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Abstract—Automatic test data generation (ATG) is a major , , , , or improving ug-detection
b i d ion (ATG) i j 32], [33], [34], [35], [43 DSE bug-detect
topic in software engineering. In this paper, we bridge the gp  abilities by making explicit run-time error conditions [915],
between the coverage criteria supported by state-of-therawhite-  [20]. These approaches are mainly based on instrumentation
box ATG technologies, especially Dynamic Symbolic Execut,  and allow for black-box reuse of existing technologies. How
and advanced coverage criteria found in the literature. We @fine ever, they come at a high price since they may induce a
a new testing criterion, label coverage, and prove it to be hih bl ' i

) . ' ow-up of the path space and a significant overhead (a recent
expressive and amenable to efficient automation. We propose paper [p18 TabIF(Je 2] rgports on a 2$2x average time-oslerhead

several innovative technigues resulting in an effective lick- X .
box support for label coverage, while a direct approach indges ~ With @ worst case of 2,000x). We follow the same general line,

an exponential blow-up of the search space. Experiments sho ~€mphasising black-box reuse as much as possible. However,
that our optimisations yield very significant savings, alleving to ~ We focus on two main points mostly left unaddressed: we want

leverage ATG to label coverage with only a slight overhead. to formally characterize the class of coverage criteria taa

be supported by DSE-like technigues, and we want to support

Keywords—Testing, symbolic execution, coverage criteria it efficiently

Approach. We definelabel coveragea new testing criterion
which appears to be both expressive and amenable to efficient
automation. Especially, it turns out thBSE can be extended

or label coverage with only a slight overheatabels are

I. INTRODUCTION

Context and problem. Automatic test data generation (ATG)

is a major concern in software engineering and progra ; . . .
analysis. Recent progress in automated theorem provingpled Predicates attached to program instructions through dliage
function. A label is covered if a test execution reaches @ an

ignificant i ts of boli hes f hite-
Eg)?l'&-?%n Sllrjr::?]r(;vsergj:asm?c ;{,mb&:g gggcr:%?igne?DsolrE)V\Elg? satisfies the predicate. This idea underlies former work [9]

[36], [40]. Tools have been developed [5], [7], [8], [14].7]3 [15], [18], [20], [34], [43]. We generalize these resultsdan
and impressive case-studies have been carried out [7[1fg], ~Propose ways of taming the potential blow-up. Especially, w
introducetight instrumentationwhere “tight” is made precise

We consider the case where ATG aims at generating a te@t the paper, and a strong coupling of DSE and label coverage
suite which is then passed to one or several external oraclesamediterative label deletion Their combination results in
in order to assess for example functional correctnessyigecu an effective support for label coverage in DSE. Besidedh bot
or performance. The more behaviours the test suite exercistechniques can be implemented in black-box.
the better. A standard way of measuring this diversity passe o ) o ,
through coverage criteria [2], [42]. Many such criteria @av Contribution. Our main contributions are the following:
been defined along the years, from control-flow or data-flow ¢ e show that label coverage is expressive enough
criteria to mutation [11], input domain partitions and MCDC to faithfully emulate many standard coverage criteria,
from decision or condition coverage (Theorem 1) to a
substantial subset of weak mutations (the side-effect
free fragment, Theorem 2). Labels can be seen in
some way as a convenient and powerful specification
mechanism for coverage criteria.

DSE mostly follows an exhaustive exploration of the path
space of the program under test, covering all executionspath
up to a given bound. While this path-oriented criterion @®v
successful in some contexts, it is well known that the resylt
test suite can miss interesting behaviours related to data
rather than control. Moreover, standard DSE does not stippor e We formally characterise the properties of direct in-

coverage objectives defined over artifacts not explicitgsent strumentation for label coverage. The instrumentation
in the source code, such as multiple-condition coveragdewh is sound w.r.t. label coverage and leads to very efficient
they could efficiently guide test generation. coverage score computation. However, it yields an

exponential increase as well as a “complexification”
Goal. Our main objective is to bridge the gap between cover- of the path space (Theorem 5).

age criteria supported by symbolic ATG tools, especial\EDS
and advanced coverage criteria found in the literatureeRiec
works aim at leveraging DSE to other coverage criteria [18],

e We proposetight instrumentationand iterative label
deletionas ways of taming this complexity blow-up.
Tight instrumentation yields only a linear growth of

* Work partially funded by EU FP7 (project STANCE, grant 313Y%nd the path space WiFhOUt any complexification (Theo-
French ANR (project BINSEC, grant ANR-12-INSE-0002). rem 7). Both techniques are orthogonal and allow for




a significant speed-up. Moreover, they can both beCoverage criteria used through the paper and their assdciat
implemented either through dedicated DSE algorithmsotions of covering are described in Section 1lI-B.
or in a black-box manner.
) . B. DSE in brief

e We have implemented these results inside a DSE tool ) ) )
[40]. Initial experiments show that our optimisations _ We recall here a few basic facts about Symbolic Execution
yield very significant reductions of both search space(SE) [21] and Dynamic Symbolic Execution (DSE) [13], [36],
and computation time compared to direct instrumen{40]. Let us consider a program under teBt with input
tation (several-orders-of-magnitude speedup in somariablesV” over domainD and a path of P. The key insight
cases). It follows that ATG for label coverage can be0f SE is that it is possible in many cases to computeath

achieved at a very reasonable cost w.r.t. usual DSE. Predicate¢, for o such that for any input valuatione D,
we have:t satisfies¢, iff P(t) coverso. In practice, path

As a whole, label coverage forms the basis of a very generipredicates are often under-approximated and only thetdeft-
and convenient framework for test automation, providing aright implication holds, which is already fine for testingE S
powerful specification mechanism for test objectives ared fe outputs a set of pair§;, o;) such that each; is ensured to
turing efficient integration into symbolic ATG techniques a cover the corresponding. Hence, SE isoundfrom a testing
well as cheap coverage score computation. Moreover, statjgoint of view. DSE enhances SE by interleaving concrete and
analysis techniques can also be used directly on the instrisymbolic executions. The dynamically collected inforroati
mented programs in order to detect uncoverable labels, as waan help the symbolic step, for example by suggesting reteva
proposed for mutation testing [24]. approximations.

