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Abstract. The theory BV of bit-vectors, i.e. fixed-size arrays of bits equipped
with standard low-level machine instructions, is becomingvery popular in formal
verification. Standard solvers for this theory are based on abit-level encoding
into propositional logic and SAT-based resolution techniques. In this paper, we
investigate an alternative approach based on a word-level encoding into bounded
arithmetic and Constraint Logic Programming (CLP) resolution techniques. We
define an original CLP framework (domains and propagators) dedicated to bit-
vector constraints. This framework is implemented in a prototype and thorough
experimental studies have been conducted. The new approachis shown to per-
form much better than standard CLP-based approaches, and toconsiderably re-
duce the gap with the best SAT-based BV solvers.

1 Introduction

The first order theory of bit-vectors allows reasoning aboutvariables interpreted over
fixed-size arrays of bits equipped with standard low-level machine instructions such as
machine arithmetic, bitwise logical instructions, shiftsor extraction. An overview of
this theory can be found in Chapter 6 of [27]. The bit-vector theory, and especially its
quantifier-free fragment (denoted QFBV, or simply BV), is becoming increasingly pop-
ular in automatic verification of both hardware [4, 7, 36] andsoftware [10, 11, 14, 15].
Most successful BV solvers (e.g. [3, 5, 24, 25, 40]) rely on encoding the BV formula into
an equisatisfiable propositional logic formula, which is then submitted to a SAT solver.
The encoding relies onbit-blasting: each bit of a bit-vector is represented as a propo-
sitional variable and BV operators are modelled as logical circuits. The main advan-
tage of the method is to ultimately rely on the great efficiency of modern DPLL-based
SAT solvers [19, 20, 32, 33]. However, this approach has a fewshortcomings. First, bit-
blasting may result in very large SAT formulas, difficult to solve for the best current
SAT solvers. This phenomenon happens especially on “arithmetic-oriented” formulas.
Second, the SAT-solving process cannot rely on any information about the word-level
structure of the problem, typically missing simplifications such as arithmetic identities.
State-of-the-art approaches complement optimised bit-blasting [6, 12, 34] with word-
level preprocessing [9, 24] and dedicated SAT-solving heuristics [40].
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Constraint Logic Programming.Constraint Logic Programming (CLP) over finite do-
mains can be seen as a natural extension of the basic DPLL procedure to the case of
finite but non boolean domains, with an interleaving of propagation and search steps [1,
18]. Intuitively, the search procedure explores exhaustively the tree of all partial valu-
ations of variables to find a solution. Before each labellingstep, a propagation mecha-
nism narrows each variable domain by removing some inconsistent values. In the fol-
lowing, constraints over bounded arithmetic are denoted byN

≤M . Given a theoryT ,
CLP(T ) denotes CLP techniques designed to deal with constraints overT .

Alternative word-level (CLP-based) approach for BV.In order to keep advantage of
the high-level structure of the problem, a BV constraint canbe encoded into aN≤M

constraint using the standard (one-to-one) encoding between bit-vectors of sizek and
unsigned integers less than or equal to2k − 1. A full encoding of BV requires non-
linear operators and case-splits [21, 39, 41]. At first sight, CLP(N≤M ) offers an in-
teresting framework for word-level solving of BV constraints, since non-linear oper-
ations and case-splits are supported. However, there are two major drawbacks leading
to poor performance. Firstly, bitwise BV operators cannot be encoded directly and re-
quire a form of bit-blasting. Secondly the encoding introduces too many case-splits and
non-linear constraints. Recent experiments show that the naive word-level approach is
largely outperformed by SAT-based approaches [37]. In the following, we denote by
N

≤M
BV bounded integer constraints coming from an encoding of BV constraints.

The problem.Our longstanding goal is to design an efficient word-level CLP-based
solver for BV constraints. In our opinion, such a solver could outperform SAT-based
approaches on arithmetic-oriented BV problems typically arising in software verifica-
tion. This paper presents a first step toward this goal. We design new efficient domains
and propagators in order to develop a true CLP(N

≤M
BV ) solver, while related works rely

on standard CLP(N≤M ) techniques [21, 39, 41]. We also deliberately restrict ourat-
tention to the conjunctive fragment of BV in order to focus only on BV propagation
issues, without having to consider the orthogonal issue of handling formulas with arbi-
trary boolean skeletons. Note that the conjunctive fragment does have practical interests
of its own, for example in symbolic execution [10, 14].

Contribution. We rely on the CLP(N≤M ) framework developed in COLIBRI, the solver
integrated in the model-based testing tool GaTeL [31].

