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Abstract. Symbolic model-checking provides partially effective verification pro-
cedures that can handle systems with an infinite state space. So-called “accelera-
tion techniques” enhance the convergence of fixpoint computations by computing
the transitive closure of some transitions. In this paper we develop a new frame-
work for symbolic model-checking with accelerations. We also propose and ana-
lyze new symbolic algorithms using accelerations to compute reachability sets.
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1 Introduction

Context. The development of model checking techniques [18] for infinite-state sys-
tems is now an active field of research. These techniques allow considering models like
pushdown systems [12], channel systems [1, 13], counter systems [7, 29, 37], and many
other versatile families of models. Such models are very expressive and often lead to
undecidable verification problems. This did not deter several research teams from de-
veloping powerful innovative model checkers for infinite-state systems. For example,
tools for checking reachability properties of counter systems are ALV [6], BRAIN [36],
LASH [32], MONA [31], TREX [3], and our own FAST [7]. For infinite-state sys-
tems, model checking must be “symbolic” since one manipulates (symbolic represen-
tations of) potentially infinite sets of configurations. The most popular symbolic rep-
resentations are based on regular languages: these are quite expressive and automata-
theoretical data structures provide efficient algorithms performing set-theoretical oper-
ations as well as pre- and post- image computations. With these ingredients, it becomes
possible to launch a fixpoint computation for forward or backward reachability sets, as
exemplified in [30].

The problem of convergence. When dealing with infinite-state systems, a naive fix-
point computation procedure for reachability sets, in the style of Proc. 1 (page 7), has
very little chance to terminate: convergence in a finite number of steps can only oc-
cur if the system under study is uniformly bounded (see section 4.2). To make fixpoint
computations converge more frequently, so-called “acceleration techniques” have been
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developed. These techniques can compute subsets of the reachability set that are not uni-
formly bounded. This can be done, for example, by replacing a control loop “x:=x+1;
y:=y-1” by its transitive closure “k:=random int(); x:=x+k; y:=y-k”. Cur-
rently, many different acceleration techniques for different families of systems exist [1,
2, 11, 13, 25, 37]. Some of them have been implemented [3, 7, 32] and promising case-
studies have been reported [1–3, 7, 8]. Acceleration is quite related to widening tech-
niques [4] in abstract interpretation [21]. While acceleration refers to exact computa-
tion, widening trades exactness for termination.

A field in need of foundations. The existing acceleration results usually amount to a
(sometimes difficult) theorem stating that the transitive closure of an action, or of a
sequence of actions, can be effectively computed. The difficulty of these results usu-
ally lies in finding the precise conditions on the action and on the set of initial states
that yield effectiveness. How to use such results is not really known: the theorems and
algorithms for computing reachability sets with acceleration methods do not exist in
general! With some tools, e.g., LASH, the user has to choose which loops to accelerate
and how to mix the result with more standard symbolic computation; in other cases, e.g.,
with TREX, some default strategy is implemented outside of any theoretical framework
and without discussions about its efficiency or completeness.

Our contribution. (1) We propose the first theoretical framework for symbolic model
checking with acceleration. We distinguish three natural levels for accelerations ( “loop”,
“flat”, and “global”), depending on which sequences of transitions can be computed:
transitive closure of cycles (resp. of length 1) for flat (resp. loop) acceleration; or any
regular set of sequences for global acceleration. These levels can account for most ac-
celeration results on specific systems (pushdown systems, channel systems, counter
systems, . . . ). For each level we give a symbolic algorithm with acceleration computing
reachability sets and we characterize the conditions necessary for its termination.

Flat acceleration is the most interesting level. As a matter of fact, loop acceleration
is not sufficient for many of the example systems we have analyzed with our tool FAST.
Furthermore, the majority of existing acceleration results stated at the loop acceleration
level may be extended to the level of flat acceleration. At the other end of the spectrum,
global acceleration is always sufficient but it occurs very rarely in practice and is es-
sentially restricted to particular subclasses (e.g., pushdown systems, reversal-bounded
counter systems [29] or particular subclasses of Petri nets).

(2) We develop new concepts for the algorithmic study of flat acceleration. The
notions of flattenings and of flattable systems provide the required bridge between flat
acceleration and the effective computation of the reachability set.

We propose new symbolic procedures and analyze them rigorously. Procedure REACH2
is new. We show it terminates iff it is applied to a flattable (and not only flat) system,
which is the first completeness result on symbolic model checking with acceleration.
Let us remark that most of the case studies we analyzed in earlier works with FAST are
flattable but not flat, underlining the relevance of this concept.

(3) Procedure REACH2 is schematic and it can be specialized in several ways. We
propose one such specialization, REACH3, geared towards the efficient search of all
flattenings of a nonflat system, without compromising completeness.
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It appears that a key issue with REACH3 is the reduction of the number of circuits
the procedure has to consider. FAST implements specific algorithms for counter sys-
tems that reduce exponentially the number of considered circuits and we show how
to generalize these ideas to other families of systems. It is these algorithms that make
FAST succeed in verifying several examples (see section 7) for which tools like LASH

and ALV, based on similar technology but restricted heuristics, do not terminate. More
generally, the comparisons in section 7 suggest that flat acceleration greatly enhances
termination of symbolic reachability set computation, and is fully justified in practice.

This “theory of accelerations” is a new theoretical framework, not a compilation or
survey of known acceleration results. It gives a common theoretical background justi-
fying existing results and tools. It suggests research agendas for different families of
systems. Our results are not technically difficult but we think they can (and must!) be
used to compare and to rationally improve existing tools like TREX, LASH, and others,
or to design new tools based on new acceleration results.

Outline. We define the systems under study in section 3, and the symbolic frameworks
in section 4. Section 5 introduces the three levels of accelerations and defines flattable
systems. Section 6 provides our procedure for flattable systems, and gives several algo-
rithmic and/or heuristic refinements. Section 7 compares several existing tools through
the new framework. As a rule, all important proofs are given in the appendix.

2 Notations

A binary relation r (shortly relation) on some set X is any subset of X×X . We shortly
write x r x′ whenever (x, x′) ∈ r. We denote by r(x) the set r(x) = {x′ ∈ X | xrx′}.
We extend this notation to a subset Y ⊆ X by r(Y ) = {x′ ∈ X | ∃y ∈ Y, yrx′}. Given
two binary relations r1, r2 on X , the composed binary relation r1•r2 on X is defined by
x (r1 • r2)x′ iff x r1 y and y r2 x′ for some y ∈ X . r1 • r2 corresponds to applying first
r1 then r2. IdX is the identity relation on X . ri is defined by r0 = IdX , ri+1 = r • ri.
r∗ is the reflexive and transitive closure of r.

3 Systems and interpretations

A system is a finite state control graph extended with a finite number of variables rang-
ing over arbitrary domains and modified by actions when a transition is fired. Specific
families of systems have been widely studied (see subsection 3.1).

