worst case of 2,000x). We follow the same general line,
emphasising black-box reuse as much as possible. However,
we focus on two main points mostly left unaddressed: we want
to formally characterize the class of coverage criteria that can
be supported by DSE-like techniques, and we want to support
it efficiently.

Approach. We definelabel coverage, a new testing criterion
which appears to be both expressive and amenable to efficient
automation. Especially, it turns out thatDSE can be extended
for label coverage with only a slight overhead. Labels are
predicates attached to program instructions through a labelling
function. A label is covered if a test execution reaches it and
satisfies the predicate. This idea underlies former work [9],
[15], [18], [20], [34], [43]. We generalize these results and
propose ways of taming the potential blow-up. Especially, we
introducetight instrumentation, where “tight” is made precise
in the paper, and a strong coupling of DSE and label coverage
named iterative label deletion. Their combination results in
an effective support for label coverage in DSE. Besides, both
techniques can be implemented in black-box.

Contribution. Our main contributions are the following:

• We show that label coverage is expressive enough
to faithfully emulate many standard coverage criteria,
from decision or condition coverage (Theorem 1) to a
substantial subset of weak mutations (the side-effect
free fragment, Theorem 2). Labels can be seen in
some way as a convenient and powerful specification
mechanism for coverage criteria.

• We formally characterise the properties of direct in-
strumentation for label coverage. The instrumentation
is sound w.r.t. label coverage and leads to very efficient
coverage score computation. However, it yields an
exponential increase as well as a “complexification”
of the path space (Theorem 5).

• We proposetight instrumentationand iterative label
deletionas ways of taming this complexity blow-up.
Tight instrumentation yields only a linear growth of
the path space without any complexification (Theo-
rem 7). Both techniques are orthogonal and allow for



a significant speed-up. Moreover, they can both be
implemented either through dedicated DSE algorithms
or in a black-box manner.

• We have implemented these results inside a DSE tool
[40]. Initial experiments show that our optimisations
yield very significant reductions of both search space
and computation time compared to direct instrumen-
tation (several-orders-of-magnitude speedup in some
cases). It follows that ATG for label coverage can be
achieved at a very reasonable cost w.r.t. usual DSE.

As a whole, label coverage forms the basis of a very generic
and convenient framework for test automation, providing a
powerful specification mechanism for test objectives and fea-
turing efficient integration into symbolic ATG techniques as
well as cheap coverage score computation. Moreover, static
analysis techniques can also be used directly on the instru-
mented programs in order to detect uncoverable labels, as was
proposed for mutation testing [24].

This work bridges part of the gap between symbolic ATG
techniques and coverage criteria. On the one hand, we show
that DSE techniques can be cheaply extended to more ad-
vanced testing criteria, such as side-effect free weak mutations.
On the other hand, we identify a large subclass of weak
mutations amenable to efficient automation, both in terms of
ATG and mutation score computation.

Outline. After presenting basic notation (Section II), we define
labels and explore their expressiveness (Section III). We then
focus on automation. The direct instrumentation is defined
and studied (Section IV). Afterwards, we describe our own
approach to label-based ATG (Section V) and present first
experiments (Section VI). Finally, we sketch a highly automa-
tized testing framework based on labels (Section VII), discuss
related work (Section VIII) and give a conclusion (Section IX).

II. BACKGROUND

A. Notation

Given a programP over a vectorV of m input variables
taking values in a domainD , D1× . . .×Dm, a test datumt
for P is a valuation ofV , i.e.t ∈ D. The execution ofP overt,
denotedP (t), is a path (or run)σ , (loc1, S1) . . . (locn, Sn),
where theloci denote control-locations (or simply locations)
of P and theSi denote the successive internal states ofP (≈
valuation of all global and local variables as well as memory-
allocated structures) before the execution of eachloci. A test
datumt reaches a locationloc with internal stateS, denoted
t❀P (loc, S), if P (t) is of the formσ1 · (loc, S) · σ2. A test
suiteTS is a finite set of test data.

Given a test objectivec, we write t ❀P c if test datumt
coversc. We extend the notation for a test suiteTS and a set of
test objectivesC, writing TS ❀P C when for anyc ∈ C, there
existst ∈ TS such thatt❀P c. These definitions are generic
and leave the exact definition of “covering” to the considered
testing criterion. For example, test objectives derived from the
Decision Coverage criterion are of the formc , (loc,cond)
or c , (loc,!cond), wherecond is the condition of the
branching instruction at locationloc, andt ❀P c if t reaches
some(loc, S) wherecond evaluates totrue (resp.false) in S.

Coverage criteria used through the paper and their associated
notions of covering are described in Section III-B.

B. DSE in brief

We recall here a few basic facts about Symbolic Execution
(SE) [21] and Dynamic Symbolic Execution (DSE) [13], [36],
[40]. Let us consider a program under testP with input
variablesV over domainD and a pathσ of P . The key insight
of SE is that it is possible in many cases to compute apath
predicateφσ for σ such that for any input valuationt ∈ D,
we have:t satisfiesφσ iff P (t) coversσ. In practice, path
predicates are often under-approximated and only the left-to-
right implication holds, which is already fine for testing: SE
outputs a set of pairs(ti, σi) such that eachti is ensured to
cover the correspondingσi. Hence, SE issoundfrom a testing
point of view. DSE enhances SE by interleaving concrete and
symbolic executions. The dynamically collected information
can help the symbolic step, for example by suggesting relevant
approximations.