The main results of this paper are twofold. First, we set up the basic ingredients of
a dedicated CLP(N≤M

BV ) framework, avoiding both bit-blasting and non-linear encoding
into N

≤M . The paper introduces two main features: (1)N
≤M
BV -propagators for exist-

ing domains (union of intervals with congruence [28], denoted Is/C), and (2) a new
domain bit-listBL designed to work in combination withIs/C andBL-propagators.
While Is/C comes with efficient propagators on linear arithmetic constraints,BL is
equipped with efficient propagators on “linear” bitwise constraints, i.e. bitwise opera-
tions with one constant operand. Second, these ideas have been implemented in a pro-
totype on top of COLIBRI and thorough empirical evaluationshave been performed.
Experimental results prove that dedicatedIs/C-propagators andBL allow a signifi-
cant increase of performance compared to a direct CLP(N

≤M ) approach, as well as



considerably lowering the gap with state-of-the-art SAT-based approaches. Moreover,
the CLP(N≤M

BV )-based approach scales better than the SAT-based approachwith the size
of bit-vector variables, and is superior on non-linear arithmetic problems.

Outline. The rest of the paper is structured as follows. Section 2 describes the rele-
vant background on BV and CLP, Sections 4 and 5 presents dedicated propagators and
domains, Section 6 presents experimental results and benchmarks. Section 7 discusses
related work and Section 8 provides a conclusion.

2 Background

2.1 Bit-vector Theory

Variables in BV are interpreted over bit-vectors, i.e. fixed-size arrays of bits. Given a
bit-vectora, its size is denoted bySa and its i-th bit is denoted byai, a1 being the
least significant bit ofa. A bit-vectora represents (and is represented by) a unique non-
negative integer between0 and2Sa −1 (power-two encoding) and also a unique integer
between−2Sa−1 and2Sa−1−1 (two’s complement encoding). The unsigned encoding
of a is denoted byJaKu. Common operators consist of: bitwise operators “and” (&),
“or” ( |), “xor” (xor) and “not” (∼); bit-array manipulations such as left shift (≪), un-
signed right shift (≫u), signed right shift (≫s), concatenation (::), extraction (a[i..j]),
unsigned and signed extensions (extu(a, i) and exts(a, i)); arithmetic operators (⊕,
⊖, ⊗, ⊘u, modulo%u, <u, ≤u, ≥u, >u) with additional constructs for signed arith-
metic (⊘s, %s, <s, ≤s, ≥s, >s); and a case-split operatorite(cond, term1, term2).
The exact semantics of all operators can be found in [27]. Thefollowing provides only
a brief overview. Most operators have their intuitive meaning. Signed extension and
signed shift propagate the sign-bit of the operand to the result. Arithmetic operations
are performed modulo2N , with N the size of both operands. Unsigned (resp. signed)
operations consider the unsigned (resp. signed) integer encoding.

Conjunctive fragment.This paper focuses on the conjunctive fragment of BV, i.e. no
other logical connector than∧ is allowed.

2.2 Constraint Logic Programming

Let U be a set of values. A constraint satisfaction problem (CSP) over U is a triplet
R = 〈X ,D, C〉 where the domainD ⊆ U is a finite cartesian productD = d1×. . .×dn,
X is a finite set of variablesx1, . . . , xn such that each variablexi ranges overdi and
C is a finite set of constraintsc1, . . . , cm such that each constraintci is associated with
a set of solutionsLci

⊆ U . In the following, we consider only the case of finite do-
mains, i.e.U is finite. The setLR of solutions ofR is equal toD ∩

⋂
i Lci

. A value
of xi participating in a solution ofR is called a legal value, otherwise it is said to
be spurious. In other words, the setLR(xi) of legal values ofxi in R is defined as
the i-th projection ofLR. Let us also defineLc(xi) as the i-th projection ofLc, and
Lc,D(xi) = Lc(xi) ∩ di. The CLP approach follows a search-propagate scheme. Intu-
itively, propagation narrows the CSP domains, keeping all legal values of each variable



but removing some of the spurious values. Formally, a propagator P refines a CSP
R = 〈X ,D, C〉 into another CSPR′ = 〈X ,D′, C〉 with D′ ⊆ D. Only the current
domainD is actually refined, hence we writeP (D) for D′. A propagatorP is correct
(or ensures correct propagation) ifLR(x1) × . . . × LR(xn) ⊆ P (D) ⊆ D. The use of
correct propagators ensures that no legal value is lost during propagation, which in turn
ensures that no solution is lost, i.e.LR′ = LR. Usually, propagators are defined locally
to each constraintc. Such a propagatorPc is said to be locally correct over domainD
if Lc,D(x1) × . . . × Lc,D(xn) ⊆ Pc(D) ⊆ D. Local correctness implies correctness.
A constraintc over domainD is locally arc-consistent if for alli, Lc,D(xi) = Di. This
means that from the point of view of constraintc only, there is no spurious value in any
di. A CSPR is globally arc-consistent if all its constraints are locally arc-consistent. A
propagator is said to ensure local (global) arc-consistency if the resulting CSP is locally
(globally) arc-consistent. Such propagators are considered as an interesting trade-off
between large pruning and fast propagation.

2.3 Efficient CLP over bounded arithmetic

An interesting class of finite CSPs is the class of CSPs definedover bounded integers
(N≤M ). N

≤M problems coming from verification issues have the particularity to exhibit
finite but huge domains. Specific CLP(N

≤M ) techniques have recently been developed
for such problems.