Definition 3.1 (Uninterpreted system). An uninterpreted system S is a tuple S =
(Q,Σ, T ), where Q is a finite set of locations, Σ is a (possibly infinite) set of formulas
called actions, T ⊆ Q×Σ ×Q is a finite set of transitions.

Given a uninterpreted system S = (Q,Σ, T ), the source, target and action map-
pings α : T → Q, β : T → Q and l : T → Σ are defined as follows: for any transition
t = (q, σ, q′) ∈ T , α(t) = q, β(t) = q′, l(t) = σ.
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Definition 3.2 (Interpretation). Given a (possibly infinite) set of formulas Σ and a set
D, an interpretation I of Σ, shortly an interpretation, is a tuple I = (Σ,D, J·K) such
that J·K : Σ → 2D×D maps formulas to relations on D.

Definition 3.3 (System). An interpreted system S (shortly a system) is a pair (S, I) of
an uninterpreted system S = (Q,Σ, T ) and an interpretation I = (Σ,D, J·K) of Σ,
shortly written S = (Q,Σ, T,D, J·K).

Fig. 1 displays S0, a simple uninterpreted system, in graphical notation.

q1 q2

x:=x + 1 /∗ a1 ∗/

x 6= y? y:=y + x /∗ a2∗/

y:=y + 2;
x:=x− 1
/∗ a3 ∗/

Fig. 1. S0, a simple uninterpreted system

The underlying set of actions Σ is left
unspecified in this example, but the
reader should recognize that it con-
tains assignments that can be guarded
by Boolean expressions. a1, a2, a3

identify the three actions effectively
used by S0. A possible interpretation
for this set of actions assumes that the
domain D is Z

{x,y}, or equivalently Z
2, i.e., we decide that x and y range over

integers. We then interpret the actions in the obvious way. For example Ja2K =
{((x, y), (x′, y′)) | x 6= y ∧ y′ = y + x ∧ x′ = x}. This turns S0 into an interpreted
system S0.

Behaviour. The set of configurations CS of S is Q × D, and the semantics of each

transition t ∈ T is given by a relation
t
−→⊆ CS × CS .

t
−→ is defined by: (q, x)

t
−→

(q′, x′) if q = α(t), q′ = β(t) and (x, x′) ∈ Jl(t)K. This definition can be extended to the
set T ∗ of all sequences of transitions. Let us denote ε the empty word. Then

ε
−→= IdCS

and
t·π
−−→=

t
−→ •

π
−→. We also define

L
−→ for any language L ⊆ T ∗ by

L
−→=

⋃
π∈L

π
−→.

Similarly J·K can be extended to any language L ⊆ Σ∗.

Reachability problems. We are interested in checking safety properties of systems.
Safety properties are both intuitive as they can be described in terms of sets of (safe)
configurations P ⊆ CS , and meaningful since they allow to express deadlock freedom,
mutual exclusion, overflows and so on. For any X ⊆ CS and any L ⊆ T ∗, we define

postS(L, X) = {x′ ∈ CS | ∃x ∈ X; (x, x′) ∈
L
−→}. The set postS(T,X) of all configu-

rations reachable in one step from X is denoted by postS(X).The set postS(T ∗, X) of
all configurations reachable from X is the reachability set of X , denoted by post∗S(X).

Given an initial set of configurations X0, checking a safety property P can be done
by (1) computing post∗S(X0) , and (2) checking that post∗S(X0) ⊆ P . We focus in this
paper on the reachability set computation which is the key issue. Since post∗S(X0) is
not recursive in general (Minsky machines, channel systems [16], and so on), the best
we can hope for are partially correct procedures, with no guarantee of termination, but
efficient on large subclasses and practical case-studies.

Backward computation. Another way is to proceed backward, computing the co-reachability
set pre∗S(P ) and checking that X0 ⊆ pre∗S(P ). Since for our level of abstraction, adap-
tation to backward computation is straightforward, we consider only forward compu-
tation. However it is worth noticing that depending on particular cases, one of the ap-
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proaches may be more adapted than the other. Along the paper specific results for back-
ward computation are pointed out.

Transition relation computation. A third approach is to compute the reachability re-

lation
T∗

−−→, and then post∗(X0) =
T∗

−−→ (X0). Our framework can be extended in this
direction. For it requires additional notations, it is not treated here.

Notation. Whenever S is implicitly known, it is omitted in notations.

3.1 Family of systems

Definition 3.4 (Family of systems). Given an interpretation I = (Σ,D, J·K), the fam-
ily of systems built on I (shortly the family of systems) denoted by F(I) is the class of
all systems S = (Q,Σ, T,D, J·K) using I to interpret actions.

Well known models can be obtained by instantiating Def 3.4. Let us denote by N,
Z, R the sets of positive integers, integers and reals. Then

Minsky machines: are obtained by defining D = N
Var where Var = {x1, x2, . . .} is

a set of variables, and Σ as the set of increments “xi:=xi + 1”, guarded decrements
“xi > 0? xi:=xi − 1” and 0-tests “xi = 0?“ with the obvious interpretation.
Counter systems [17, 33]: are obtained by considering the same domain, or a variant
D = Z

Var , and all actions definable in Presburger arithmetic. Many restrictions exist,
e.g., linear systems where actions are linear transformations with guards expressed in
Presburger [25, 37], reversal-counter systems [29], many extensions of VASS (or Petri
nets) and so on.
Pushdown systems: the domain is D = Γ ∗, the set of all words on some stack alphabet
Γ . Actions add or remove letters on or from the top of the stack.
Channel systems [16]: consider the domain is D = (Γ ∗)C where C is a set of fifo
channels, and Γ is some alphabet of messages. Actions add messages at one end of the
channels and consume them at the other end.
Timed automata [5]: consider the domain D = R

Var
+ . Here some actions are guarded

by simple linear (in)equalities and they can only reset clocks. Other actions, left implicit
in the standard presentation, account for time elapsing.
Hybrid systems [4]: extend timed automata in that the real-valued variables do not
increase uniformly when time elapses. Rather they each increase according to their
own rate (as given by the current location).

4 A symbolic framework for symbolic model checking

In practice model checking procedures use symbolic representations (called here re-
gions) to manipulate sets of configurations. The definition below follows directly from
ideas expressed for example in [14, 21, 30].

Definition 4.1 (Symbolic framework). A symbolic framework is a tuple (Σ,D, J·K1 , L, J·K2)
where I = (Σ,D, J·K1) is an interpretation, L is a set of formulas called regions,
J·K2 : L → 2D is a region concretization, such that there existing a decidable relation
v and recursive functions t, POST satisfying
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1. there exists an element ⊥∈ L such that J⊥K2 = ∅.
2. v⊆ L× L is such that for all x1, x2 ∈ L, x1 v x2 iff Jx1K2 ⊆ Jx2K2.
3. t : L× L→ L is such that ∀x1, x2 ∈ L, Jx1 t x2K2 = Jx1K2 ∪ Jx2K2.
4. POST : Σ × L→ L is such that ∀a ∈ Σ,∀x ∈ L, JPOST(a, x)K2 = JaK1 (JxK2).