This work bridges part of the gap between symbolic ATG A simplified view of SE is depicted in Algorithm 1. While
techniques and coverage criteria. On the one hand, we shdwgh-level, it is sufficient to understand the rest of the grap
that DSE techniques can be cheaply extended to more adlVe assume that the set of paths®f denotedPaths(P), is
vanced testing criteria, such as side-effect free weaktiong  finite. In practice, DSE tools enforce this assumption tgfou
On the other hand, we identify a large subclass of weal bound on path lengths. We assume the availability of a
mutations amenable to efficient automation, both in terms oprocedure for path predicate computation (with predicates
ATG and mutation score computation. some theoryl'), as well as the availability of a solver taking

a formula¢ € T and returning eithesat with a solutiont or
Outline. After presenting basic notation (Section Il), we defineunsat All DSE tools rely on such procedures. The algorithm
labels and explore their expressiveness (Section IIl). Némt builds iteratively a test suité'S by exploring all paths.
focus on automation. The direct instrumentation is defined
and studied (Section IV). Afterwards, we describe our own Algorithm 1: Symbolic Execution algorithm
approach to label-based ATG (Section V) and present first
experiments (Section VI). Finally, we sketch a highly augem
tized testing framework based on labels (Section VII), aksc
related work (Section VIII) and give a conclusion (Sectii. |

Input: a programP with finite set of pathsPaths(P)

Output: T'S, a set of pairgt, o) such thatP(t) ~p o
1 TS =0
2 Spaths = Paths(P);
3 while Spains # 0 do

Il. BACKGROUND 4 chooser € Spaths; Spaths = Spaths\{0} ;
A. Notation 5 compute path predicatg, for o ;
6 switch solvef,) do
Given a progran¥® over a vectorV of m input variables 7 casesat(): TS :=TSU{(t,0)};

taking values in a domai® £ D; x ... x D,,, a test datunt 8 caseunsat: skip ;
for P is a valuation oV, i.e.t € D. The execution of overt, 9 endsw
denotedP(t), is a path (or runy 2 (locy, Sy) ... (loca, Sp), 10 end
where theloc; denote control-locations (or simply locations) 11 return 1°S;
of P and theS; denote the successive internal state?of~
valuation of all global and local variables as well as memory
allocated structures) before the execution of eaech A test
datumt reaches a locatiofoc with internal stateS, denoted
t~p (loc, S), if P(t) is of the formoy - (loc, S) - o2. A test
suiteT'S is a finite set of test data.

The major issue here is that SE and DSE must in some
ways explore allPaths(P). Advanced tools explore this set
lazily, yet they still have to crawl it. Therefore, the sizé o
Paths(P), denoted|Paths(P)|, is one of the two major
bottlenecks of SE and DSE, the other one being the average

Given a test objective, we write ¢ ~ p c if test datum¢  cost of solving path predicates.

coversc. We extend the notation for a test sufté and a set of Note that Bounded model checking (BMC) [10] is sensitive
test objective€, writing TS ~» C when foranyc € C, there g the same parameters, as it amounts to building a large
existst € T'S such thatt ~ p c. These definitions are generic formula encompassing all paths up to a given length.

and leave the exact definition of “covering” to the considere

testing criterion. For example, test objectives derivearfithe I1l. L ABEL COVERAGE

Decision Coverage criterion are of the foe® (loc, cond)
orc 2 (loc,! cond), wherecond is the condition of the
branching instruction at locatiotvc, andt ~»p c if ¢ reaches Given a programP, alabel [ is a pair(loc, ¢) whereloc
some(loc, S) wherecond evaluates tdrue (resp.falsg in S. is a location of P andy is a predicate such that:

A. Definitions



e ¢ contains only variables and expressions defined irf’S can reach anyoc of P iff T'S covers any(loc, true) iff

P at locationloc;

e ¢ contains no side-effect expressions.

An annotated programs a pair (P, L) where L is a set
of labels defined oveP. A test datumt coversl £ (loc, ¢),
denoted ~ p 1) I, if £ covers soméloc, S) with .S satisfying
predicatep. We say that a test suite satisfies kaleel coverage
testing criterion, denoted blyC, if it covers all labels inL.

For simplicity, we consider in the rest of the papermal-

TS ~yo(p) LC. We conclude thatC can be simulated by
LC. Other criteria are handled similarly. The labelling fuoot
Ypc adds the set of allloc, ¢) and (loc, —p), where loc
contains a conditional statement with conditipnycc adds
the set of all(loc,a;) and (loc, —a;), whereloc contains a
conditional statement whose atomic conditions are exalatly
a;. Ypoc adds the union of labels added ¢ andycc.
1mcc adds the set of allloc, A, a;), where thes; are atomic
conditions andz; denotes eithea; or —a;. [ |

ized programsi.e. programs such that no side-effect occursweak mutations. We now consider a more involved testing
in any condition of a branching instruction. This is not acriterion, namely weak mutations. In mutation testing [T&$t

severe restriction since any (well-defined) progrBmcan be
rewritten into a normalized program®,, using intermediate
variables to evaluate the side-effect prone conditionsidet
the branching instruction. For examplef (x++ <=y
&& e==f) becomestnp = x++; if (tnp <=y &&

objectives consist ahutantsi.e. slight syntactic modifications
of the program under test. In the strong mutation sethhg
a mutantM is covered (orkilled) by a test datumt if the
output of P(¢) differs from the output ofM(¢). In the weak
mutation settingWM [17], a mutant}M is covered by,

e==f) . Notice that similar transformations are automaticallydenoted ~»p M, if the internal states aP(¢) andM (t) differ

performed by the Cil library [30] frequently used by DSE ®ol
for C programs [36], [40].

B. Expressiveness of label coverage

We seek to characterize the power of th€ testing
criterion. A key notion is that ofabelling function A labelling
function ¢» maps a programP into an annotated program
W(P) £ (PL).