Abstract domains. Domains are not represented concretely by enumeration, they are
rather compactly encoded by a symbolic representation allowing efficient (but usu-
ally approximated) basic manipulations such as intersection and union of domains or
emptiness testing. Even though primarily designed for static analysis, abstract inter-
pretation [13] provides a convenient framework for abstract domains in CLP. An ab-
stract domaind#

x belonging to some complete lattice(A,⊓,⊔,⊑,⊥,⊤) is attached to
each variablex. This abstract domain defines a set of integers

q
d#

x

y
that must over-

approximate the set of legal values ofx, i.e.LR(x) ⊆
q
d#

x

y
. The concretisation func-

tion J·K must satisfy:a ⊑ b =⇒ JaK ⊆ JbK andJ⊥K = ∅. We suppose that there exists
a Galois connexion between the abstract and the complete domain. Given an arbitrary
set of integersd, the minimalA-abstraction ofd, denoted〈d〉, is defined as the least el-
ementd# ∈ A such thatd ⊆

q
d#

y
. Existence of such an element is ensured by Galois

connexion. Several abstract domains can be combined with (finite) cartesian product,
providing that the concretisation of the cartesian productis defined as the intersection
of concretisations of each abstract domain, and that abstract operations are performed
in component-wise fashion. IntervalsI are a standard abstract domain forN

≤M . The
congruence domainC has been recently proposed [28].

In the context of CLP over abstract domains, it is interesting to consider new kinds
of consistency. Given a certain class of abstract domainsA and a CSPR over abstract
domainsd#

1, . . . , d
#

n ∈ A, a constraintc ∈ R over domainD is locally A-arc-
consistent if for alli,

q
d#

i

y
= Lc,D(xi). Intuitively, a propagator ensuring localA-

arc-consistency ensures local arc-consistency only for domains representable inA. The
constraintc is locally abstractA-arc-consistent if for alli,

q
d#

i

y
= J〈Lc,D(xi)〉K.

Intuitively, no more local propagation can be performed forc because of the limited
expressiveness ofA.



Other features for solving large CLP(N≤M ) problems. Other techniques for solv-
ing largeN

≤M problems include global constraints to quickly detect unsatisfiability
(e.g. global difference constraint [23]) and restricted forms of rewriting rules(simpli-
fication rules)to dynamically perform syntactic simplifications of the CSP[22]. Note
that in that case, the formal framework for propagation presented so far must be modi-
fied to allow propagators to add and delete constraints.

3 Encoding BV into Non-Linear Arithmetic

This section describes how to encode BV constraints into non-linear arithmetic prob-
lems. First, each bit-vector variablea is encoded asJaKu. Then BV constraints over
bit-vectorsa, b, etc. are encoded asN≤M constraints over integer variablesJaKu, JbKu,
etc. Unsigned relational operators correspond exactly to those of integer arithmetic,
e.g.a ≤u b is equivalent toJaKu ≤ JbKu. Unsigned arithmetic operators can be en-
coded into non-linear arithmetic using the corresponding integer operator and a modulo
operation. For example,Ja ⊕ bKu = (JaKu + JbKu) mod 2N , with N = Sa = Sb. Con-
catenation ofa andb is encoded asJaKu × 2Sb + JbKu. Extraction can be viewed as a
concatenation of three variables. Unsigned extension justbecomes an equality between
(integer) variables. Unsigned left and right shifts with a constant shift argumentb are
handled respectively like multiplications and divisions by 2JbK

u . Signed operators can
be encoded into unsigned operators, using case-splits (ite) based on operand signs (re-
call thata ≥s 0 iff a <u 2Sa−1). For example, the signed extensionr = exts(a, k)
is encoded asite(JaKu < 2Sa−1, JaKu , JaKu + 2k − 2Sa). Except for the bitwise “not”
operation∼ which is efficiently encoded asJ∼ xKu = 2Sx − 1 − JxKu, encoding other
bitwise operations requires a bit-blasting like method. For each BV variablea, this en-
coding introduces a new boolean variable per bit ofa (denotedai for bit i), a N-ary
consistency constraint relating theai to JaKu:

∑N
i=1 ai × 2i−1 = JaKu and3N ternary

constraints over bits of operands and results modelling thebit operation. For example,
the “and” operator on a single bit can be encoded with a× or amin operator.

This direct encoding suffers from at least two drawbacks. First, the size of the en-
coding of bitwise constraints depends on the number of bits,adding both a linear num-
ber of new variables, a linear number of ternary constraintsand three N-ary constraints.
Second, the encoding introduces many constructs which are not well handled by current
CLP(N≤M ) solvers, such as case-splits and non-linear operations. Actually, only a very
small fragment of BV is encoded in an efficient manner for CLP(N

≤M ): concatenation,
extraction, bitwise not, unsigned shifts and unsigned relational operators. Current state-
of-the-art CLP domains and propagators forN

≤M do not perform well for problems
typically coming from BV. For example, considering the constraint a ⊕ 3 = b with
a andb on 8 bits, domainsda = [251..255] anddb = [0..255], a perfect propagation
would reducedb to d′b = [0..2] ∪ [254..255], thus a perfect interval propagation cannot
do better thand′′b = [0..255], i.e. no spurious value is removed, keeping250 spurious
values out of256 possible values. The same problem occurs with signed operations. It
is thus not surprising that common CLP(N

≤M ) solvers perform very badly onN≤M
BV

problems, as experimentally shown in [37] and confirmed in Section 6.