Notation. Let us denote by J·K : Σ ∪ L → 2D×D ∪ 2D the unique function extending
J·K1 and J·K2. Usually given an interpretation I = (Σ,D, J·K1) and a set of regions
L, J·K2 is well-known. Thus in the following, we write J·K for both J·K1 and J·K2, and
we denote symbolic frameworks as SF = (I, L). In the rest of the paper, we fix an
arbitrary symbolic framework SF = (I, L). When refering to a system S, if nothing is
specified we assume that S ∈ F(I).

In some approaches, the symbolic framework may be weakened. A weak inclusion
ensures only that x1 v x2 implies Jx1K ⊆ Jx2K while a weak union satisfies Jx1K ∪
Jx2K ⊆ Jx1 t x2K (typical widening in abstract interpretation [4, 21]). In the following,
we do not consider weakened framework.

Well-known symbolic frameworks for some of the families listed in 3.1 are:
Regular languages: have been used for representing sets of configurations of push-
down systems [12], distributed protocols over rings of arbitrary size [30], and chan-
nel systems [35]. Restricted sets of regular languages are sometimes used for better
algorithmic efficiency: languages closed by the subword relation [1] or closed by semi-
commutations [15].
(finite union of) Convex polyhedra [4]: are conjunctions of linear inequalities defining
subsets of R

Var
+ , relevant in the analysis of hybrid systems.

Number Decision Diagrams [17, 25]: are automata recognizing subsets of Z
Var and

have been used in the analysis of counter systems.
Real Vector Automata [10]: are Büchi automata recognizing subsets of R

Var
+ and have

been used in the analysis of linear hybrid systems.
Difference Bounds Matrices [5]: are a canonical representations for convex subsets
of R

Var
+ defined by simple diagonal and orthogonal constraints that appear in timed

automata.
Covering Sharing Trees [23]: are a compact representation for upward-closed subsets
of N

Var . These sets appears naturally in the backward analysis of broadcast proto-
cols [25] and several monotonic extensions of Petri nets.

Given a system S with a set of locations Q, and X ⊆ CS , post∗(X) is of the form⋃
q∈Q{q} × Dq where the Dq are subsets of D. Assuming an implicit ordering on

locations q1, . . . , q|Q|, we work on tuples of regions in L|Q|. We extend J·K to L|Q| byq
(x1, . . . , x|Q|)

y
=

⋃
i≤|Q|{qi} × JxiK. Extensions of v and t are component-based.

POST is extended into POST : T × L → L by: POST((qi, a, qj), (x1, . . . , x|Q|)) is
equal to (x′1, . . . , x

′
|Q|) such that x′p = ⊥ if p 6= j, POST(a, xi) otherwise. POST is then

extended to sequence of transition in the obvious way. We define POST : L|Q| → L|Q|

by POST(x) =
⊔

t∈T POST(t, x).
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4.1 Limits of the symbolic approach
A subset of configurations X ⊆ CS is L-definable if there exists x ∈ L|Q| such
that JxK = X . Computing post∗(X) using regions is feasible only if post∗(X) is L-
definable. The question “is post∗(JxK) L-definable?” is undecidable.

Theorem 4.2. Given the symbolic framework of 2-counter systems and Presburger for-
mulas, a 2-counter system S, and x0 ∈ L|Q|, then whether post∗(Jx0K) is L-definable
or not is undecidable.

It must be clear that L-definability of post∗(X) is not a sufficient condition for
feasibility of its computation.

Definition 4.3 (Effective L-definability). A function f : 2CS × 2CS → 2CS is ef-
fectively L-definable if there exists a recursive function gf : L|Q| → L|Q| such that
∀x ∈ L|Q|, f(JxK) = Jgf (x)K.

It can be the case that for all x ∈ L|Q|, post∗(JxK) is L-definable while post∗ is not
effectively L-definable. For example, consider the family of lossy channels systems and
the framework defined by simple regular expressions. With no ambiguity, we write now
f(JxK) is effectively L-definable instead of f is effectively L-definable.

4.2 Standard symbolic model-checking procedure
The iterative procedure 1 is derived from the algorithm for finite systems.

procedure REACH1(x0)
parameter: S

input: x0 ∈ L|Q|

1: x← x0

2: while POST(x) 6v x do
3: x← POST(x) t x

4: end while
5: return x

Procedure 1: Standard symbolic model checking algorithm

Definition 4.4 (L-uniformly bounded). A system S is L- uniformly bounded if for all
x ∈ L|Q|, there exists nx ∈ N such that, for all c1 ∈ Q × JxK and c2 ∈ Q × D, if
c2 ∈ post∗({c1}) then c2 ∈

⋃
i≤nx

posti({c1}).

Theorem 4.5. Given a symbolic framework SF = (I, L) and a system S ∈ F(I)
1. When REACH1 terminates, JREACH1(x0)K = post∗(Jx0K) (partial correctness).
2. REACH1 terminates on any input iff S is L-uniformly bounded (termination).

Remark 4.6. If v or t are weak, the above termination result does not hold anymore.

Well-structured transition systems [26] with upward-closed sets are L-backward
uniformly bounded. This applies for Petri nets and many of their monotonic extensions,
or lossy channels systems. However in practice, systems are rarely L- (backward) uni-
formly bounded and Proc. 1 seldom terminates.
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5 Flat acceleration for flattable systems

5.1 Acceleration techniques

In order to improve the convergence of the previous procedure, acceleration techniques
consist in computing the transitive closure of some transitions.

Definition 5.1 (Acceleration). A symbolic framework SF supports
1. loop acceleration if there exists a recursive function POST STAR : Σ×L→ L such

that ∀a ∈ Σ, ∀x ∈ L, JPOST STAR(a, x)K = Ja∗K (JxK);
2. flat acceleration if there exists a recursive function POST STAR : Σ∗×L→ L such

that ∀π ∈ Σ∗, ∀x ∈ L, JPOST STAR(π, x)K = Jπ∗K (JxK);
3. global acceleration if there exists a recursive function POST STAR : RegExp(Σ)×

L→ L such that for any regular expression a over Σ, for any x ∈ L , JPOST STAR(e, x)K =
JeK (JxK).

Let A ⊆ D. In Fig. 1, loop acceleration concerns only action a3, and comes down
to computing A′ = Ja∗

3K (A) = {(x′, y′) ∈ Z
2|∃(x, y) ∈ A;∃k ∈ N;x′ = x − k ∧

y′ = y + 2 · k}. Flat acceleration requires that J(a1 · a2)
∗K (A), J(a1 · a3 · a2)

∗K (A),
J(a1 · a3 · a3 · a2)

∗K (A), J(a3 · a2 · a1)
∗K (A) and so on are computable. Global ac-

celeration requires the computation of more complex interleaving of actions, like the
nested loops J(a1 · a

∗
3 · a2)

∗K (A) (configurations (q1, A
′) reachable from (q1, A)).