A simplified view of SE is depicted in Algorithm 1. While
high-level, it is sufficient to understand the rest of the paper.
We assume that the set of paths ofP , denotedPaths(P ), is
finite. In practice, DSE tools enforce this assumption through
a bound on path lengths. We assume the availability of a
procedure for path predicate computation (with predicatesin
some theoryT ), as well as the availability of a solver taking
a formulaφ ∈ T and returning eithersat with a solutiont or
unsat. All DSE tools rely on such procedures. The algorithm
builds iteratively a test suiteTS by exploring all paths.

Algorithm 1: Symbolic Execution algorithm

Input : a programP with finite set of pathsPaths(P )
Output : TS, a set of pairs(t, σ) such thatP (t) ❀P σ

1 TS := ∅;
2 Spaths := Paths(P );
3 while Spaths 6= ∅ do
4 chooseσ ∈ Spaths; Spaths := Spaths\{σ} ;
5 compute path predicateφσ for σ ;
6 switch solve(φσ) do
7 casesat(t): TS := TS ∪ {(t, σ)};
8 caseunsat: skip ;
9 endsw

10 end
11 return TS;

The major issue here is that SE and DSE must in some
ways explore allPaths(P ). Advanced tools explore this set
lazily, yet they still have to crawl it. Therefore, the size of
Paths(P ), denoted|Paths(P )|, is one of the two major
bottlenecks of SE and DSE, the other one being the average
cost of solving path predicates.

Note that Bounded model checking (BMC) [10] is sensitive
to the same parameters, as it amounts to building a large
formula encompassing all paths up to a given length.

III. L ABEL COVERAGE

A. Definitions

Given a programP , a label l is a pair(loc, ϕ) whereloc
is a location ofP andϕ is a predicate such that:



• ϕ contains only variables and expressions defined in
P at locationloc;

• ϕ contains no side-effect expressions.

An annotated programis a pair 〈P,L〉 whereL is a set
of labels defined overP . A test datumt coversl , (loc, ϕ),
denotedt❀〈P,L〉 l, if t covers some(loc, S) with S satisfying
predicateϕ. We say that a test suite satisfies thelabel coverage
testing criterion, denoted byLC , if it covers all labels inL.

For simplicity, we consider in the rest of the papernormal-
ized programs, i.e. programs such that no side-effect occurs
in any condition of a branching instruction. This is not a
severe restriction since any (well-defined) programP1 can be
rewritten into a normalized programP2, using intermediate
variables to evaluate the side-effect prone conditions outside
the branching instruction. For example,if (x++ <= y
&& e==f) becomestmp = x++; if (tmp <= y &&
e==f). Notice that similar transformations are automatically
performed by the Cil library [30] frequently used by DSE tools
for C programs [36], [40].

B. Expressiveness of label coverage

We seek to characterize the power of theLC testing
criterion. A key notion is that oflabelling function. A labelling
function ψ maps a programP into an annotated program
ψ(P ) , 〈P,L〉.

Definition 1: A coverage criterionC can be simulated by
LC if there exists a labelling functionψ such that for any
programP and any test suiteTS, we haveTS ❀P C iff
TS ❀ψ(P ) LC.

We show first howLC can simulate basic graph and logic
coverage criteria [2], [42]: instruction coverageIC , decision
coverageDC, condition coverageCC (covering all atomic
conditions appearing in each decision, and their negations),
decision-condition coverageDCC (basically,DC plusCC) and
multiple-condition coverageMCC (covering all combinations
of atomic conditions). The basic idea is to introduce inP labels
based on branching predicates and their atomic conditions.An
example forCC is depicted in Figure 1, where additional labels
(right) enforce coverage of the two atomic conditionsx==y
anda<b.

statement_1;
if (x==y && a<b)

{...};
statement_3;

ψCC
−−−−−→

statement_1;
// l1: x==y
// l2: !(x==y)
// l3: a<b
// l4: !(a<b)
if (x==y && a<b)

{...};
statement_3;

Fig. 1. SimulatingCC with labels

Theorem 1:The coverage criteriaIC , DC, CC, DCC and
MCC can be simulated byLC .

Proof: We need to define a suitable labelling function for
any of the considered criteria. ForIC , we choose the labelling
functionψIC adding all labels of the form(loc, true), where
loc is any location ofP . Given a test suiteTS, TS ❀P IC iff

TS can reach anyloc of P iff TS covers any(loc, true) iff
TS ❀ψIC(P ) LC. We conclude thatIC can be simulated by
LC . Other criteria are handled similarly. The labelling function
ψDC adds the set of all(loc, ϕ) and (loc,¬ϕ), where loc
contains a conditional statement with conditionϕ. ψCC adds
the set of all(loc, ai) and (loc,¬ai), where loc contains a
conditional statement whose atomic conditions are exactlythe
ai. ψDCC adds the union of labels added byψDC andψCC.
ψMCC adds the set of all(loc,

∧
i āi), where theai are atomic

conditions andāi denotes eitherai or ¬ai.

Weak mutations. We now consider a more involved testing
criterion, namely weak mutations. In mutation testing [11], test
objectives consist ofmutants, i.e. slight syntactic modifications
of the program under test. In the strong mutation settingM ,
a mutantM is covered (orkilled) by a test datumt if the
output ofP (t) differs from the output ofM(t). In the weak
mutation settingWM [17], a mutantM is covered byt,
denotedt❀P M , if the internal states ofP (t) andM(t) differ
from each other right after the mutated location (cf. Figure2).
M is a powerful testing criterion in practice [1], [28]. While
less powerful in theory,WM appears to be almost equivalent
to M in practice [26].