Our approach. Considering these different issues, we propose the following direc-
tions to design an efficient CLP(N

≤M
BV ) framework. First, it seems mandatory to rely on

unions of intervals plus congruence (Is/C) rather than single intervals (plus congru-
ence). This is an original point of view in CLP, since COLIBRI[31] is the only CLP
solver based on unions of intervals. Second, we propose the two following improve-
ments: (1) the use of originalIs/C-propagators designed for BV-constraints instead of
relying on combination of existingN≤M propagators; and (2) a new domainBL to ef-
ficiently propagate information of bitwise operations without relying on bit-blasting in
order to complementIs/C, which is well suited for linear arithmetic. This CLP(N

≤M
BV )

framework works as follows: each variablex has a numerical domainIs/C and aBL
domain, legal values forx being restricted to the intersection of the concretisations of
the two domains; each constraint has two associated finite sets of propagators: one for
Is/C and one forBL; domains can be synchronised together, i.e. specific propagators
are designed to propagate information from one domain to another.

4 DedicatedN
≤M

BV
-Propagators for Is/C Domains

This section describes dedicated propagators for a CLP(N
≤M
BV ) framework overIs/C

domains. The goal is to completely avoid bit-blasting and the introduction of additional
case-splits and non-linear constraints at the CLP level.

4.1 Propagators for union of intervals

Propagators for unsigned BV constraints are based on performing modular arithmetic
or integer arithmetic operations directly on single intervals, with forward and backward
propagation steps. These operations are extended to unionsof intervals by distribution
over all pairs of intervals. Then, local propagators are defined by interleaving these
propagation steps until a local fixpoint is reached. For example, for constraintA⊕B =
R overN bits, the forward propagation step over single interval, denoted⊕I , is defined
by (⊔ denotes union of intervals with normalisation, without anyapproximation):

[m1..M1] ⊕I [m2..M2] = [m1 + m2..M1 + M2] if M1 + M2 < 2N

[m1 + m2 − 2N ..M1 + M2 − 2N ] if m1 + m2 ≥ 2N

[m1 + m2..2
N − 1] ⊔ [0..M1 + M2 − 2N ] otherwise

This definition is extended to unions of intervals⊕Is by distribution and⊖Is is
defined similarly. Forward and backward propagation steps are defined as follows:

ρr : (d#
A, d#

B, d#
R) 7→ (d#

A, d#
B , d#

A ⊕Is d#
B)

ρa : (d#
A, d#

B, d#
R) 7→ (d#

R ⊖Is d#
B, d#

B, d#
R)

ρb : (d#
A, d#

B, d#
R) 7→ (d#

A, d#
R ⊖Is d#

A, d#
R)

The propagator for⊕ is then defined as a greatest fixpoint of all propagation steps:
νX.(ρa(X) ⊓ ρb(X) ⊓ ρr(X) ⊓ X)(X0). Existence follows from the Knaster-Tarski
theorem, effective computability comes from Kleene fixed-point theorem and domain
finiteness. It can be computed using the procedure presentedin Figure 1.

Such propagators and domains are very well-suited to⊕,⊖, unsigned comparisons,
unsigned extension and bitwise negation: they ensure localIs-arc consistency for these
constraints. For signed operations, the main idea is to perform inside each propagation



procedurepropagate-add-is(IsA, IsB, IsR)

1: (d#
A, d#

B, d#
R) := (IsA, IsB, IsR)

2: d#
R := (d#

A ⊕Is d#
B) ⊓ d#

R;
3: d#

A := (d#
R ⊖Is d#

B) ⊓ d#
A;

4: d#
B := (d#

R ⊖Is d#
A) ⊓ d#

B ;
5: if (d#

A, d#
B , d#

R) 6= (IsA, IsB, IsR) then
6: propagate-add-is(d#

A, d#
B , d#

R)
7: else return(d#

A, d#
B, d#

R)

Fig. 1: Is-propagator for constraintA ⊕ B = R

step a case-split based on sign, compute interval propagation for each case and then join
all the results. Note that all these computations are performed locally to the propagators,
such that no extra variables nor constraints are added at theCLP level. Propagation steps
for signed extension are depicted in Figure 2.

procedurePropagator forexts(A,N’) = R
A: bit-vector of sizeN , R: bit-vector of sizeN ′ > N

Propagation steps
ρr : (d#

A, d#
R) 7→ ((d#

A⊓[0..2N−1−1])⊔(d#
A⊓[2N−1 ..2N −1])+Is

(2N
′

−2N ), d#
R)

ρa : (d#
A, d#

R) 7→ (d#
A, (d#

R ⊓ [0..2N−1 − 1]) ⊔

(d#
R ⊓ [2N−1 + 2N

′

− 2N ..2N
′

− 1]) −Is
(2N

′

− 2N ))
propagator:νX.(ρa(X) ⊓ ρr(X) ⊓ X)(IsA, IsR).