In all cases, POST STAR can be extended to handle transitions. Let us explain the ex-
tension for flat acceleration. Consider a sequence of transitions (q1, a1, q2)·(q3, a2, q4)·
(q5, a3, q6). Then there are two cases. If the sequence is invalid (i.e. q2 6= q3 or q4 6= q5)
then the associated relation is empty, and the acceleration returns the identity relation.
If the sequence is valid, then the transition is equivalent to (q1, a1 · a2 · a3, q6). If
the sequence is not a cycle (q1 6= q6), the iteration is equivalent to firing the transi-
tion only once. We compute it using the POST operation (and adding the identity rela-
tion). Finally if the sequence is a cycle π = (q1, a1 · a2 · a3, q1), the acceleration is:
POST STAR(π, (q, x)) = (q, x) if q 6= q1, (q, POST STAR(a1 · a2 · a3, x)) otherwise.
POST STAR is finally easily extended to L|Q|. The extension for global acceleration
considers the intersections of the regular langage e with the regular langages of transi-
tions from a location q to another location q′.

Loop acceleration. All the symbolic frameworks defined from Minsky machines and
equipped with sets of formulas like formulas defining upward-closed sets, Presburger
formulas defining semi-linear sets support loop acceleration. Upward-closed sets for
example are not expressive enough to support flat acceleration.
Flat acceleration. Counter systems (with finite monoid) equipped with Presburger for-
mulas supports flat acceleration [25, theorem 2]. Other examples are channel systems
with cqdd [13, theorem 5.1], non-counting channel systems with slre [26, theorem 5.2]
or qdd[11, theorem 6], lossy channel systems with sre [1, corollary 6.5]. Restricted
counter systems used by TREX equipped with arithmetics almost supports flat acceler-
ation [2, lemma 5.1] except that the POST STAR is not recursive.
Global acceleration. Reversal-counter systems [29], 2-dim VASS [33], lossy VASS
and other subclasses of VASS with Presburger formulas [34], pushdown systems with
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regular languages or semi-commutative rewriting systems with APC language [15],
support global acceleration.

Obviously global ⇒ flat ⇒ loop. Loop acceleration is easy to get, but rarely suf-
ficient to lead to fixpoint computation. Flat acceleration is more flexible, but often re-
quires good compositional properties of Σ and rather complex methods for POST STAR.
Finally global acceleration is a very strong property, ensuring the effective computation
of post∗(JxK) for any x ∈ L|Q|. Clearly most of the systems we want to cope with do
not support global acceleration since they are Turing powerful. Then for our purpose,
flat acceleration is likely to be the best compromise. The rest of the paper will focus on
flat acceleration.

Notation. In the rest of the paper we write S supports loop (resp. loop, flat, global)
acceleration instead of (I, L) supports loop (resp. loop, flat, global) acceleration.

5.2 Restricted linear regular expressions

Flat acceleration allows to compute the effect of more general expressions than itera-
tions of sequences of actions. Given an alphabet A, a restricted linear regular expression
(rlre) over A is a regular expression ρ of the form u∗

1 . . . u∗
n, where ui ∈ A∗. This is

closely related to semi-linear regular expressions [26, 28].

Proposition 5.2. Given a system S supporting flat acceleration, then for any rlre ρ over
T and for any x0 ∈ L|Q|, post(ρ, Jx0K) is effectively L-definable.

Actually, there exists a recursive function with input (ρ, x0) producing x ∈ L|Q|

such that JxK = post(ρ, Jx0K).

5.3 Flat systems

t1
t2t3

q1 q2

In general, flat acceleration does not ensure the reach-
ability set computability. However on some particu-
lar systems, flat acceleration is sufficient. For example
when the system has no nested loop. Considering the
system on the right, reachability set computation is achieved by iterating first t1, then
firing t3 and finally iterating t2. We call such systems flat. The system of figure 1 is
not flat, because of the two elementary cycles on q2, labelled by a3 and a2 · a1. An ele-
mentary cycle is a valid sequence of transitions which does not visit any location twice,
except that the first location and the last one can be the same.

Definition 5.3 (Flat system [19, 26, 28]). An uninterpreted system S = (Σ,Q, T ) is
flat if for any location q, there exists at most one elementary cycle containing q. A
system S = (Σ,Q, T,D, J·K) is flat if S = (Σ,Q, T ) is flat.

Proposition 5.4. Given a flat system S supporting flat acceleration, then post∗(JxK) is
effectively L-definable.
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5.4 Flattening of non-flat systems

Not all systems of interest are flat. For an arbitrary system, we introduce flattening,
which consists in finding a flat system S′, equivalent to S w.r.t. reachability, and com-
pute on S′ instead of S.

Definition 5.5 (Flattening). A system S ′ = (Q′, Σ, T ′, D, J·K) is a flattening of a sys-
tem S = (Q,Σ, T,D, J·K) if (1) S ′ is flat and (2) there exists a mapping z : Q′ → Q,
called folding, such that ∀(q′1, w, q′2) ∈ T ′, (z(q′1), w, z(q′2)) ∈ T .

Flattening generalizes unfolding, allowing non nested loops. The following

q1

q2

t1: x ≥ 0? x← x + 2

t2: y ← y + 1

t3: x ≥ y?t4: x← x− y

q′
1

q′′
1

q′′
2

t1

t3
q′
2

t4

t1

t2

q′′′
1

q′′′
2

t3

t3 t4

t4

figure shows a system (left) and one
of its flattenings (right). Assume S
is a system and S′ one of its flat-
tening as defined above. We extend
the folding z to configurations of S′

by z((q′, x)) = (z(q′), x). Exten-
sion of z to X ⊆ CS′ is defined
by:

z(
⋃

q′∈Q′{q′} ×Dq′) =
⋃

q∈Q{q} × (
⋃

(q′∈Q′,z(q′)=q) Dq′).

This gives an effective extension of z to L-definable subsets of CS′ . Given X ′ ⊆
CS′ , definition 5.5 ensures that z(post∗S′(X ′)) ⊆ post∗S(z(X ′)) and that for any lan-
guage L ⊆ T ∗, z(postS′(L, Jx′K)) = postS(z(L), z(Jx′K)).

Definition 5.6 (L- flattable). A system S = (Q,Σ, T,D, J·K) is L-flattable iff for any
x ∈ L|Q|, there exists a flattening S′ = (Q′, Σ, T ′, D, J·K) of S and x

′ ∈ L|Q′| such
that z(Jx′K) = JxK and z(post∗S′(Jx′K)) = post∗S(z(Jx′K)).

Theorem 5.7. Let S be a L- flattable system supporting flat acceleration. Then post∗(JxK)
is effectively L-definable.