Fig. 2. Strong and weak mutations

We show hereafter that a substantial part ofWM can
be simulated byLC . First we need a few more definitions.
Mutation testing is parametrised by a set ofmutation operators
O. A mutation operatorop ∈ O is a function mapping a
programP into a finite set of well-defined programs (mutants),
such thatP differs from each mutantM in only one location
(atomic mutation). We denoteWMO the weak mutation crite-
rion resticted to mutants created through operators inO. We
consider that mutations can affect either a left-hand side value
(lhs), an expression or a condition. This is a very generic model
of mutations, encompassing all standard operators [2]. Finally,
we restrict ourselves to mutation operators neither affecting
nor introducing side-effect expressions (including callsto side-
effect prone functions). We refer to such operators asside-
effect free mutation operators.

Theorem 2:For any finite setO of side-effect free muta-
tion operators,WMO can be simulated byLC .

Proof: For simplicity, let us consider first a single muta-
tion operatorop ∈ O. The main idea is to introduceone label



for each mutantM created byop, so that covering the label
is equivalent to distinguishingM from P once the modified
location has been reached. This transformation is depicted in
Figure 3. Let us consider a mutantM differing from P only
at location loc. We consider three cases, depending on the
modification introduced byop:

• lhs := expr becomeslhs := expr’: we add
label l , (loc, expr 6= expr′). We must prove that
t ❀P M iff t ❀ψ(P ) l. Note thatt ❀ψ(P ) l iff t
reachesloc with an internal state such thatexpr and
expr’ evaluate to different values. This is equivalent
to say thatP (t) and M(t) are in different internal
states right afterloc, which corresponds by definition
to t❀P M .

• if (cond) becomesif (cond’): we add label
l , (loc, cond⊕ cond′), where⊕ is the xor-operator.
We follow the same line of reasoning as in the
previous case. The⊕ operator ensures thatP (t) and
M(t) will not follow the same branching condition.

• lhs := expr becomeslhs’ := expr: we add
label l , (loc, α(lhs) 6= α(lhs′) ∧ (lhs 6= expr ∨
lhs′ 6= expr)), where α(x) denotes the memory
location (≈ address) ofx, not its value. For example,
in C the memory location is given by the& operator.
This case requires a little bit more explanation. In
order to observe a difference betweenP (t) andM(t)
right after the mutated location, we need first that
lhs’ and lhs refer to different memory locations
(which is not always obvious in the case of aliasing
expressions). Moreover, there are only two ways of
noticing a difference: either the old value oflhs
differs fromexpr, thenlhs will evaluate to different
values inP (t) (equals toexpr) and inM(t) (remains
unchanged) just after the mutation, or the symmetric
counterpart forlhs’. This is exactly whatl encodes.

By iterating this technique on all mutants created by the
considered mutation operators, we obtain the desired labelling
function.

Fig. 3. Simulating weak mutants with labels

The subset of mutations we have been considering so far
is limited to (1) atomic mutations and (2) side-effect free

operators. The first restriction is not a major issue as atomic
mutations have been proved to be almost as powerful as high-
order mutations [25]. The second restriction has two sides:
(2.a) it forbids mutation operatorsintroducingside-effects, for
example mappingx to x++, and (2.b) it forbids to mutate a
side-effect prone expression. Restriction (2.a) is not severe: it
encompasses operators ABS, ROR, AOR, COR and UOI [2],
which have been shown mostly equivalent to much larger sets
of operators [27], [39]. It is left as an open question to quantify
more precisely what is lost with restriction (2.b). Still, the
previous points show that side-effect freeWM is a substantial
(strict) subset ofWM .

Other criteria. Several other testing criteria commonly found
in the literature can be emulated by labels. For example:

• Input Domain Coverage: assuming a partition of the
input domainD of P given as disjoint predicates
ϕ1, . . . , ϕk, this criterion consists of considering one
ti for eachϕi. The corresponding labelling function
adds all labels of the form(loc0, ϕj), whereloc0 is the
entry point ofP . The approach is independent of the
way the partition is obtained, covering both interface-
based and functionality-based partitions [2].

• Run-Time Error Coverage: test objectives correspond-
ing to run-time errors such as those implicitly
searched for in active testing or assertion-based test-
ing [9], [15], [20] can be easily captured by labels, in-
cluding division by zero, out-of-bound array accesses
or null-pointer dereference. Typically, any error-prone
instruction at locationloc with a preconditionϕsafe
will be tagged by a label(loc,¬ϕsafe).

Limits. The following criteria cannot be emulated through
labels, at least with simple encoding: weak mutations with
operators involving side-effects, criteria imposing constraints
on paths rather than constraints on program locations (k-path
coverage, data-flow criteria) and criteria involving different
paths (MCDC) or even different programs (strong mutations).
It is left as future work to study whether these limitations are
strict or not.

IV. A UTOMATING LC: A FIRST ATTEMPT

Given an annotated program〈P,L〉, we need automatic
methods for: (1) computing theLC score of a given test suite
TS, and (2) deriving a test suite achieving highLC -coverage.
We propose first a black-box approach, reusing standard au-
tomatic testing tools through adirect instrumentationof P .
This technique underlies previous works aiming at extending
DSE coverage abilities [9], [15], [18], [20], [34], [35], [43].
While it allows for cheapLC score computation, it is far from
efficient for ATG, mainly because of an exponential blow-up
of the path space of the program.