Definition 1: A coverage criteriorC can be simulated by
LC if there exists a labelling functiomy such that for any
program P and any test suitd'S, we haveTS ~p C fff

We show first honLC can simulate basic graph and logic
coverage criteria [2], [42]: instruction covera$fé, decision
coverageDC, condition coverageCC (covering all atomic

conditions appearing in each decision, and their neggtions

decision-condition coveragaCC (basically,DC plusCC) and
multiple-condition coverag®CC (covering all combinations
of atomic conditions). The basic idea is to introducé’itabels
based on branching predicates and their atomic conditfsms.

example foiCC is depicted in Figure 1, where additional labels

(right) enforce coverage of the two atomic conditiots=y
anda<b.

st at ement _1;
/1 11: x==

statenment _1; [l 12: 1(x==y)

if (x==y && a<b) Yoo /1 13: a<b
{...}; /1 14: ! (a<b)

st at ement _3; if (x==y && a<b)

{...}

st at ement _3;

Fig. 1. SimulatingCC with labels

Theorem 1:The coverage criteriéC, DC, CC, DCC and
MCC can be simulated biC.

Proof: We need to define a suitable labelling function for

any of the considered criteria. FiE, we choose the labelling
function y1c adding all labels of the fornfloc, true), where
loc is any location ofP. Given a test suitéd’s, T'S ~»p IC iff

from each other right after the mutated location (cf. Fig2ye
M is a powerful testing criterion in practice [1], [28]. While
less powerful in theoryWM appears to be almost equivalent
to M in practice [26].

test t

I

Program P

testt

}

Mutant M

\ 4

statement i-1; statement i-1;

X :=y+2z; X 1= y*z;

statement i+1;
'

5 ? «—
weak mutation

statement i+1;
'

l l

Output P(t) — ? <4—— Output M(t)
strong mutation

Fig. 2. Strong and weak mutations

We show hereafter that a substantial partWM can
be simulated byLC. First we need a few more definitions.
Mutation testing is parametrised by a senwiitation operators
O. A mutation operatop € O is a function mapping a
programP into a finite set of well-defined programs (mutants),
such thatP differs from each mutand/ in only one location
(atomic mutation). We deno®M , the weak mutation crite-
rion resticted to mutants created through operator®.inVe
consider that mutations can affect either a left-hand saleev
(Ihs), an expression or a condition. This is a very generideho
of mutations, encompassing all standard operators [2hllyin
we restrict ourselves to mutation operators neither affgct
nor introducing side-effect expressions (including ctdiside-
effect prone functions). We refer to such operatorssiae-
effect free mutation operatars

Theorem 2:For any finite setD of side-effect free muta-
n operatorsWM o can be simulated bi.C.

Proof: For simplicity, let us consider first a single muta-
tion operatorop € O. The main idea is to introducene label



for each mutantd created byop, so that covering the label
is equivalent to distinguishing/ from P once the modified
location has been reachedhis transformation is depicted in
Figure 3. Let us consider a mutaif differing from P only

operators. The first restriction is not a major issue as atomi
mutations have been proved to be almost as powerful as high-
order mutations [25]. The second restriction has two sides:
(2.a) it forbids mutation operatomtroducingside-effects, for

at locationloc. We consider three cases, depending on thexample mapping to x++, and (2.b) it forbids to mutate a

modification introduced byyp:

side-effect prone expression. Restriction (2.a) is noess\it
encompasses operators ABS, ROR, AOR, COR and UOI [2],
which have been shown mostly equivalent to much larger sets
: . of operators [27], [39]. It is left as an open question to difyan
t ~p Mff t ~yp) I NOte thatt ~yp) Liff £ o00 precisely what is lost with restriction (2.b). Stilhet

reachedoc with an internal state such thakpr and 06,5 points show that side-effect frééM is a substantial
expr’ evaluate to different values. This is equivalent (strict) subset ofA/M

to say thatP(t) and M(¢) are in different internal
states right aftetoc, which corresponds by definition other criteria. Several other testing criteria commonly found
tot~p M. in the literature can be emulated by labels. For example:

| hs : = expr becomed hs : = expr’: we add
label I 2 (loc,expr # expr’). We must prove that

if (cond) becomes f (cond’): we add label
12 (loc,cond @ cond'), whered is the xor-operator.
We follow the same line of reasoning as in the
previous case. The operator ensures thd(¢) and

M (t) will not follow the same branching condition.

| hs : = expr becomed hs’ : = expr: we add
label I £ (loc,a(lhs) # a(lhs') A (Ihs # expr V
lhs' # expr)), where a(xz) denotes the memory
location & address) ofc, not its value. For example,
in C the memory location is given by th€ operator.
This case requires a little bit more explanation. In
order to observe a difference betweB(x) and M (t)
right after the mutated location, we need first that
I hs’ and| hs refer to different memory locations
(which is not always obvious in the case of aliasing
expressions). Moreover, there are only two ways of
noticing a difference: either the old value bhs

differs fromexpr , thenl hs will evaluate to different . . o
values inP(¢) (equals teexpr ) and in}M (¢) (remains ~ Limits. The following criteria cannot be emulated through

unchanged) just after the mutation, or the symmetridabels, at least with simple encoding: weak mutations with

counterpart foil hs’ . This is exactly what encodes. operators involving side-effects, criteria imposing dogisits
on paths rather than constraints on program locations itk-pa

e Input Domain Coverage: assuming a partition of the
input domain D of P given as disjoint predicates
©1,--., Pk, this criterion consists of considering one
t; for eachy;. The corresponding labelling function
adds all labels of the forrflocy, ¢;), whereloc is the
entry point of P. The approach is independent of the
way the partition is obtained, covering both interface-
based and functionality-based partitions [2].

e Run-Time Error Coverage: test objectives correspond-
ing to run-time errors such as those implicitly
searched for in active testing or assertion-based test-
ing [9], [15], [20] can be easily captured by labels, in-
cluding division by zero, out-of-bound array accesses
or null-pointer dereference. Typically, any error-prone
instruction at locationoc with a preconditionysase
will be tagged by a labelloc, ~@sate)-

By iterating this technique on all mutants created by thecoverage, data-flow criteria) and criteria involving diffat

considered mutation operators, we obtain the desiredliagel
function. [ ]

paths (MCDC) or even different programs (strong mutations)
It is left as future work to study whether these limitatiome a
strict or not.