5.5 About flattable systems

A natural question is whether L-flattable systems are well-spread or not. A first negative
result is that we cannot decide if a system is L-flattable, even if restricting to 2-counter
systems.

Theorem 5.8. Given the symbolic framework of 2-counter systems and Presburger for-
mulas, then whether a 2-counter system S is L-flattable or not is undecidable.

However many systems with L-definable reachability set appear to be flattable. For
example 2-dim VASS [33], timed automata [20], k-reversal counter machines, lossy
VASS and other subclasses of VASS [34] and all L-uniformly bounded systems (see
section 4) are L-flattable. It must be clear that there is no equivalence in general: lossy
channel systems have L-definable reachability sets but are not flattable. Interesting open
questions are whether well-known subclasses with L-definable reachability sets (like
Presburger definable VASS) are L-flattable or not.
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6 Computing reachability set using flat acceleration

6.1 A first procedure

The previous characterization gives a complete procedure for flattable systems: (1) enu-
merate all flattenings; (2) compute their reachability set; (3) check the fixpoint. But flat-
tenings are not easily manipulable. Here is a new characterization of flattable based on
rlre. Indeed proposition 5.4 shows that for flat systems, post∗ is effectively L-definable
using POST STAR over some rlre. Theorem 5.7 states that for a flattable system S, post∗

is also effectively L-definable, using a flattening of S. The next theorem unifies these
results.

Theorem 6.1. A system S = (Q,Σ, T,D, J·K) is L- flattable iff for all x ∈ L|Q|, there
exists a rlre ρ over T such that post∗(JxK) = post(ρ, JxK).

Reachability set computation for flattable systems reduces to exploring the set of
rlre over T , which can be achieved by increasing a sequence of rlre (Proc. 2). Fairness:
we assume that if Choose is called infinitely often, each w ∈ T∗ is selected infinitely
often. This can be ensured for example by enumerating all w ∈ T ∗ such that |w| ≤ 1,
then all w ∈ T ∗ such that |w| ≤ 2, and so on.

procedure REACH2(x0)
parameter: S

input: x0 ∈ L|Q|

1: x← x0

2: while POST(x) 6v x do
3: Choose fairly w ∈ T ∗

4: x← POST STAR(w, x)
5: end while
6: return x

Procedure 2: Flat acceleration.

Theorem 6.2. Given a symbolic framework SF = (I, L) and a system S ∈ F(I)

1. When REACH2 terminates, JREACH2(x0)K = post∗(Jx0K) (partial correctness).
2. REACH2 terminates on any input iff S is L- flattable (termination).

This termination result does not hold if the symbolic framework provides only a
weak inclusion, or if POST STAR is an overapproximation.

6.2 Faster enumeration of flattenings

A major issue is to implement Choose such that the fixpoint is reached quickly. Instead
of considering all sequences in T ∗, a bound k is chosen, and the previous procedure re-
stricted to non empty sequences of length ≤ k (denoted T≤k) is launched (k-flattable).
The search is eventually stopped, k is incremented and k-flattable is launched again.
We assume that Watchdog is fired infinitely often, but only after that each w ∈ T≤k

has been selected at least once by Choose (fairness).
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procedure REACH3(x0)
parameter: S

input: x0 ∈ L|Q|

1: x← x0 ; k ← 0
2: k ← k + 1
3: start
4: while POST(x) 6v x do /* k-flattable */
5: Choose fairly w ∈ T≤k

6: x← POST STAR(w, x)
7: end while /* end k-flattable */
8: with
9: when Watchdog stops goto 2

10: return x

Procedure 3: Flat acceleration and circuit length increasing

Theorem 6.3. Given a symbolic framework SF = (I, L) and a system S ∈ F(I)

1. When REACH3 terminates, JREACH3(x0)K = post∗(Jx0K) (partial correctness).
2. REACH3 terminates for any input iff S is L- flattable (termination).

Technical issues. There still remain two practical problems. First the size3 of x ∈ L|Q|

computed so far may be intractable. Second Watchdog needs a stop criterion. We de-
scribe the implementation in FAST of these two procedures, and believe that the solu-
tions proposed can be adapted to over domains. We want to point out that the implemen-
tation we describe does not follow exactly the specification of REACH3 since fairness is
not ensured anymore. FAST should be improved in this way.

Choose. In general there is no monotonic relationship between the size of a region
and the size of its concretization (w.r.t. ⊆). Intermediate regions may have a size much
larger than the one of the fixpoint. Such intermediate regions must be avoided. Choose
selects the next w ∈ T≤k, such that |POST STAR(w, x)| < |x|. If there is no such w,
then the next one is selected. In practice, a cyclic enumeration almost always run out of
memory, while this enumeration works well.

Watchdog. Let us denote by depth the number of iterations in the macro k-flattable
(reset when exiting the macro). Our stop criterion for Watchdog is a maximal limit on
depth. In practice, when a sufficient k is reached, the fixpoint is computed within few
iterations.

6.3 Reduction of the number of cycles

A remaining issue in REACH3 is the exponential cardinal in k of T≤k. We introduce the
notion of reduction to compact the number of relevant transitions.

Definition 6.4 (k-Reduction). Given an interpretation I = (Σ,D, J·K), a k-reduction
r : F(I) → F(I) maps to each system S = (Q,Σ, T,D, J·K) ∈ F(I) a system

3 Each set of regions has its own measure for size. For exemple, a relevant size for Presburger
formulas may be the number of nodes of the associated binary automaton.
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S′ = (Q,Σ, T ′, D, J·K) ∈ F(I) such that: (1) ∀t′ ∈ T ′,
t′

−→⊆
T∗

−−→, (2) ∀w ∈ T≤k,∃ρ ∈

rlre(T ′).
w∗

−−→⊆
ρ
−→, (3) |T ′| ≤ |T≤k|.

Conditions 1 and 2 ensure that if S is L- flattable with length k, then S ′ is L-
flattable and has the same reachability set. Removing identity loops from T≤k is a
naive reduction, as well as IdF(I). The following reductions are much more useful.
Conjugation reduction: remove sequences of transitions equivalent w.r.t. conjugation to
another sequence (e.g. t1 · t2 · t3 and t2 · t3 · t1). Commuting reduction: if t1 and t2

commute, i.e.
t1−→ •

t2−→=
t2−→ •

t1−→, then remove both t1 · t2 and t2 · t1.

Proposition 6.5. The conjugation reduction and the commuting reduction are k-reductions.

The conjugation reduction satisfies |T ′| = O( |T
k|

k
).

In addition to these generic reductions, it is worthwhile to develop reductions ded-
icated to a specific interpretation. [25] presents a reduction for linear counter systems
with a finite monoid, such that |T′| remains polynomial in k, while |T≤k| is exponential
in k. This appears to be a keypoint in FAST performances.

k |Vk| |T
′| |T ′′|

1 7 7 7
2 36 21 16
3 156 56 28
4 578 126 47
5 1890 252 86

Here are the reduction results for the swimming pool protocol, an
infinite VASS with 7 transitions (6 var.), studied in [27]. Cycles of
length 4 are required to compute the reachability set. Vk ⊆ T≤k

is the set of valid sequences of length ≤ k. T ′ (resp. T ′′) is the
reduced system with reduction of [25] (resp. combined with com-
muting transitions).