A. Direct instrumentation

The direct instrumentationP ′ for 〈P,L〉 consists in in-
serting for each labell , (loc, ϕ) ∈ L a new branching
instructionI: if (ϕ) {}; such that all instructions leading
to loc in P lead to I in P ′, and I leads to loc. The
transformation is depicted in Figure 4. When different labels



are attached to the same location, the new instructions are
chained together in a sequence ultimately leading toloc.

statement_1;
//label p
statement_2;

−→

statement_1;
if(p){};
statement_2;

Fig. 4. Direct instrumentationP ′

Let us denote byNTD the set of test objectives overP ′

requiring to cover allNew Then-Decisions introduced by
the instrumentation. Direct instrumentation is obviouslysound
w.r.t. LC in the following sense.

Theorem 3 (Soundness):Given an annotated program
〈P,L〉, its direct instrumentationP ′ and a test suiteTS, we
have:TS ❀〈P,L〉 LC iff TS ❀P ′ NTD.

This is interesting for bothLC score computation and ATG.
Indeed, any ATG tool run onP ′ will produce a test suiteTS
coveringLC for 〈P,L〉 as soon asTS covers all branches of
interest inP ′. Besides, a slightly modified version of direct
instrumentation, updating coverage information in the new
then-branches, allows efficient coverage score computation.

Theorem 4:Given an annotated program〈P,L〉, its di-
rect instrumentationP ′ and a test suiteTS, then theLC
score ofTS can be computed in time bounded by|TS| ·
maxtime({P ′(t)|t ∈ TS}).

ComputingLC score can be done independently from|L|.
Regarding coverage score computation,LC is much closer to
DC (each testt is executed only once) than it is toWM
(each testt is executedonce per mutant). While efficient score
computation is a difficult issue in mutation testing, Theorems 2
and 4 show that the side-effect free subset ofWM does enjoy
efficient score computation.

B. Drawbacks

So far, the direct instrumentation seems to perfectly suit
our needs. Unfortunately, it is significantly inefficient for ATG.
There are two main reasons for that.

(†) P ′ is too complex: it exhibits many more behaviours
than P , most of them being unduly complex for
covering the labels we are targeting.

(‡) DSE will naturally produce a test suite covering sev-
eral times the same labels, which is useless since each
label needs to be covered only once.

We formalize the first point (†) hereafter. We consider two
dimensions in whichP ′ is “too complex”: the size of the
search space, denoted|Paths(P ′)|, and the shape of paths in

Paths(P ′). Let us calllabel constraintsall additional branches
ϕ and¬ϕ introduced inP ′ compared toP , and let us denote
bym the maximal number of labelsper location inP . A single
pathσ ∈ P may correspond to up to2m·|σ| paths inP ′, since
each label ofP creates a branching inP ′ and at mostm such
branchings can be found at each step ofσ. Note also that the
pathsσ′ ∈ P ′ corresponding toσ ∈ P have length bounded
by m · |σ|. Therefore they can pass through up tom · |σ| label
constraints, while (by definition)σ does not pass through any
label constraint. Theorem 5 summarises these results.

Theorem 5 (Non-tightness):Given an annotated program
〈P,L〉 and its direct instrumentationP ′, let us assume that
Paths(P ) is bounded, thatk represents the maximal length
of paths inPaths(P ) and thatm is the maximal number of
labelsper location inP . Then:

• |Paths(P ′)| can be exponentially larger than
|Paths(P )| by a factor2m·k;

• any σ′ ∈ Paths(P ′) may carry up tom · k (positive
or negative) label constraints.

Both aspects are problematic for symbolic exploration of
the search space: more paths means either more requests to a
theorem prover (DSE) or a larger formula (BMC), while more
constrained paths means more expensive requests.

V. EFFICIENT ATG FOR LC

We describe in this section two main ingredients in order
to obtain efficient ATG forLC : (1) a tight instrumentation
avoiding all drawbacks of the direct instrumentation, and (2)
a strong coupling of label coverage and DSE throughiterative
label deletion.

A. Tight instrumentation

Given a labell , (loc, ϕ), the key insights behind the
tight instrumentation are the following:

• label constraintϕ is useful only for coveringl, and
should not be propagated beyond that point;

• label constraint¬ϕ is pointless w.r.t. coveringl, and
should not be enforced in any way.

Keeping these lines in mind, the instrumentation works as
depicted in Figure 5: for each label(loc, ϕ), we introduce
a new instructionif (nondet) {assert(ϕ); exit};
whereassert(ϕ) requiresϕ to be verified,exit forces the
execution to stop andnondet is a non-deterministic choice1.

In the resulting instrumented programP ⋆ (Figure 5, right
column), when an execution reachesloc, it gives rise to
two execution paths: the first one tries to cover the label
by assertingϕ and stops right there, the second one simply
follows its executionas it would do inP , neitherϕ nor ¬ϕ
being enforced.

Let us denote byNA the test objective overP ⋆ requiring
to cover allNew Assert introduced by the instrumentation
(with condition evaluating to true). Tight instrumentation is
sound w.r.t.LC in the following sense.

1Note that any DSE engine can simulate non-deterministic choices by an
additional input array of (symbolic) boolean values.



statement_1;
// label p
statement_2;

−→

statement_1;
if(nondet){

assert(p);
exit(0);

};
statement_2;

Fig. 5. Tight instrumentationP ⋆

Theorem 6 (Soundness):Given an annotated program
〈P,L〉, its tight instrumentationP ⋆ and a test suiteTS, we
have:TS ❀〈P,L〉 LC iff TS ❀P⋆ NA.