Mutant M1

Program P

A

—

Mutant M2

statement i-1;
x:=d';
y:=e;
statement i+2;

statement i-1;
x:=d;
yi=e;
statement i+2;

statement i-1;
x:i=d;
y:i=e';
statement i+2;

IV. AUTOMATING LC: A FIRST ATTEMPT

Given an annotated prografP, L), we need automatic
methods for: (1) computing thieC score of a given test suite
TS, and (2) deriving a test suite achieving hig@ -coverage.

We propose first a black-box approach, reusing standard au-

Fig. 3. Simulating weak mutants with labels

tomatic testing tools through direct instrumentatiorof P.
This technique underlies previous works aiming at extegndin
DSE coverage abilities [9], [15], [18], [20], [34], [35], &
While it allows for cheap.C score computation, it is far from
efficient for ATG, mainly because of an exponential blow-up
of the path space of the program.

mutations

U

Program with label

statemen:i-l;/
//d!i=d'

x:=d;

/lel=e'

yi=e;
statement i+2;

A. Direct instrumentation

The direct instrumentationP’ for (P, L) consists in in-
serting for each label £ (loc,) € L a new branching
instruction: i f () {}; such that all instructions leading

The subset of mutations we have been considering so fdo loc in P lead to I in P/, and I leads toloc. The
is limited to (1) atomic mutations and (2) side-effect freetransformation is depicted in Figure 4. When different labe



are attached to the same location, the new instructions arBaths(P’). Let us callabel constraintsll additional branches
chained together in a sequence ultimately leadingpto ¢ and—y introduced inP’ compared taP, and let us denote
by m the maximal number of labefserlocation in P. A single
_ _ pathc € P may correspond to up ™ °! paths inP’, since
/S; la;te)gleng—l’ . |S1E ?tp)e?f_”t - each label ofP creates a branching iR’ and at mosin such
statenment 2: statement 2: branchings can be found at each steproNote also that the
B B pathso’ € P’ corresponding tar € P have length bounded
by m - |o|. Therefore they can pass through upito |o| label
° constraints, while (by definitiony does not pass through any
label constraint. Theorem 5 summarises these results.

0 Theorem 5 (Non-tightnessiziven an annotated program

— (P, L) and its direct instrumentatiof”’, let us assume that

T'“ False Paths(P) is bounded, that represents the maximal length

label p of paths inPaths(P) and thatm is the maximal number of
6 labelsper location in P. Then:

e |Paths(P')] can be exponentially larger than
Fig. 4. Direct instrumentatior?’ |Paths(P)| by a factor2™*;

e anyo’ € Paths(P’) may carry up tom - k (positive

Let us denote byNTD the set of test objectives ove?’ . :
or negative) label constraints.

requiring to cover allNew Then-Decisions introduced by

the inStrUImentation. Direct instrumentation is ObViOlﬂbj{]nd Both aspects are pr0b|ematic for Symbo"c exp|0rati0n of

w.r.t. LC in the following sense. the search space: more paths means either more requests to a
Theorem 3 (Soundnessiven an annotated program theorem prover (DSE) or a larger formu_la (BMC), while more

(P, L), its direct instrumentatiol® and a test suitd’s, we  constrained paths means more expensive requests.

have:T'S ~»p y LC iff T'S ~+p NTD.

This is interesting for bothC score computation and ATG. o ) ) o . .
Indeed, any ATG tool run o’ will produce a test suitd’s We Qescrllb.e in this section two main |n_gred|ents m_order
coveringLC for (P, L) as soon ag’S covers all branches of to obtain efficient ATG forLC: (1) a tight instrumentation

interest in P’. Besides, a slightly modified version of direct avoiding all drawbacks of the direct instrumentation, adjl (

instrumentation, updating coverage information in the new? Strong coupling of label coverage and DSE throiigfative
t hen-branches, allows efficient coverage score computation/abel deletion

V. EFFICIENTATG FORLC

Theorem 4:Given an annotated prograff, L), its di- A Tight instrumentation
rect instrumentationP’ and a test suitel’S, then thelLC ) A o )
score of T'S can be computed in time bounded tys|-  Given alabell = (loc,¢), the key insights behind the
maztime({P'(t)|t € TS}). tight instrumentation are the following:

ComputingLC score can be done independently frohy. e label constrainty is useful only for covering, and
Regarding coverage score computatib@, is much closer to should not be propagated beyond that point;

DC (each testt is executed only once) than it is /M
(each test is executeadbnce per mutant While efficient score
computation is a difficult issue in mutation testing, Theonse2

e label constraint-p is pointless w.r.t. covering, and
should not be enforced in any way.

and 4 show that the side-effect free subse?l does enjoy Keeping these lines in mind, the instrumentation works as
efficient score computation. depicted in Figure 5: for each labéloc, ¢), we introduce

a new instructioni f (nondet) {assert(y); exit};
B. Drawbacks whereassert (@) requiresp to be verifiedexi t forces the

. . . _execution to stop andondet is a non-deterministic choiée
So far, the direct instrumentation seems to perfectly suit P

our needs. Unfortunately, it is significantly inefficient 8T G. In the resulting instrumented prograRt (Figure 5, right
There are two main reasons for that. column), when an execution reachés:, it gives rise to
) ) . . two execution paths: the first one tries to cover the label
(f) P’ is too complex: it exhibits many more behaviours py assertingy and stops right therethe second one simply

than P, most of them being unduly complex for follows its executionas it would do inP, neithery nor —¢
covering the labels we are targeting. being enforced.

(1)  DSE will naturally produce a test suite covering sev- et us denote byNA the test objective oveP* requiring
eral times the same labels, which is useless since eagh cover allNew Assert introduced by the instrumentation
label needs to be covered only once. (with condition evaluating to true). Tight instrumentatiis

We formalize the first pointi( hereafter. We consider two sound w.r.tLC in the following sense.

dimensions in whichP’ is “too complex”: the size of the_ INote that any DSE engine can simulate non-deterministidcesoby an
search space, denotéBaths(P’)|, and the shape of paths in additional input array of (symbolic) boolean values.




st at ement _1;

i f (nondet){
assert(p);
exit(0);

st at ement _1;
/1 1abel p
st atenment _2;

st atement _2;

label p

Fig. 5. Tight instrumentatior”*

Theorem 6 (Soundnessgiven an annotated program
(P, L), its tight instrumentationP* and a test suitd’S, we
have:T'S ~ p 1y LC iff T'S ~p. NA.