7 Conclusion: flat acceleration in practice

7.1 Tools comparison

ALV FAST LASH TREX
system full linear restricted
symbolic Presburger formula arith.
rep. undec. v
acceleration no flat loop ≈ flat
termination UB F 1F kF (oracle v)

We use our framework to compare
symbolic model-checkers ALV, FAST,
LASH and TREX, designed to check
safety properties on counter systems
(see definitions in section 3.1). We re-
strict this comparison to the exact for-
ward computation of post∗(Jx0K). ALV[6] works on full counter systems. Regions are
Presburger formulas. The heuristic used is similar to REACH1. FAST[7] and LASH[32]
work both on linear counter systems equipped with Presburger formulas. Flat acceler-
ation is supported for functions whose monoid is finite, but while FAST really takes
advantage of full flat acceleration (Proc. REACH3), heuristics in LASH are restricted to
loop acceleration (Proc. REACH2 where w is chosen in T≤1 instead of T ∗). TREX[3]
manipulates restricted counter systems. Since regions are arithmetics formulas, inclu-
sion is undecidable. A partially recursive flat acceleration procedure is available. The
heuristic is REACH2 restricted to T≤k for a user-defined k. [22] compares FAST and
TREX in depth. UB, F and kF stands for L- uniformally bounded, L- flattable and L-
flattable with length k (UB ⊆ 1F ⊆ kF ⊆ F).
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System ALV LASH FAST k

TTP no yes yes 1
prod/cons (2) no yes yes 1
prod/cons (N) no no yes 2
lift control, N no no yes 2
train no no yes 2
consistency no no yes 3
CSM, N no no yes 2
swimming pool no no yes 4
PNCSA no no no ?
IncDec no no no ?
BigJAVA no no no ?

Procedure comparison on case studies. The following
table compares how ALV, FAST and LASH behave in
practice. Comparison is made between termination and
non termination (after 1200 seconds), on a Pentium III
933 MHz with 512 Mbytes. k is the length of cycles
used by FAST. Case studies are taken from [24]. They
are all infinite systems. Experimental results are strongly
related to the acceleration framework: the tool closer to
the framework (FAST) is the one with better termina-
tion results, while simple iteration (ALV) is not sufficient on these complex examples
(results are consistent with [9]). Experiments clearly suggest that flat acceleration en-
hances greatly termination and is fully justified in practice, at least for counter systems.

7.2 Tool design

Flat acceleration framework provides guidelines to design from scratch new techniques
and tools. FAST supports completely this framework. Complex case studies have been
conducted [7, 8]. The following table shows performances of FAST on a significant

System var |T | sec. MB. k

CSM 13 13 45.57 6.31 2
FMS 22 20 157.48 8.02 2
Multipoll 17 20 22.96 5.13 1
Kanban 16 16 10.43 6.54 1
swimming pool 9 6 111 29.06 4
last i.-first s. 17 10 1.89 2.74 1
PC Java(2) 18 14 13.27 3.81 1
PC Java(N) 18 14 723.27 12.46 2
Central server 13 8 20.82 6.83 2
Consistency 12 8 275 7.35 3
M.E.S.I. 4 4 0.42 2.44 1
M.O.E.S.I. 4 5 0.56 2.49 1
Synapse 3 3 0.30 2.23 1
Illinois 4 6 0.97 2.64 1
Berkeley 4 3 0.49 2.75 1
Firefly 4 8 0.86 2.59 1
Dragon 5 8 1.42 2.72 1
Futurebus+ 9 10 2.19 3.38 1
lift - N 4 5 4.56 2.90 3
barber m4 8 12 1.92 2.68 1
ticket 2i 6 6 0.88 2.54 1
ticket 3i 8 9 3.77 3.08 1
TTP 10 17 1186.24 73.24 1

pool of infinite counter systems, collected among
web sites of other model-checkers ALV, BABY-
LON, BRAIN, LASH and TREX. They range
from tricky academic puzzles (swimming pool)
to complex industrial protocols (TTP). Since they
have infinite state-space, they are beyond the
scope of traditional model-checking techniques
and tools. Moreover, most of these systems are
also beyond VASS/Petri nets, then nice meth-
ods like covering tree or backward computation
do not work anymore. Of course one can try to
build a finite abstraction of the system and check
it with finite state tools. However we are inter-
ested here in exact automatic computation. The
results are for forward computation of the reach-
ability set, on an Intel Pentium 933 Mhz with 512
Mbytes. Other complex case-studies have been
performed with ALV, LASH and TREX [3, 6, 9,
32]. This confirms that flat acceleration is useful to handle infinite systems.
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A Proofs

Notations Given a set X , for any index i ∈ [1 . . . n], we denote by x[i] the ith compo-
nent of a n-tuple x ∈ Xn.

A.1 Proof of theorem 4.2

Theorem Given the symbolic framework of 2-counter systems and Presburger formu-
las, a 2-counter system S, and x0 ∈ L|Q|, then whether post∗(Jx0K) is L-definable or
not is undecidable.

Proof. We reduce the reachability problem, undecidable for 4-counter systems. It is not
a restriction since 2-counter systems can encode any fixed number of counters. We con-
sider a weaker variant, location reachability, still undecidable. The location reachability
problem is the following. We consider a 4-counter system S0 equipped with 4 variables
x, y, y0 and z ranging over N and a finite set Q of locations, an initial configuration
(q0, c0) where q0 ∈ Q and c0 ∈ N

4, and a location q ∈ Q. Then we want to decide if
there is a run of the counter system on input (q0, c0) such that q is reached.

Suppose that for any (S′, q′, c′) we can decide if post∗S′((q′, c′)) is definable by
a Presburger formula. Let us remind that Presburger formulas cannot expressed mul-
tiplication among variables (typically z = x × y). We proceed as follows. We trans-
form S0 into S1 by: adding a finite number of new locations Q1 and new transitions
over Q1, starting at q1 ∈ Q1, coding a multiplication of counter x by counter y,
and the result is assigned to z in location qz ∈ Q1 (counter y0 is used to remember
the value of y during the operation). Then we had some more transitions. A tran-
sition (q0, “x := 0, y := 0, z := 0“, q1), the transitions (q1, “x := x + 1“, q1),
(q1, “y := y + 1“, q1), the transitions (q, “x := x + 1“, q), (q, “x := x − 1“, q),
(q, “y := y + 1“, q), (q, “y := y − 1“, q) (q, “z := z + 1“, q), (q, “z := z − 1“, q)
and for all q′′ ∈ Q0 ∪Q1 a transition (q, “x := x, y := y, z := z“, q′′). Then it is easy
to verify that post∗S1

((q0, c0)) is L-definable (and equals to (Q0 ∪ Q1) × N
3 ) iff q is

reachable (otherwise the reachability set projected on qz is {(x, y, z)|z = x× y} ). ut

A.2 Proof of theorem 4.5

Theorem.
1. When REACH1 terminates, JREACH1(x0)K = post∗(Jx0K) (partial correctness).
2. REACH1 terminates on any input iff S is L- uniformly bounded (termination).