Interestingly, tight instrumentation does not show any of
the issues reported in Theorem 5. The underlying reasons have
been sketched at the beginning of Section V-A and are depicted
in Figure 6. A single execution path inP going throughn
labels can give birth up to2n paths in P ′ (left column),
while it can create onlyn + 1 paths inP ⋆ (right column).
Moreover, each path inP ⋆ can go through at most one single
positive label constraint, while a pathσ′ in P ′ can carry up to
|σ′| (positive or negative) label constraints. These results are
summarized in Theorem 7.

Fig. 6. Direct vs. tight instrumentation

Theorem 7 (Tightness):Given an annotated program
〈P,L〉 and its instrumented versionP ⋆, let us assume that
Paths(P ) is bounded, thatk is the maximal length of paths
in Paths(P ) and thatm is the maximal number of labelsper
location inP . ThenP ⋆ is tight in the following sense:

• |Paths(P ⋆)| is linear in |Paths(P )| andm · k;

• any σ ∈ Paths(P ⋆) carries at most one label con-
straint.

Proof: The main reasons behind this result directly follow
from the tight instrumentation, and have already been exposed
just before Theorem 7. We can be more precise:|Paths(P ⋆)|
is bounded by(m · k + 1) · |Paths(P )|.

Theorems 5 and 7 imply that any path-based program
analysis conducted overP ⋆ will have a much easier task than if
conducted overP ′, sinceP ⋆ contains exponentially less paths
and those paths are simpler.

B. Iterative label deletion

We focus now on issue (‡) pointed out in Section IV-B. A
DSE procedure launched onP ⋆ tries to cover all paths from
P ⋆, while we are only interested in covering branches corre-
sponding to labels. Especially, it may try to cover path prefixes
ending in an already-coveredassert(ϕ). Whether they fail
or not, these computations are redundant since Theorem 6 only
requires that each newassert be covered once.

Iterative label deletion(IDL) consists in (conceptually)
erasing a label constraint as soon as it is covered, so that itwill
not affect the subsequent path search. IDL requires to modify
SE/DSE in the following way: each labell is equipped with a
boolean variablebl set to true iff l has already been covered
during path exploration, and attempts to symbolically execute
paths leading tol continue as long asbl is false.

We present DSE with IDL over annotated programs in
Algorithm 2, denoted DSE⋆(〈P,L〉), where modifications
w.r.t. standard SE/DSE are pointed out by(⋆) marks. We
assume thatPaths(〈P,L〉) is constructed in the following
way: at each step, a run encountering a labell , (loc, ϕ)
can either choose to go throughl (enforcingϕ) and continue,
or bypassl (no constraint) and continue.

Algorithm 2: Symbolic Execution with IDL

Input : an annotated program〈P,L〉 with finite set of
pathsPaths(P )

Output : TS, a set of pairs(t, σ) such thatP (t) ❀P σ
1 TS := ∅;
2 Spaths := Paths(〈P,L〉);
3 while Spaths 6= ∅ do
4 chooseσ ∈ Spaths; Spaths := Spaths\{σ} ;
5 computeφσ;
6 switch solve(φσ) do
7 casesat(t):
8 TS := TS ∪ {(t, σ)};
9 (⋆) for all l covered byσ, do: bl := 1 ;

10 (⋆) remove fromSpaths all σ′ going through
11 a labell s.t. bl = 1 ;
12 caseunsat: skip ;
13 endsw
14 end
15 return TS;

For integration in a realistic SE/DSE setting with dynamic
exploration of path space, we distinguish two flavors of IDL:

IDL -1 a label is marked as covered only when it belongs
to a path prefix being successfully solved. This is
a purely symbolic approach.



IDL -2 a label is also marked when it is covered by a
concrete execution, taking advantage of dynamic
runs to delete several labels at once.

Combining IDL with tight instrumentation. Both variants
of IDL can be combined with tight instrumentation either in a
dedicated manner or in a black-box setting. Since dedicated
implementations are straightforward, we focus hereafter on
black-box implementations. An instrumentation enforcingIDL -
1 overP ⋆ is depicted in Figure 7. We add extra boolean vari-
ables for coverage, denotedb_l wherel is a label identifier.
Yet, it is mandatory that the coverage information be global
to the whole search rather than bound to a single path, and
that theb_l be treated concretely by DSE. For simplicity, we
assume that it is achieved by putting the coverage information
in an external file, accessed and modified through (concretized
only) operationsread(b_l) andset_covered(b_l).

statement_k;
if(nondet){

assert(p);
exit(0);

}
statement_k+1;

−→

statement_k;
if(nondet && !read(b_l){

assert(p);
set_covered(b_l);
exit(0);

}
statement_k+1;

Fig. 7. IDL -1 variant of tight instrumentationP ⋆

Enforcing IDL -2 in a black-box setting requires a fine-
grained control over the DSE procedure. We need to be able to
query the DSE engine for the next generated test datum. The
procedure reuses theIDL -1-variant of tight instrumentationP ⋆,
but each new generated test datumt is also run on thedirect
instrumentationP ′. Unlike P ⋆, P ′ does not exit at the first
covered label, so all labels covered byt will be marked in the
coverage file before the next test datum is searched for. The
technique is depicted in Figure 8.

TD: test datum

Fig. 8. IDL -2 variant for DSE

We denote by DSE⋆(P ⋆) the combination of tight instru-
mentation andIDL presented in Figure 8, and we denote by
DSE(〈P,L〉) the variant of Algorithm 2 where lines 9-11 are
removed. Considering only deterministic DSE techniques, the
following result holds.

Theorem 8 (Relative completeness):Given an annotated
program〈P,L〉 and its tight instrumentationP ⋆, then both
DSE⋆(〈P,L〉) and DSE⋆(P ⋆) cover as many labels as
DSE(〈P,L〉) does.