Proof: The main reasons behind this result directly follow
from the tight instrumentation, and have already been esghos
just before Theorem 7. We can be more precj&eiths(P*)|
is bounded by(m - k + 1) - |Paths(P)|. [ |

Theorems 5 and 7 imply that any path-based program
analysis conducted ovét* will have a much easier task than if
conducted ovel’, since P* contains exponentially less paths
and those paths are simpler.

B. Iterative label deletion

We focus now on issue) pointed out in Section IV-B. A
DSE procedure launched an* tries to cover all paths from
P*, while we are only interested in covering branches corre-
sponding to labels. Especially, it may try to cover path pesfi
ending in an already-coveretsert ( ¢) . Whether they fail
or not, these computations are redundant since Theoreny6 onl
requires that each neassert be covered once.

Iterative label deletion(IDL) consists in (conceptually)
erasing a label constraint as soon as it is covered, so thdlt it
not affect the subsequent path search. IDL requires to modif
SE/DSE in the following way: each labgéls equipped with a

Interestingly, tight instrumentation does not show any ofboolean variablé, set to true iffi has already been covered
the issues reported in Theorem 5. The underlying reasores haduring path exploration, and attempts to symbolically exec
been sketched at the beginning of Section V-A and are depictepaths leading td continue as long ag, is false.

in Figure 6. A single execution path iR going throughn
labels can give birth up t@™ paths in P’ (left column),
while it can create onlyr + 1 paths in P* (right column).

Moreover, each path ii®* can go through at most one single

positive label constraint, while a pa#ti in P’ can carry up to

|o’| (positive or negative) label constraints. These resulkés ar

summarized in Theorem 7.

Direct instrumentation Tight Instrumentation

Fig. 6. Direct vs. tight instrumentation

Theorem 7 (Tightness)Given an annotated program
(P,L) and its instrumented versioR*, let us assume that
Paths(P) is bounded, that is the maximal length of paths
in Paths(P) and thatm is the maximal number of labefser
location in P. Then P* is tight in the following sense:

e |Paths(P*)| is linear in|Paths(P)| andm - k;

e anyo € Paths(P*) carries at most one label con-
straint.

We present DSE with IDL over annotated programs in
Algorithm 2, denoted DSH(P, L)), where modifications
w.rt. standard SE/DSE are pointed out by) marks. We
assume thatPaths((P, L)) is constructed in the following
way: at each step, a run encountering a labét (loc, ¢)
can either choose to go througtienforcingy) and continue,
or bypasd (no constraint) and continue.

Algorithm 2: Symbolic Execution with IDL

Input: an annotated prograiP, L) with finite set of
pathsPaths(P)
Output: T'S, a set of pairgt, o) such thatP(t) ~p o
1 TS :=0;
Spaths = Paths((P, L));
while Spqins # 0 do
chooser € Spaths; Spaths = paths\{o'} ,
computeg,;
switch solvef,) do
casesat():
TS :=TSU{(t,o0)};
() for all [ covered byo, do:b; =1 ;
(x) remove fromS,q:1s all ¢’ going through
alabell s.t.b; =1 ;
caseunsat: skip ;
endsw
end
return 1°S;

© 0 N o b~ WwN
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For integration in a realistic SE/DSE setting with dynamic
exploration of path space, we distinguish two flavors of IDL:

IDL-1 alabel is marked as covered only when it belongs
to a path prefix being successfully solved. This is

a purely symbolic approach.



IDL-2

a label is also marked when it is covered by aAlgorithm 2) does not decrease label coverage w.r.t

stan-

concrete execution, taking advantage of dynamiadard DSE on(P,L). Given a labell, then for any path

runs to delete several labels at once.

Combining 1DL with tight instrumentation. Both variants

o € Paths((P,L)) covering [, there exists by definition
of Paths({P,L)) another pathcs’ passing throughl and
the same statements iR as o while bypassing any other

of IDL can be combined with tight instrumentation either in ajgpel, so thats covers! iff o/ coversl. Sinces’ cannot be
dedicated manner or in a black-box setting. Since dedicategiscarded in DSE(P, L)) unless! is covered, it follows that

implementations are straightforward, we focus hereafter o
black-box implementations. An instrumentation enforaimg-

1 over P* is depicted in Figure 7. We add extra boolean vari-

ables for coverage, denotéd! wherel is a label identifier.

the coverage cannot decrease, proving that HSE L)) and
DSE((P, L)) achieve the same coverage. Regarding coverage
equivalence between DSE*) and DSE(P, L)), we reduce
it to proving coverage equivalence between DSE) and

Yet, it is mandatory that the coverage information be globahsg ) through Theorem 6. We can then conclude with a

to the whole search rather than bound to a single path, angmijlar proof technique.

that theb_| be treated concretely by DSE. For simplicity, we
assume that it is achieved by putting the coverage infoomati
in an external file, accessed and modified through (conesktiz
only) operations ead(b_l ) andset _covered(b_I).

st at ement _k;

stat ement _k; i f (nondet && !read(b_I){

i f(nondet){

_ assert(p);
assert(p); | _ | set _covered(b_l);
exit(0); exit(0);

statement_k+1; st at ement _k+1;

Fig. 7. 1DL-1 variant of tight instrumentatiod®*

Enforcing IDL-2 in a black-box setting requires a fine-

VI.
A. Implementation

IMPLEMENTATION & EXPERIMENTS

We have implemented tight instrumentation and iterative
label deletion inside &AHCRAWLER [40]. The tool targets
safety-critical C programs, with a strong focus on relative
completeness guarantees. For example, the underlying con-
straint solver deals precisely with modular arithmeti¢wise
operations, floats and multi-level pointer dereferencese T
DSE engine relies on a basic depth-first search and is highly
optimised for programs with many infeasible paths [3].