Proof. Partial correctness: when the procedure terminates, REACH1(x0) is a fixpoint
of POST, then JREACH1(x0)K is a fixpoint of post. Moreover at each iteration of the
procedure, JxK ⊆ post∗(Jx0K). This ensures that JREACH1(x0)K is equal to the least
fixpoint of post, i.e. post∗(Jx0K).

Termination: We suppose S is L- uniformly bounded. Given x0 ∈ L|Q|, there exists
nx0

such that post∗(Jx0K) =
⋃

i≤nx0

posti(Jx0K). It is straightforward that after nx0

iterations, REACH1 terminates. We suppose now that REACH1 terminates on any input.
Then for any x0 ∈ L|Q|, the fixpoint is reached after nx0 iterations. nx0

is the constant
in the definition of L- uniformly bounded. ut
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A.3 Proof of proposition 5.2

Proposition. Given a system S supporting flat acceleration, then for any rlre ρ over T
and for any x ∈ L|Q|, post(ρ, JxK) is L-definable.

Proof. We reason by induction on ρ. If ρ = ε then JxK = post(ε, JxK) and the property
is true. Otherwiser if ρ = u∗ ·ρ1 where u ∈ T ∗, then we apply the induction hypothesis
to post(ρ1, JPOST STAR(u, x)K). ut

A.4 Proof of proposition 5.4

Proposition. Given a flat system S supporting flat acceleration, then post∗(JxK) is ef-
fectively L-definable.

Proof. In [33] it is proved that for a flat system S, there exists a semi-linear regular
expression (slre) ρ′ over T such that for all x ∈ L|Q|, post∗(JxK) = post(ρ′, JxK).
Moreover it is proved that ρ′ is effectively computable. Recall that a slre over T is a
regular linear expression of the form Σiui,1w

∗
i,1 . . . ui,nw∗

i,n, where ui,j , wi,j ∈ T ∗.
Let us define the rlre ρ over T by ρ = Πiu

∗
i,1w

∗
i,1 . . . u∗

i,nw∗
i,n. It is easy to verify that

post(ρ, JxK) = post(ρ′, JxK) = post∗(JxK). Using proposition 4.2, we are done. ut

A.5 Proof of theorem 5.7

Theorem. Let S be a L- flattable system supporting flat acceleration. Then post∗(JxK)
is effectively L-definable.

Proof. First notice that since regions are closed by finite union (t operator), z is easily
extended into z : L|Q′| → L|Q|. This construction is effective. Consider a system S and
x ∈ L|Q|, we enumerate all (S′, z, x′) such that S′ is a flattening of S with folding z,
and x

′ ∈ L|Q′| such that Jz(x′)K = JxK (using v). For each (S ′, z, x′), since S′ is flat
we can compute x′′ such that Jx′′K = post∗S′(Jx′K) (proposition 5.4). Then we compute
y = z(x′′) ∈ L|Q| and check whether POSTS(y) v y or not. When it is the case then JyK
is an invariant of postS . By definition of flattenings and construction of y, JyK ne peut
qu’être inférieur à post∗(JxK). Donc JyK = post∗(JxK). Since S is L-flattable, such a
(S′, z, x′) exists and will eventually be found (even if there are finitely many (S′, z, x′),
they can be enumerated). ut

A.6 Proof of theorem 5.8

Theorem Given the symbolic framework of 2-counter systems and Presburger formu-
las, then whether a 2-counter system S is L- flattable or not is undecidable.

Proof. This is essentially the same proof than theorem 4.2. The location reachability
problem is reduced in the same way. Notice that q is reachable iff S1 is L- flattable (If
q is reachable, compute N

3 on q then use each new transition once to propagate N
3 on

every location q′′ ∈ Q ∪Q1 ; otherwise post∗S1
(c) is not L-definable for any c, then S1

cannot be L- flattable). ut
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A.7 Proof of theorem 6.1

Theorem. A system S = (Q,Σ, T,D, J·K) is L- flattable iff for all x ∈ L|Q|, there exists
a rlre ρ over T such that post∗(JxK) = post(ρ, JxK).

Proof. Given x ∈ L|Q|, if there exists a rlre ρx such that post∗S(JxK) = postS(ρx, JxK),
we deduce naturally a flattening S ′

X of S (intuitively the uninterpreted system of S ′
X is

the automata recognizing the langage ρX ⊆ T ∗).
Let us prove the converse. Let us assume that S is L-flattable. By definition there

exists a flat system S′, a flattening z and x′ such that z(Jx′K) = JxK and z(post∗S′ Jx′K) =
post∗S(JxK). Moreover we can build effectively (S ′, z, x′) by enumeration (see proof
of theorem 5.7). Since S′ is flat, using the proof of proposition 5.4 we deduce that
there exists ρ′ a rlre over T ′ verifying post∗S′(Jx′K) = postS′(ρ′, Jx′K). We denote
ρ = z(ρ′). By definition of flattening, ρ is a rlre over T (each transition of a flattening
corresponds to a transition in the original system, the property extends to sequences and
languages). By reasoning on sequences of transitions and then languages, we can prove
that for any L ⊆ T ∗, z(postS′(L, Jx′K)) = postS(z(L), z(Jx′K)). We then deduce that
z(postS′(ρ′, Jx′K)) = postS(z(ρ′), z(Jx′K)) = postS(ρ, z(Jx′K)).

It comes that there exists x′ such that z(Jx′K) = JxK and post∗S(JxK) = z(post∗S′(Jx′K)) =
z(postS′(ρ′, Jx′K)) = postS(ρ, JxK). ut

A.8 Proof of theorem 6.2

Theorem.

1. When REACH2 terminates, JREACH2(x0)K = post∗(Jx0K) (partial correctness).
2. REACH2 terminates on any input iff S is L- flattable (termination).