Fig. 2: Is-propagator for constraintexts(A,N’) = R

Non-linear arithmetic, concatenation, extraction and shifts can be dealt with in the
same way. However only correct propagation is ensured. Propagators for&, | andxor
are tricky to implement without bit-blasting. SinceBL-propagators (see Section 5) are
very efficient for linear bitwise constraints, only coarse but cheapIs-propagators are
considered here and the exact computation is delayed until both operands are instanti-
ated. Approximated propagation for& relies on the fact thatr = a & b implies both
JrKu ≤ JaKu andJrKu ≤ JbKu. The same holds for| by replacing≥ with ≤. No approx-
imateIs-propagator forxor is defined, relying only onBL, simplification rules (see
Section 4.2) and delayed exact computation.

Property 1 Is-propagators ensure localIs-arc-consistency for⊕, ⊖, comparisons,
extensions and bitwise not. Moreover, correct propagationis ensured for non-linear BV
arithmetic operators, shifts, concatenation and extraction.

Efficiency. While unions of intervals are more precise than single intervals, they can in
principle induce efficiency issues since the number of intervals could grow up to half
of the domain sizes. Note that it is always possible to bound the number of intervals in
a domain, adding an approximation step inside the propagators. Moreover, we did not
observe any interval blow-up during our experiments (see Section 6).



4.2 Other issues

Simplification rules.These rules perform syntactic simplifications of the CSP [22]. It is
different from preprocessing in that the rules can be fired atany propagation step. Rules
can be local to a constraint (e.g. rewritingA⊗ 1 = C into A = C) or global (syntactic
equivalence of constraints, functional consistency, etc.). Moreover, simplification rules
may rewrite signed constraints into unsigned ones (when signs are known) andN≤M

BV -
constraints intoN≤M -constraints (when presence or absence of overflow is known).
The goal of this last transformation is to benefit both from the integer global difference
constraint and better congruence propagation on integer constraints.

Congruence domain.Since the newBL domain can already propagate certain forms
of congruence via the consistency propagators (see Section5), only very restricted C-
propagators are considered for BV-constraints, based on parity propagation. However,
efficient C-propagation is performed when a BV-constraint is rewritten into a standard
integer constraint via simplification. Consistency between congruence domains and in-
terval domains (i.e. all bounds of intervals respect the congruence) is enforced in a
standard way with an additional consistency propagator [28].

5 New Domain: BitList BL

This section introduces the BitList domainBL, a new abstract domain designed to
work in synergy with intervals and congruences. Indeed,Is/C models well linear in-
teger arithmetic whileBL is well-suited to linear bitwise operations (except forxor),
i.e. bitwise operations with one constant operand.

A BL is a fixed-size array of values ranging over{⊥, 0, 1, ⋆}: these values are de-
noted⋆-bit in the following. Intuitively, given aBL bl = (bl1, . . . , blN), bli = 0 forces
bit i to be equal to0, bli = 1 forces biti to be equal to1, bli = ⋆ does not impose
anything on biti andbli = ⊥ denotes an unsatisfiable constraint. The set{⊥, 0, 1, ⋆}
is equipped with a partial order⊑ defined by⊥ ⊑ 0 ⊑ ⋆ and⊥ ⊑ 1 ⊑ ⋆. This order
is extended toBL in a bitwise manner. A non-negative integerk is in accordance with
bl (of sizeN ), denotedk ⊑ bl, if its unsigned encoding onN bits, denotedJkKN

BV

satisfiesJkKN
BV ⊑ bl. The concretisation ofbl, denotedJblK, is defined as the set of all

(non-negative) integersk such thatk ⊑ bl. As such, the concretisation of aBL contain-
ing ⊥ is the empty set. Join (resp. meet) operator⊔ (resp.⊓) are defined on⋆-bits as
min and max operations over the complete lattice(⊥, 0, 1, ⋆,⊑), and are extended in a
component-wise fashion toBL.

BL-propagators. Precise and cheap propagators can be obtained for all constraints
involving only local (bitwise) reasoning, i.e. bitwise operations, unsigned shifts, con-
catenation, extraction and unsigned extension. They can besolved withN independent
fixpoint computation on⋆-bit variables.BL-propagator for constraint A& B = R is
presented in Figure 3, where∧⋆ extends naturally∧ over⋆-bits.