Our implementation follows the description of Section V.
We implement tight instrumentation anéL-2 in a dedi-
cated manner rather than a full black-box approach because

grained control over the DSE procedure. We need to be able teatHCRAWLER does not offer yet the required API fopL -
query the DSE engine for the next generated test datum. Thg. The search heuristics is mostly depth-first, but labets ar

procedure reuses theL -1-variant of tight instrumentatioft*,
but each new generated test datums also run on thalirect
instrumentation”’. Unlike P*, P’ does not exit at the first
covered label, so all labels covered bwill be marked in the

handled as soon as possible.

B. Experiments

coverage file before the next test datum is searched for. The Preliminary experiments have been conducted in order to

technique is depicted in Figure 8.

P
no more
(s =~ ]
DSEon P STOP
(idl-1)
coverage info
[initially empty] TD found for a new path

A \ 4
' run TD

onP'

query next
TD

»
»

update

TD: test datum

Fig. 8. 1DL-2 variant for DSE

We denote by DSEHP*) the combination of tight instru-
mentation andbL presented in Figure 8, and we denote by
DSE(P, L)) the variant of Algorithm 2 where lines 9-11 are
removed. Considering only deterministic DSE techniquess, t
following result holds.

Theorem 8 (Relative completenes§iven an annotated
program (P, L) and its tight instrumentatiod®*, then both
DSE((P,L)) and DSE(P*) cover as many labels as
DSE(P, L)) does.

Proof: We first show that discarding paths going through
an already covered label in DSEP, L)) (cf lines 9-11 of

investigate the following propertiegi) the relative gain of
our two optimisations w.r.t. direct instrumentatiofi;) the
overhead of leveraging DSE #oC. Evaluating the practical
feasibility of label-based DSE over very large programst®r i
bug-finding power are left as future wark

Protocol. We consider standard benchmark progréuaken
from related works [9], [34], [32], mainly coming from the
Siemens test suiteT¢as), the Verisec benchmarlgét _t ag
andful | _bad from Apache source code) and MediaBench
(gd from libgd). We also consider three classes of labels
simulating standard coverage criteria of increasing diffic
CC, MCC andWM (cf. Section IlI-B). ForWwM, we mimic
mutations introduced by MuJava [22] for operators AOIU,
AOR, COR and ROR [Z] Annotation is done manualfly
Uncoverable labels (typically coming from equivalent nmi$
are not discarded.

We compare the following algorithms: DSE) denotes
standard DSE (witness), DSE() denotes standard DSE on di-
rect instrumentation, DSE{*) denotes standard DSE on tight
instrumentation and DSHEP*) denotes DSE with iterative
label deletion run on tight instrumentation. The DSE engine
runs in deterministic mode, generating the same concrete

2Bug-finding power of criteria in Section 1l is already exsirely studied.
SAvailable athttp://sebastien. bardin.free.fr/benchs-icst.zip
4These operators are considered very powerful in practizg [39].

5The cost of automatic annotation is negligible w.r.t. thetoaf DSE.



values from one run to the other. Time-out for solver is set to DSE(P) | DSE(F') | DSE(P*) | DSE'(P")
1 min, time-out for test generation is set to 1h30. Experithien — (witness)
trityp cc #paths 35 183 83 46
are performed on an Intel Core2 Duo 2.40GHz, 4GB of RAM. 5010 | 241 | time Las L6e o 4 5s
We record the following information: number of paths ex- cover ' 24/24 24/24 24124
plored by the search, computation time and achieved cogerag mcc | #paths 35 337 110 66
The number of paths is a good measure for comparing the 281 | tme | 13 vt R s
complexity of the different search spaces, and therefore tp wm | #paths 35 X 506 78
assess both the “cost” of leveraging DSE to labels and the 1291 | time 13s x 12s 5.1s
benefits of our optimisations. Coverage score together with cover X 1201129 | 1201129
X t p . ' . g 9 T 4balls wm #paths 7 195 75 23
computation time indicate how practical label-based DSE is| 351oc | 671 | time 1.2s 1.9s 2.1s 2.1s
It must be highlighted that #HCRAWLER does not stop — cover — i%’% 52;%7 536127
. K - . utfs- wm paths ,
until all feasible paths are explored. This strategy gives U| 18’10 | 841 | time 14s 42 435 3.8s
a good estimation of the size of the path space, however in cover 55/84 55/84 55/84
pratice it would be wiser to implement a label-based stappin| ufe-5 | wm | #paths [ 680 L1111 3,239 743
o f £ ibilit oint of view. results 108 loc | 841 time 2s 40s 24s 8.1s
criterion. Hence, from a feasibility p A cover 82/84 82/84 8284
reported here are too pessimistic. utls-7 | wm | #paths | 3,069 81,133 14,676 3,265
108 loc | 841 time 5.8s 576s 110s 35s
Results. A representative subset of results is presented in— 0% 1 ik ik ke
Table I. First, note that when no time-out occurs, directrins 1241oc | 101 | time 2.9s 365 5 3.4s
mentation and both variants of tight instrumentation aghie ;ioverr1 _— éoéég éoéég éoéég
. . . mcc paths , , , )
the same coverage, and that this coverage is _mgm% on 121 | time 508 428 < 2 3 0n
17/25 examples). We also observe that direct instrumemtati cover 11/12 1112 11112
yields a significant overhead, confirming previous work [18] | tcas’ | wm | #paths| 4,420 [ 300,213 | 20,312 6,014
DSE(P’) has four time-outs (TO) while DSEY) has none 124loc | 1111 time 56s b62s 120 27s
- _ ' cover 101/111 | 1017111 | 101/111
time-overhead goes up to 122x (excluding TO), growth of the repiace | wm | #paths | 866 87,498 6,420 2,347
path_space reaches 50x. 100 loc 791 time 2s 245s 64s 14s
. . . * . cover 70/79 70/79 70/79
On the other hand, tight instrumentation D$E*) yields fal bad | cc | #paths | 2,563 5148 5129 3,209
only a very reasonable overhead w.rt. standard DSE: np219ioc | 161 | time 5s 8s 14s 7s
i _ i 1 _ i i cover 12/16 12/16 12/16
time-out is reported, time-overhead is kept u_nd(_er 7X with al e s 2563 5350 5705 T073
average of 2.4x, growth of the path-space is limited to 3x 397 | time 5s 10s 35 19s
On some examples, tight instrumentation performs remdykab cover 24/39 24/39 24/39
better than direct instrumentation (94s vs TO gih 5-wm). | Eeaths | 2593 1 19.3% | 10010 e
Interestingly, DSE(P*) does perform better than standard cover 34/46 34/46 34/46
DSE (up to 2x) on a few examples with very few additional géei_éalg-S 2%cl f}paths lt,gSS 43,1%)02 2556169 1343
H HY H oC ime S S S S
paths. We conjecture that additional label constraints may cover 20/20 20/20 20/20
sometimes greatly simplify the solving process, but it mus mcc | #paths | 11,833 | 41,605 23,794 11,848
be investigated further. 261 gg“v‘z . 60s 21822 2561/(2’56 22*7236
Finally, as expected, DSE() stands between DSE() wm | #paths | 11,833 | 58,646 | 28,010 | 1L.856
and DSE(P*) for the number of paths. Results are more 471 | time 61s 140s 719s 51s
mitigated for computation time, where DSE( is slower than | 4 1 & a4lat aaiar Eaal
DSE(P’) on s_,everal examples, probably due to the fact_ that our40 1oc | 207 | time 3.011s TO TO 15125
implementations of DSE{*) and DSE(P*) are not optimal. cover 20/20
wm #paths 76,456 76,481
Conclusion. These experiments confirm our formal predic- AL | e} 30Ls | TO o La0ss
tions: gd5 cC | #paths | 14516 | 18,220 | 17,018 14,605
o o 319 loc | 361 time 52s 66s 91s 59s
e fully-optimised DSE performs significantly better on cove; — ;»(;5/23:1 13§/73969 1?;_55/23(?1
difficult programs than the direct instrumentation, both oo | Epamhs ] A4 s To1e 308
in terms of search space and computation time; cover 29/36 29/36 29/36
wm #paths 14,516 14,607
e the overhead w.rt. standard DSE turns out to be 631 | time 50s TO TO 94s
cover 62/63
always acceptable’ and often very low. gd-6 cc #paths | 107,410 131,726 125,024 107,500
- 319 361 | ti 3,740 3,816 5,534 2,945
These results suggest that DSE can be efficiently leveraged t ~ °° cover | Sem | 3ome | 3eme
LC coverage thanks to our optimisations. Further experiments mcc | #paths | 107,410 | 144,840 | 137,328 | 111,208
i 7 H 361 time 3,740s 3,822s 6,281s 3,447s
on larger programs are required to fully confirm that point. cover 50136 50136 20136
wm #paths 107,410 107,521
VIl. BEYOND TEST DATA GENERATION 631 | time 3,740s TO TO 2,232s
cover 63/63