Proof. Partial correctness: straightforward from the definition of POST STAR and v.
Termination: first remark that if REACH2 terminates it returns the fixpoint, since com-
putations in our procedure are always underapproximations of the reachability set. The
finite sequence of selected w ∈ T∗ during the successful computation provides a rlre
ρ over T ∗ such that post∗(JxK) = post(ρ, JxK). Thus if REACH2 terminates for all in-
put, then S is L- flattable (theorem 6.1). Assume now that S is L- flattable, and consider
x0 ∈ L|Q|. There exists a rlre ρ over T ∗ such that post∗(Jx0K) = post(ρ, Jx0K) (theorem
6.1). Let us denote ρ = u∗

1 . . . u∗
n. Since Choose is fair, the sequence ρ′ of w selected

by choose will eventually be of the form ρ′ = w∗
1 . . . w∗

m where there exists i1, . . . , in
such that wi1 = u1, . . . , win

= un. It will eventually be the case because all w ∈ T ∗ are
repeated infinitely often thanks to fairness condition. Moreover the identity relation be-
ing contained in each step of acceleration, each step of computation contains entirely the
previous step. Then we get that post(ρ, Jx0K) ⊆ post(ρ′, Jx0K) ⊆ post∗(Jx0K) (remem-
ber we can only compute underapproximation). Since post∗(Jx0K) = post(ρ, Jx0K), we
get that post∗(Jx0K) = post(ρ′, Jx0K) and the computation will stop at that stage (re-
turning the fixpoint). ut
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A.9 Proof of theorem 6.3

Theorem.
1. When REACH3 terminates, JREACH3(x0)K = post∗(Jx0K) (partial correctness).
2. REACH3 terminates for any input iff S is L- flattable (termination).

Proof. Partial correctness: straightforward from the definition of POST STAR and v.
Termination: fairness of Choose on T≤k and Watchdog, and re-using computations
of each previous task k-flattable ensure fairness of Choose on T ∗. Then we use the
same arguments than for theorem 6.2. ut

A.10 Proof of proposition 6.5

Proposition. The conjugation reduction and the commuting reduction are reductions.

The conjugation reduction satisfies |T ′| = O( |T
k|

k
).

Proof. Conjugation reduction. Given three transitions t1, t2 and t3, we do not need

to consider t2 · t3 · t1 and t3 · t2 · t1 since
(t2·t3·t1)

∗

−−−−−−→ and
(t3·t2·t1)

∗

−−−−−−→ can be computed

easily from
(t1·t2·t3)

∗

−−−−−−→. For example
(t2·t3·t1)

∗

−−−−−−→= Id∪
t2−→ •

t3−→ •
(t1·t2·t3)

∗

−−−−−−→ •
t1−→.

Commuting reduction. If t1 and t2 satisfies
t1·t2−−−→=

t2·t1−−−→ then
(t1·t2)

∗

−−−−−→ is equal to
t∗
1−→ •

t∗
2−→, therefore we can remove safely both t1 · t2 and t2 · t1. ut

B Practical use of flat acceleration: FAST

The following table shows performances of FAST on a significant pool of counter sys-
tems, mainly collected among web sites of other model-checkers, like ALV, BABY-
LON4, BRAIN, LASH and TREX. They range from tricky academic puzzles (swimming
pool) to complex industrial protocols (TTP). Since most of them have infinite state-
space (except whose in category Bounded Petri Nets), they are beyond the scope of
traditional model-checking techniques and tools. Moreover, most of these systems are
also beyond VASS/Petri nets, then nice methods for WSTS like covering tree or back-
ward computation do not work anymore.

The results are taken from forward computation of the reachability set, using an
Intel Pentium 933 Mhz with 512 Mbytes. In the following table, |T | is the number of
transitions, |A| is the size of the computed binary automaton (regions of FAST). |w|
is the length of the rlre computed so far, k is the maximal length of cycle (T≤k), the
number of cycles is given after reductions (commuting transitions and specific reduction
of subsection 6.3). “-” indicates an unknown result (termination does not terminate
under 1800 seconds).

There can have several reasons for FAST non termination: (1) the reachability set
is not Presburger definable, (2) the system is not L- flattable, (3) the monoid of the
system is not finite and our techniques on counter systems do not applied, (4) the three
previous conditions does not hold but time and space consumption are too high. Even if

4 http://www.ulb.ac.be/di/ssd/lvbegin/CST/
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it is difficult to understand why some experiments fail it seems that on these examples,
the main factor of failure is (4). At least, since most of the systems are variants of VASS
(with zero test or reset), the monoid is finite.
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Bounded Petri Nets
Producer/Consumer 5 3 0.41 2.37 7 3 1 3
Lamport ME 11 9 2.70 2.88 5 11 1 9
Dekker ME 22 22 21.72 5.48 5 36 1 22
RTP 9 12 2.24 2.76 5 8 1 12
Peterson ME 14 12 4.97 3.78 5 12 1 12
Reader/Writer 13 9 9.68 23.14 9 23 1 9

Unbounded Petri Nets
CSM 13 13 45.57 6.31 6 32 2 35
FMS 22 20 157.48 8.02 21 23 2 46
Multipoll 17 20 22.96 5.13 35 13 1 20
Kanban 16 16 10.43 6.54 4 2 1 16
Mesh2x2 32 32 ≥ 1800 - - - - -
Mesh3x2 52 54 ≥ 1800 - - - - -
Manufacturing system 7 6 ≥ 1800 - - - - -
Manufacturing system (check deadlock freedom) 13 6 ≥ 1800 - - - - -
PNCSA 31 38 ≥ 1800 - - - - -
extended ReaderWriter 24 22 ≥ 1800 - - - - -
SWIMMING POOL 9 6 111 29.06 30 9 4 47

Unbounded Counter Systems
Last-in First-served 17 10 1.89 2.74 9 12 1 10
Esparza-Finkel-Mayr 6 5 0.79 2.55 5 2 1 5
Inc/Dec 32 28 ≥ 1800 - - - - -
Producer/Consumer with Java threads - 2 18 14 13.27 3.81 13 53 1 14
Producer/Consumer with Java threads - N 18 14 723.27 12.46 58 86 2 75
2-Producer/2-Consumer with Java threads 44 38 ≥ 1800 - - - - -
Central Server system 13 8 20.82 6.83 5 11 2 25
Consistency Protocol 12 8 275 7.35 7 9 3 98
M.E.S.I. Cache Coherence Protocol 4 4 0.42 2.44 6 3 1 4
M.O.E.S.I. Cache Coherence Protocol 4 5 0.56 2.49 7 3 1 5
Synapse Cache Coherence Protocol 3 3 0.30 2.23 6 2 1 3
Illinois Cache Coherence Protocol 4 6 0.97 2.64 6 4 1 6
Berkeley Cache Coherence Protocol 4 3 0.49 2.75 7 2 1 3
Firefly Cache Coherence Protocol 4 8 0.86 2.59 7 3 1 8
Dragon Cache Coherence Protocol 5 8 1.42 2.72 6 5 1 8
Futurebus+ Cache Coherence Protocol 9 10 2.19 3.38 12 8 1 10
lift controller - N 4 5 4.56 2.90 14 4 3 20
bakery 8 20 ≥ 1800 - - - - -
barber m4 8 12 1.92 2.68 5 8 1 12
ticket 2i 6 6 0.88 2.54 22 5 1 6
ticket 3i 8 9 3.77 3.08 77 10 1 9
TTP 10 17 1186.24 73.24 1140 31 1 17