Signed shift and signed extension involve mostly local reasoning, however, non-
local propagation steps must be added to ensure that all⋆-bits of the result representing
the sign take the same value, and that signs of operands and results are consistent. As



procedurePropagator for A & B = R
A, B, R bit-vectors of sizeN
At the⋆-bit level (ai, bi, ri being⋆-bit values)

ρr : (ai, bi, ri) 7→ (ai, bi, ai ∧⋆ bi)
ρa : (ai, bi, ri) 7→ (ite(ri = 1, 1, ite(bi = 1, ri, ai)), bi, ri)
ρb : similar toρa

propagatorρ⋆ for ⋆-bit: νX.(ρa(X) ⊓ ρb(X) ⊓ ρr(X) ⊓ X)(X0).
propagator for the constraint: performρ⋆ in a component-wise manner

Fig. 3: BL-propagator for constraintA & B = R

BL cannot model equality constraints between unknown⋆-bit values, these propagators
ensure only local abstractBL-arc-consistency. The same idea holds for comparisons.
Propagators are simple and cheap: for A≤u B, propagate the longest consecutive se-
quence of 1s (resp. 0s) starting from the most significant⋆-bit from A to B (resp. B to
A). Again, these propagators ensure only local abstractBL-arc-consistency.

Arithmetic constraints involve many non-local reasoning and intermediate results.
Moreover backward propagation steps are difficult to define.Thus, this work focuses
only on obtaining cheap and correct propagation. Propagators for non-linear arithmetic
use a simple forward propagation step (no fixpoint) based on acircuit encoding of the
operations interpreted on⋆-bit values. Propagators for⊕ and⊖ are more precise since
they use a complete forward propagation and some limited backward propagation. The
BL-propagator for⊕ is depicted in Figure 4. An auxiliaryBL representing the carry
is introduced locally to the propagator and the approach relies on the standard circuit
encoding for⊕: N local equationsri = ai xor bi xor ci to compute the result, and
N non-local equations for carriesci+1 = (ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci). Note that
the local equations are easy to invert thanks to properties of xor. Information in the
BL is propagated from least significant bit to most significant bit (via the carry). A
maximal propagation would require also a propagation in theopposite way. However,
experiments show that this alternative is expensive without any clear positive impact.
All these operations may appear to be a form of bit-blasting,but the encoding is used
only locally to the propagator and no new variables are added.

Property 2 BL-propagators ensure localBL-arc-consistency for bitwise constraints,
unsigned shifts, unsigned extension, concatenation and restriction.BL-propagators en-
sure local abstractBL-arc-consistency for signed shift, signed extension and all com-
parisons. Finally,BL-propagators are correct for all arithmetic constraints.

Ensuring consistency betweenIs/C and BL. Specific propagators are dedicated to
enforce consistency between the numerical domainIs/C and theBL domain. Let us
consider a variablex with domainsbl, Is = ∪j [mj ..Mj ] and congruence(c, M) in-
dicating thatx ≡ c mod M . Information can be propagated fromBL to Is/C in two
ways, one for intervals and one for congruence. First, it is easy to compute an inter-
val Ib = [mb..Mb] such thatJblKu ⊆ Ib, mb ⊑ bl and Mb ⊑ bl: to computem
(resp. M ), just replace all⋆ values inbl with a 0 (resp.1). The domainIs can then
be refined toIs ⊓ Ib. Second, ifseq is the longest sequence of well-defined (i.e. 0



A, B, R: bitlist
let N be the size ofA, B andB

1: (A′, B′, R′) := (A, B, R)
2: C := ⋆ ⋆ ⋆ . . . ⋆ 0 /* bit-vector of size N+1 */
3: for i = 1 to N do
4: R′

i := (A′

i xor⋆ B′

i xor⋆ C′

i) ⊓ R′

i

5: A′

i := (R′

i xor⋆ B′

i xor⋆ C′

i) ⊓ A′

i

6: B′

i := (A′

i xor⋆ R′

i xor⋆ C′

i) ⊓ B′

i

7: C′

i := (A′

i xor⋆ B′

i xor⋆ R′

i) ⊓ C′

i

8: C′

i+1 := ((A′

i ∧⋆ B′

i) ∨⋆ (A′

i ∧⋆ C′

i) ∨⋆ (B′

i ∧⋆ C′

i)) ⊓ C′

i+1.
9: end for

10: return (A′, B′, R′)

Fig. 4: BL-propagator for constraintA ⊕ B = R

or 1) least significant⋆-bits of bl, one can infer a congruence constraint onx such that
x ≡ JseqKu mod 2size(seq). For example, ifbl = ⋆1⋆101 (on 6 bits), thenx ≡ 5 mod 8,
andx ∈ [21..61]. Information can also be propagated from intervals and congruences
to BL: if (c, M) is such thatM is equal to some2k then thek least bits ofbl can be
replaced by the encoding ofc on k bits. Moreover, letk′ be the smallest integer such
that the maximal boundIM of I satisfiesIM ≤ 2k′

. Then the most significant bits of
rank greater thank′ of bl must be replaced by0s. These consistency propagators do not
impose that all interval bounds inIs satisfy theBL constraint. This situation can be
detected and it is always possible to increment/decrement the min/max-bound values
until a value suiting bothIs/C andBL is reached. However, experiments (not reported
in this paper) suggest that it is too expensive to be worthwhile.