Section Il proves thaltC is a powerful coverage criterion, TO: time-out (5,400 sec)
encompassing many standard criteria and a large subset of

weak mutations. Section V and Section VI demonstrate the
feasibility of efficient ATG forLC, with a cost-effective inte-
gration in DSE. We also sketched in Section IV how to perform

TABLE I.

x: crash due to a bug in the undeglgiolver
EXPERIMENTAL RESULTS FORATG




cheapLC score computation. Everything put together, labelsPapadakist al. propose a variant of IDL, a dedicated search
form the basis of a very powerful framework for automatic heuristic based on shortest paths [31] and an improvement
testing, handling many different criteria in a uniform fash  of the direct encoding through the use of mutant identifiers
We describe such a view in Figure 9. Starting from a prograngfollowing exactly Mutant Schemata). On the one hand, it
P and a testing criterionC, a predefined labelling func- ensures that a given path cannot go through sewffarent

tion ¢¢ creates theC-equivalent annotated prograf®, L) mutants, on the other hand there is still an exponential flpw
(Theorems 1 and 2). Then, we can perform effici&t of the search space in the worst case, and IDL cannot cover
score computation arldC -based ATG through instrumentation more than one mutant at once.

Theorems 4 and 6). Finally, static analysis techniquesbean . . . . .
Elsed onP* in ordez to detgct uncovergble Iabelsqi.e. labels_ Augmented DSE [18] is a variant of direct instrumentation.
I 2 (loc, ) for which there is no test datur Sl,.ICh that Several coverage criteria are encoded, getting resulitasita

t ~yo(p) |. Static detection of uncoverable labels can hel those %‘[ SE:](E_IIC(;I‘] é”'B' yet the Tge_—refglactzfree subsewd!
ATG tools by avoiding wasting time on infeasible objectives 'S MOt identified. Experiments [18, Table 2] report an averag
as was observed in the case of mutation testing [19]. time-overhead of 272x, going up 2,000x. That confirms

the strong benefits of our optimisations, that yield a makima
overhead of 7x.

‘ Instrumentation ’

We give a more generic view of the problem, identifying la-
— bels and annotated programs as the key concept underlgng th
Program Y 3] Programs approach. We also clearly identify the limits and hypotlsesfe
il Pt the method by defining the side-effect free fragmenW\iil ,
proving soundness of direct instrumentation and providing
formalization of the path space “complexification” indudad
direct instrumentation. Most important, we propose théittig
instrumentation which completely prevents complexifizati
Uncoverable label
detection

Program P

labeling

function
coverage
criterion

Finally, our optimisations can be implemented in a purelblac
box setting and we do not impose anything on the search
heuristics, keeping room for future improvements.