Proof: We first show that discarding paths going through
an already covered label in DSE⋆(〈P,L〉) (cf lines 9-11 of

Algorithm 2) does not decrease label coverage w.r.t stan-
dard DSE on〈P,L〉. Given a label l, then for any path
σ ∈ Paths(〈P,L〉) covering l, there exists by definition
of Paths(〈P,L〉) another pathσ′ passing throughl and
the same statements inP as σ while bypassing any other
label, so thatσ coversl iff σ′ coversl. Sinceσ′ cannot be
discarded in DSE⋆(〈P,L〉) unlessl is covered, it follows that
the coverage cannot decrease, proving that DSE⋆(〈P,L〉) and
DSE(〈P,L〉) achieve the same coverage. Regarding coverage
equivalence between DSE⋆(P ⋆) and DSE(〈P,L〉), we reduce
it to proving coverage equivalence between DSE⋆(P ⋆) and
DSE(P ⋆) through Theorem 6. We can then conclude with a
similar proof technique.

VI. I MPLEMENTATION & EXPERIMENTS

A. Implementation

We have implemented tight instrumentation and iterative
label deletion inside PATHCRAWLER [40]. The tool targets
safety-critical C programs, with a strong focus on relative
completeness guarantees. For example, the underlying con-
straint solver deals precisely with modular arithmetic, bitwise
operations, floats and multi-level pointer dereferences. The
DSE engine relies on a basic depth-first search and is highly
optimised for programs with many infeasible paths [3].

Our implementation follows the description of Section V.
We implement tight instrumentation andIDL -2 in a dedi-
cated manner rather than a full black-box approach because
PATHCRAWLER does not offer yet the required API forIDL -
2. The search heuristics is mostly depth-first, but labels are
handled as soon as possible.

B. Experiments

Preliminary experiments have been conducted in order to
investigate the following properties:(i) the relative gain of
our two optimisations w.r.t. direct instrumentation,(ii) the
overhead of leveraging DSE toLC . Evaluating the practical
feasibility of label-based DSE over very large programs or its
bug-finding power are left as future work2.

Protocol. We consider standard benchmark programs3 taken
from related works [9], [34], [32], mainly coming from the
Siemens test suite (Tcas), the Verisec benchmark (get_tag
and full_bad from Apache source code) and MediaBench
(gd from libgd). We also consider three classes of labels
simulating standard coverage criteria of increasing difficulty:
CC, MCC andWM (cf. Section III-B). ForWM , we mimic
mutations introduced by MuJava [22] for operators AOIU,
AOR, COR and ROR [2]4. Annotation is done manually5.
Uncoverable labels (typically coming from equivalent mutants)
are not discarded.

We compare the following algorithms: DSE(P ) denotes
standard DSE (witness), DSE(P ′) denotes standard DSE on di-
rect instrumentation, DSE(P ⋆) denotes standard DSE on tight
instrumentation and DSE⋆(P ⋆) denotes DSE with iterative
label deletion run on tight instrumentation. The DSE engine
runs in deterministic mode, generating the same concrete

2Bug-finding power of criteria in Section III is already extensively studied.
3Available athttp://sebastien.bardin.free.fr/benchs-icst.zip
4These operators are considered very powerful in practice [27], [39].
5The cost of automatic annotation is negligible w.r.t. the cost of DSE.



values from one run to the other. Time-out for solver is set to
1 min, time-out for test generation is set to 1h30. Experiments
are performed on an Intel Core2 Duo 2.40GHz, 4GB of RAM.

We record the following information: number of paths ex-
plored by the search, computation time and achieved coverage.
The number of paths is a good measure for comparing the
complexity of the different search spaces, and therefore to
assess both the “cost” of leveraging DSE to labels and the
benefits of our optimisations. Coverage score together with
computation time indicate how practical label-based DSE is.

It must be highlighted that PATHCRAWLER does not stop
until all feasible paths are explored. This strategy gives us
a good estimation of the size of the path space, however in
pratice it would be wiser to implement a label-based stopping
criterion. Hence, from a feasibility point of view, results
reported here are too pessimistic.

Results. A representative subset of results is presented in
Table I. First, note that when no time-out occurs, direct instru-
mentation and both variants of tight instrumentation achieve
the same coverage, and that this coverage is high (>90% on
17/25 examples). We also observe that direct instrumentation
yields a significant overhead, confirming previous work [18]:
DSE(P ′) has four time-outs (TO) while DSE(P ) has none,
time-overhead goes up to 122x (excluding TO), growth of the
path-space reaches 50x.

On the other hand, tight instrumentation DSE⋆(P ⋆) yields
only a very reasonable overhead w.r.t. standard DSE: no
time-out is reported, time-overhead is kept under 7x with an
average of 2.4x, growth of the path-space is limited to 3x.
On some examples, tight instrumentation performs remarkably
better than direct instrumentation (94s vs TO ongd_5-wm).
Interestingly, DSE⋆(P ⋆) does perform better than standard
DSE (up to 2x) on a few examples with very few additional
paths. We conjecture that additional label constraints may
sometimes greatly simplify the solving process, but it must
be investigated further.

Finally, as expected, DSE(P ⋆) stands between DSE(P ′)
and DSE⋆(P ⋆) for the number of paths. Results are more
mitigated for computation time, where DSE(P ⋆) is slower than
DSE(P ′) on several examples, probably due to the fact that our
implementations of DSE(P ⋆) and DSE⋆(P ⋆) are not optimal.