6 Experiments

This section presents an empirical evaluation of the techniques developed so far. These
experiments have two goals. The first goal (Goal 1) is to assess the practical benefit
of the new CLP(N≤M

BV ) framework, if any, compared to off-the-shelf CLP solvers and
straightforward non-linear encoding. To this end, a comparison is performed between
non-linear integer encoding for some well-known CLP solvers and a prototype imple-
menting our results. All tools are compared on a common set ofsearch heuristics to
evaluate the stability of the results w.r.t. the search heuristic. The second goal (Goal 2)
is to compare the current best SAT-based approaches and the best CLP-based approach
identified above. We focus on quantifying the gap between thetwo approaches, com-
paring the benefits of each approach on different classes of constraints and evaluating
scalability issues w.r.t. domain sizes (i.e. bit-width).

CLP(N≤M
BV ) implementation.COLIBRI is a CLP(N≤M ) solver integrated in the model-

based testing tool GaTeL [30, 31]. It provides abstract numerical domains (unions of
intervals, congruence), propagators and simplification rules for all common arithmetic
constraints and advanced optimisations like global difference constraint [23]. COLIBRI
is written in Eclipse [2], however it does not rely on the CLP(N

≤M ) library Eclipse/IC.



Our own prototype is written on top of COLIBRI (version v2007), adding theBL do-
main and allBL- andIs/C-propagators described in sections 4 and 5. The following
implementation choices have been made: (1) forIs domains the number of intervals
is limited to 500; (2) the consistency propagator betweenIs/C andBL is approxi-
mated: only inconsistent singleton are removed fromIs. Four different searches have
been implemented (min, rand, split, smart). The three first searches are basic dfs
with value selection based on the minimal value of the domain(min), a random value
(rand) or splitting the domain in half (split). Thesmart search is an enhancement
of min: the search selects at each step the most constrained variable for labelling ; after
one unsuccessful labelling, the variable is put inquarantine: its domain is split and it
cannot be labelled anymore until all non labelled variablesare in quarantine.

Experimental setting.All problems are conjunctive QFBV formulas (includingite op-
erators). There are two different test benches. The first one(T1) is a set of 164 problems
coming from the standard SMT benchmark repository [38] or automatically generated
by the test generation tool OSMOSE [10]. (T1) is intended to compare tool performance
on a large set of medium-sized examples. Problems involve mostly 8-bit and 32-bit
width bit-vectors and range from small puzzles of a few dozenoperators to real-life
problems with 20,000 operators and 1,700 variables. (T1) ispartitioned into a roughly
equal number of bitwise problems, linear arithmetic problems and non-linear arithmetic
problems. There are also roughly as many SAT instances as UNSAT instances. The sec-
ond test bench (T2) is a set of 87 linear and non-linear problems taken from (T1) and
automatically extended to bit-width of 64, 128, 256 and 512 (difficulty of the prob-
lem may be altered). (T2) is intended to compare scalabilityon arithmetic constraints
w.r.t. the domain size.

Competing tools are described hereafter. Our own prototypecomes in 3 versions,
depending on domains and propagators used: COL (COLIBRI version v2007 with
non-linear encoding), COL-D (COLIBRI v2007 with dedicatedIs/C-propagators) and
COL-D-BL (COL-D with BL). A new version of COLIBRI (v2009) with better sup-
port for non-linear arithmetic is also considered (COL-2009). The other CLP solvers
are the standard tools GNU Prolog [17], Eclipse/IC [2], Choco [26] and Abscon [29].
GNU Prolog and Eclipse/IC use single interval domains whileChoco and Abscon rep-
resent domains by enumeration. GNU Prolog and Eclipse/IC are used with built-in dfs-
min, dfs-random and dfs-split heuristics. Choco and Absconare used with settings of
the CLP competition [16]. Selected SAT-based solvers are STP [24] (winner of the
2006 SMT-BV competition [38]), Boolector [3] (winner 2008)and MathSat [5] (win-
ner 2009). We take the last version of each tool.

All experiments were performed on a PC Intel 2Ghz equipped with 2GBytes of
RAM. Time out is set up to 20s for (T1) and 50s for (T2).

Results.A problem with all the CLP solvers we have tried except COLIBRI is that
they may report overflow exception when domain values are toolarge: integer values
are limited to224 in GNU Prolog, between224 and232 in Choco and Abscon and253

in Eclipse/IC. In particular, GNU Prolog and ABSCON report many bugs due to over-
flows in internal computations. Moreover, Choco and Abscon are clearly not designed
for large domains and perform very poorly on our examples, confirming previous exper-
imental results [37]. Thus, we report in the following only results of Eclipse/IC. Results



are presented in Table 1 (a) (T1) and (c) (T2). A detailed comparison of COLIBRI-D-
BL-smart, STP, Boolector and MathSat can be found in Table 1 (b).

A few remarks about the results. First, Eclipse/IC performs surprisingly better than
the standard version of COLIBRI. Actually, the non-linear encoding of BV problems
prevents most of the optimisations of COLIBRI to succeed, since they target linear in-
teger arithmetic. However, COLIBRI v2009 with optimised propagators for non-linear
arithmetic performs much better than Eclipse/IC. Second, MathSat appears to be less
efficient than Boolector and STP, which is rather surprisingsince it won the 2009 SMT
competition. Recall that we consider only conjunctive problems and that our test bench
exhibits a large proportion of (non-linear) arithmetic problems.