Fig. 9. LC-coverage framework o - S
Labels and optimized DSE.The label-specific optimisations

described here can be freely mixed with other DSE optimisa-
VIIl. RELATED WORK tions. It is left as future work to explore which optimisat
. . o turn out to be the most effective for labels. As already state
Leveraging DSE to higher coverage criteria.The need for  combining static discovery of uncoverable labels with DSE
enhancing DSE with better coverage criteria has already begg] could be useful for often-uncoverable labels, such aséh
pointed out in active testing (a.k.a assertion-basecglslB],  generated for Run-Time Error Coverage MICC. Another
[15], [20], Mutation DSE [32], [33] and Augmented DSE [18], promising direction is to adapt DSE search heuristics [41]
[35], [43]. The present work generalizes these results angy taking advantage of the dissimilarities between labals a

proposes ways of taming the potential blow-up, resulting inbranches, possibly getting inspiration from [31].
an effective support of advanced coverage criteria in DSB wi L R .
only a small overhead. The IDL optimisation shows some similarities with Look-

Ahead pruning (LA) [4], [6]. Basically, LA takes advantage

Active testing targets run-time errors by adding explicitof (global) static analysis to prune path prefixes which cann
branches into the program. It is similar to the Run-Timereach any uncovered branches. Bh IDL-1 is a very specific
Error Coverage criterion presented in Section Ill. Labe&sa&  (but cheap) case of LA whileoL-2 is orthogonal: LA prunes
more general approach. The direct instrumentaffrior this  those “label paths” pruned bypL-1 plus other paths leading
criterion is mostly equivalent t&>* since additional branches only to already covered labels, whil®L-2 prunes several

can only trigger errors and stop the execution. Yet, active|abel paths” at once thanks to dynamic analysis.
testing could benefit from the IDL optimisation. In that case

only theibL-1 flavour makes sense since an execution cannchutomation of mutation testing. Mutation coverage [11],
cover two different run-time errors. Finally, since mosstte [28] has been established as a powerful criterion through
objectives are (hopefully!) uncoverable for Run-Time Erro several experimental studies [1], [28]. Yet, it is very diffit to
Coverage, some approaches aim at combining DSE with stat@utomatize. Even mutation score computation is expenaive i
detection of uncoverable targets [9]. They can be reused fquractice if not done wisely. Weak mutations [17] relax miatat
labels, and should be useful when many labels are uncoeerabkoverage by abandoning the “propagation step”, makitig
easier to compare with standard criteria and easier to ¢est f
M has been experimentally proved to be almost equivalent
strong mutations [26], and from a theoretical point ofwie

M subsumes many other criteria [29].

Following Offut et al. [12], Papadakiset al. show that
WM can be reduced to branch coverage through the use ?
a variant of Mutant Schemata [38]. This is pretty similarW
to the direct encodingP’ mentioned here. They propose
essentially two variations of DSE for mutation testing: adk- The few existing symbolic methods for mutation-based
box approach [32] based on a direct encoding similar to oUATG are based on the encoding proposed by Offtitl. and
DSE(P’) scheme, and a more ad hoc approach [32] preventingave already been discussed [12], [34], [33]. The Mutation
reuse of existing DSE tools but offering several optimmatgi  Schemata technique [38] was originally developed in order t



factorize the compilation costs of hundreds of similar mtga

Static analysis has been proposed for the “equivalent rhutan

[14] P. Godefroid, M. Y. Levin and D. Molnar. Automated Whitex Fuzz
Testing. In: NDSS 2008.

detection” problem [24], [23] in a way similar to what is [15] P. Godefroid, M. Y. Levin, D. Molnar: Active property ebking. In:

sketched in Section VII.

The side-effect free fragment aVM presented in this

EMSOFT 2008. ACM

[16] P. Godefroid, M. Y. Levin, D. A. Molnar: SAGE: whiteboxizing for
security testing. Commun. ACM 55(3): 40-44 (2012)

paper seems to be a sweet spot of mutation testing: it ig7] W. E. Howden: Weak mutation testing and completenestesif sets.

amenable to efficient automation and still very expresdive.

is left as future work to identify if something essential st
within this fragment. Finally, our encoding &M into LC

is orthogonal to and can be combined with some of the man{t®]
techniques developed for efficient mutation testing, sugh a
operator reduction [27], [39] or smart use of operators.[19]

IX. CONCLUSION

In: IEEE Transactions on Software Engineering, 8(4). 1982
[18] K. Jamrozik, G. Fraser, N. Tillmann and J. de Halleuxn€ating Test
Suites with Augmented Dynamic Symbolic Execution. In: TAPL2.
R. Just, G. M. Kapfhammer and F. Schweiggert. Do Redunkiutants
Affect the Effectiveness and Efficiency of Mutation Anak/iln: ICST
2012. IEEE

[20] B. Korel, A. M. Al-Yami: Assertion-Oriented Automatediest Data
Generation. In: ICSE 1996. IEEE

[21] J. C. King. Symbolic execution and program testing. Gamications
of the ACM, 19(7), july 1976.

Label coverage is a new testing criterion which appearg?] Y. S. Ma, A. J. Offutt, Y. R. Kwon: MuJava: a mutation syst for

to be both expressive and amenable to efficient automation.

java. In: ICSE 2006. ACM

Some of the ideas behind labels underly previous work by23] S. Nica, F. Wotawa: Using Constraints for Equivalenttiht Detection.

other teams. We generalise them, propose ways of taming

In: workshop Formal Methods in the Development of Softw&@1Q)

the potential complexification of the path space and providd?4l A.J. Offutt, W. M. Craft: Using Compiler OptimizationeEhniques to

both formal and experimental evidence. Especially, we have
shown how to extend DSE for label coverage in a black-boxX2°!
manner with only a slight overhead. Experiments show tha

our optimisations yield very significant improvements.

Detect Equivalent Mutants. Softw. Test., Verif. Reliab3$(1994

A. J. Offutt: Investigations of the Software Testing upting Effect.
ACM Trans. Softw. Eng. Methodol. 1(1): 5-20 (1992)

f26] A. J. Offutt, S. D. Lee: An Empirical Evaluation of Weakuthtion.
IEEE Trans. Software Eng. 20(5): 337-344 (1994)

This work bridges part of the gap between Symbo”c ATG[27] A. J. Offut, G. Rothermel, C. Zapf: An experimental exaion of

techniques and coverage criteria. On the one hand, we show
that DSE techniques can be cheaply extended to suppo[|2t8

more advanced testing criteria, including side-effect fneeak

mutations. On the other hand, we identify a powerful criteri
amenable to efficient automation, both in terms of ATG and

coverage score computation.
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