Conclusion. These experiments confirm our formal predic-
tions:

• fully-optimised DSE performs significantly better on
difficult programs than the direct instrumentation, both
in terms of search space and computation time;

• the overhead w.r.t. standard DSE turns out to be
always acceptable, and often very low.

These results suggest that DSE can be efficiently leveraged to
LC coverage thanks to our optimisations. Further experiments
on larger programs are required to fully confirm that point.

VII. B EYOND TEST DATA GENERATION

Section III proves thatLC is a powerful coverage criterion,
encompassing many standard criteria and a large subset of
weak mutations. Section V and Section VI demonstrate the
feasibility of efficient ATG forLC , with a cost-effective inte-
gration in DSE. We also sketched in Section IV how to perform

DSE(P ) DSE(P ′) DSE(P⋆) DSE⋆(P⋆)

(witness)

trityp cc #paths 35 183 83 46

50 loc 24 l time 1.3s 1.6s 2s 4.5s
cover 24/24 24/24 24/24

mcc #paths 35 337 110 66
28 l time 1.3s 1.9s 3s 2.1s

cover 28/28 28/28 28/28
wm #paths 35 x 506 48

129 l time 1.3s x 12s 5.1s
cover x 120/129 120/129

4balls wm #paths 7 195 75 23
35 loc 67 l time 1.2s 1.9s 2.1s 2.1s

cover 56/67 56/67 56/67
utf8-3 wm #paths 134 1,379 626 313

108 loc 84 l time 1.4s 4.2s 4.3s 3.8s
cover 55/84 55/84 55/84

utf8-5 wm #paths 680 11,111 3,239 743
108 loc 84 l time 2s 40s 24s 8.1s

cover 82/84 82/84 82/84
utf8-7 wm #paths 3,069 81,133 14,676 3,265

108 loc 84 l time 5.8s 576s 110s 35s
cover 82/84 82/84 82/84

tcas cc #paths 2,787 3,508 3,508 2,815
124 loc 10 l time 2.9s 3.6s 5s 3.4s

cover 10/10 10/10 10/10
mcc #paths 2,787 3,988 3,988 3,059
12 l time 2.9s 4.2s 5.2s 3.9s

cover 11/12 11/12 11/12
tcas’ wm #paths 4,420 300,213 20,312 6,014

124 loc 111 l time 5.6s 662s 120s 27s
cover 101/111 101/111 101/111

replace wm #paths 866 87,498 6,420 2,347
100 loc 79 l time 2s 245s 64s 14s

cover 70/79 70/79 70/79
full bad cc #paths 2,563 5,148 5,129 3,209
219 loc 16 l time 5s 8s 14s 7s

cover 12/16 12/16 12/16
mcc #paths 2,563 12,360 12,296 7,043
39 l time 5s 19s 32s 19s

cover 24/39 24/39 24/39
wm #paths 2,593 19,336 10,610 5,414
46 l time 5s 35s 40s 19s

cover 34/46 34/46 34/46
get tag-5 cc #paths 11,833 40,102 22,669 11,843
240 loc 20 l time 60s 210s 651s 64s

cover 20/20 20/20 20/20
mcc #paths 11,833 41,605 23,794 11,848
26 l time 60s 100s 510s 48s

cover 26/26 26/26 26/26
wm #paths 11,833 58,646 28,919 11,856
47 l time 61s 140s 719s 51s

cover 44/47 44/47 44/47
get tag-6 cc #paths 76,456 76,468
240 loc 20 l time 3,011s TO TO 1,512s

cover 20/20
wm #paths 76,456 76,481
47 l time 3,011s TO TO 1,463s

cover 44/47
gd-5 cc #paths 14,516 18,220 17,018 14,605

319 loc 36 l time 52s 66s 91s 59s
cover 36/36 36/36 36/36

mcc #paths 14,516 20,261 18,799 15,201
36 l time 51s 71s 101s 80s

cover 29/36 29/36 29/36
wm #paths 14,516 14,607
63 l time 50s TO TO 94s

cover 62/63
gd-6 cc #paths 107,410 131,726 125,024 107,500

319 loc 36 l time 3,740s 3,816s 5,534s 2,945s
cover 36/36 36/36 36/36

mcc #paths 107,410 144,840 137,328 111,208
36 l time 3,740s 3,822s 6,281s 3,447s

cover 29/36 29/36 29/36
wm #paths 107,410 107,521
63 l time 3,740s TO TO 2,232s

cover 63/63

TO: time-out (5,400 sec) x: crash due to a bug in the underlying solver

TABLE I. EXPERIMENTAL RESULTS FORATG



cheapLC score computation. Everything put together, labels
form the basis of a very powerful framework for automatic
testing, handling many different criteria in a uniform fashion.
We describe such a view in Figure 9. Starting from a program
P and a testing criterionC, a predefined labelling func-
tion ψC creates theC-equivalent annotated program〈P,L〉
(Theorems 1 and 2). Then, we can perform efficientLC
score computation andLC -based ATG through instrumentation
(Theorems 4 and 6). Finally, static analysis techniques canbe
used onP ⋆ in order to detect uncoverable labels, i.e. labels
l , (loc, ϕ) for which there is no test datumt such that
t ❀ψC(P ) l. Static detection of uncoverable labels can help
ATG tools by avoiding wasting time on infeasible objectives,
as was observed in the case of mutation testing [19].

Fig. 9. LC -coverage framework

VIII. R ELATED WORK

Leveraging DSE to higher coverage criteria.The need for
enhancing DSE with better coverage criteria has already been
pointed out in active testing (a.k.a assertion-based testing) [9],
[15], [20], Mutation DSE [32], [33] and Augmented DSE [18],
[35], [43]. The present work generalizes these results and
proposes ways of taming the potential blow-up, resulting in
an effective support of advanced coverage criteria in DSE with
only a small overhead.

Active testing targets run-time errors by adding explicit
branches into the program. It is similar to the Run-Time
Error Coverage criterion presented in Section III. Labels are a
more general approach. The direct instrumentationP ′ for this
criterion is mostly equivalent toP ⋆ since additional branches
can only trigger errors and stop the execution. Yet, active
testing could benefit from the IDL optimisation. In that case
only the IDL -1 flavour makes sense since an execution cannot
cover two different run-time errors. Finally, since most test
objectives are (hopefully!) uncoverable for Run-Time Error
Coverage, some approaches aim at combining DSE with static
detection of uncoverable targets [9]. They can be reused for
labels, and should be useful when many labels are uncoverable.

Following Offut et al. [12], Papadakiset al. show that
WM can be reduced to branch coverage through the use of
a variant of Mutant Schemata [38]. This is pretty similar
to the direct encodingP ′ mentioned here. They propose
essentially two variations of DSE for mutation testing: a black-
box approach [32] based on a direct encoding similar to our
DSE(P ′) scheme, and a more ad hoc approach [32] preventing
reuse of existing DSE tools but offering several optimisations.

Papadakiset al. propose a variant of IDL, a dedicated search
heuristic based on shortest paths [31] and an improvement
of the direct encoding through the use of mutant identifiers
(following exactly Mutant Schemata). On the one hand, it
ensures that a given path cannot go through severaldifferent
mutants, on the other hand there is still an exponential blow-up
of the search space in the worst case, and IDL cannot cover
more than one mutant at once.

Augmented DSE [18] is a variant of direct instrumentation.
Several coverage criteria are encoded, getting results similar to
those of Section III-B, yet the side-effect free subset ofWM
is not identified. Experiments [18, Table 2] report an average
time-overhead of 272x, going up to>2,000x. That confirms
the strong benefits of our optimisations, that yield a maximal
overhead of 7x.

We give a more generic view of the problem, identifying la-
bels and annotated programs as the key concept underlying the
approach. We also clearly identify the limits and hypotheses of
the method by defining the side-effect free fragment ofWM ,
proving soundness of direct instrumentation and providinga
formalization of the path space “complexification” inducedby
direct instrumentation. Most important, we propose the tight
instrumentation which completely prevents complexification.
Finally, our optimisations can be implemented in a pure black-
box setting and we do not impose anything on the search
heuristics, keeping room for future improvements.

Labels and optimized DSE.The label-specific optimisations
described here can be freely mixed with other DSE optimisa-
tions. It is left as future work to explore which optimisations
turn out to be the most effective for labels. As already stated,
combining static discovery of uncoverable labels with DSE
[9] could be useful for often-uncoverable labels, such as those
generated for Run-Time Error Coverage orMCC . Another
promising direction is to adapt DSE search heuristics [41]
by taking advantage of the dissimilarities between labels and
branches, possibly getting inspiration from [31].

The IDL optimisation shows some similarities with Look-
Ahead pruning (LA) [4], [6]. Basically, LA takes advantage
of (global) static analysis to prune path prefixes which cannot
reach any uncovered branches. OnP ⋆, IDL -1 is a very specific
(but cheap) case of LA whileIDL -2 is orthogonal: LA prunes
those “label paths” pruned byIDL -1 plus other paths leading
only to already covered labels, whileIDL -2 prunes several
“label paths” at once thanks to dynamic analysis.

Automation of mutation testing. Mutation coverage [11],
[28] has been established as a powerful criterion through
several experimental studies [1], [28]. Yet, it is very difficult to
automatize. Even mutation score computation is expensive in
practice if not done wisely. Weak mutations [17] relax mutation
coverage by abandoning the “propagation step”, makingWM
easier to compare with standard criteria and easier to test for.
WM has been experimentally proved to be almost equivalent
to strong mutations [26], and from a theoretical point of view
WM subsumes many other criteria [29].

The few existing symbolic methods for mutation-based
ATG are based on the encoding proposed by Offuttet al. and
have already been discussed [12], [34], [33]. The Mutation
Schemata technique [38] was originally developed in order to



factorize the compilation costs of hundreds of similar mutants.
Static analysis has been proposed for the “equivalent mutant
detection” problem [24], [23] in a way similar to what is
sketched in Section VII.

The side-effect free fragment ofWM presented in this
paper seems to be a sweet spot of mutation testing: it is
amenable to efficient automation and still very expressive.It
is left as future work to identify if something essential is lost
within this fragment. Finally, our encoding ofWM into LC
is orthogonal to and can be combined with some of the many
techniques developed for efficient mutation testing, such as
operator reduction [27], [39] or smart use of operators [19].

IX. CONCLUSION

Label coverage is a new testing criterion which appears
to be both expressive and amenable to efficient automation.
Some of the ideas behind labels underly previous work by
other teams. We generalise them, propose ways of taming
the potential complexification of the path space and provide
both formal and experimental evidence. Especially, we have
shown how to extend DSE for label coverage in a black-box
manner with only a slight overhead. Experiments show that
our optimisations yield very significant improvements.

This work bridges part of the gap between symbolic ATG
techniques and coverage criteria. On the one hand, we show
that DSE techniques can be cheaply extended to support
more advanced testing criteria, including side-effect free weak
mutations. On the other hand, we identify a powerful criterion
amenable to efficient automation, both in terms of ATG and
coverage score computation.
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