A few remarks about our implementation. (1) We did not observe any interval blow-
up during computation, even when setting up a larger limit (2000 intervals per domain).
(2) We have implemented a full consistency propagation between domainsIs/C and
BL as described in Section 5: it appears to be less efficient thanthe restricted consis-
tency propagation described earlier in this section.

Comments.Goal 1. It is clear from Table 1 that the CLP(N
≤M
BV ) framework devel-

oped so far allows a significant improvement compared to the standard CLP(N≤M )
approach with non-linear encoding. Actually, our completeCLP(N≤M

BV ) solver with
smart search is able to solve 1.7x more examples in 2.4x less time than Eclipse/IC,
and 3x more examples in 3.5x less time than standard COLIBRI.Additional interesting
facts must be highlighted:

– Each new feature allows an additional improvement: COL-D-BL performs better
than COL-D which performs better than COL. Moreover, this improvement is ob-
served for each of the four heuristics considered here.

– Thesmart search permits an additional gain only when dedicated propagators are
used. It does not add anything to the standard version of COLIBRI.

– Every enhanced version of COLIBRI (v2007) performs better than Eclipse/IC and
COLIBRI v2009.

Goal 2. According to (T1), global performance of our prototype lies within those of
MathSat and STP in both number of successes and computation time, Boolector being
a step ahead of the other three tools. Surprisingly, our prototype performs better than
the BV-winner 2009, but worse than the BV-winner 2006. We canthen conclude that, at
least for medium-sized conjunctive problems, CLP can compete with current SAT-based
approaches. Considering results by category (Table 1 (b)),our prototype is the best on
non-linear UNSAT problems and very efficient on non-linear SAT problems (Boolector
solves one more example, but takes 1.5x more time). Finally,considering results from
T2 and Table 1 (c), CLP(N≤M

BV ) scales much better than SAT-based approaches on arith-
metic problems: the number of time outs and computation timeis almost stable between
64-bit and 512-bit. STP reports very poor scalability. Here, MathSat both performs and
scales much better than the other SAT-based tools. Note thatdue to the automatic scal-
ing of examples, many LA SAT problems are turned into LA UNSATproblems where
MathSat is much better.



Tool CategoryTime # success

Eclipse/IC-min N
≤M 1760 78/164

Eclipse/IC-rand N
≤M 2040 72/164

Eclipse/IC-split N
≤M 1750 79/164

COL-min N
≤M 2436 43/164

COL-rand N
≤M 2560 36/164

COL-split N
≤M 2550 40 /164

COL-smart N
≤M 2475 40/164

COL-2009-min N
≤M 1520 89/164

COL-2009-rand N
≤M 1513 89/164

COL-2009-split N
≤M 1682 85/164

COL-2009-smart N
≤M 1410 95/164

COL-D-min N
≤M

BV
1453 94/164

COL-D-rand N
≤M

BV
1392 96/164

COL-D-split N
≤M

BV
1593 89/164

COL-D-smart N
≤M

BV
893 125 /164

COL-D-BL-min N
≤M

BV
1174 108/164

COL-D-BL-rand N
≤M

BV
1116 111/164

COL-D-BL-split N
≤M

BV
1349 103/164

COL-D-BL-smart N
≤M

BV
712 138/164

MathSat SAT 794 128/164

STP SAT 618 144/164

Boolector SAT 291 157/164

(a) T1: Time and #successes
Time out = 20s

category COL-D-BL STP Boolect MathSat
smart

BW SAT 30 (30/30) 2 (30/30) 0 (30/30) 2 (30/30)
BW UNSAT 3 (30/30) 12 (30/30) 0 (30/30) 4 (30/30)
LA SAT 164 (28/30) 88 (30/30) 9 (30/30) 303 (15/30)
LA UNSAT 360 (7/25) 68 (25/25) 42 (23/25) 223 (16/25)
NLA SAT 148 (23/29) 357 (13/29) 220 (24/29) 221 (18/29)
NLA UNSAT 7 (20/20) 82 (16/20) 20 (20/20) 41 (19/20)
Total 712 (138/164)589 (145/164)291 (157/164)794 (128/164)

(b) T1: Time and # successes for Time out=20s
(BW: bitwise LA: linear arith. NLA: non-linear arith.)

bit-width 64 128 256 512
COL-D-BL-smart 8 TO, 443s 10 TO, 500s 10 TO, 503s 10 TO, 510s
STP 10 TO, 1093s17 TO, 2054s27 TO, 3500s35 TO, 3686s
Boolector 2 TO, 213s 6 TO, 385s 8 TO, 656s 16 TO, 1056s
MathSat 2 TO, 180s 2 TO, 308s 2 TO, 379s 2 TO, 545s

(c) T2: #TO and time, Time out = 50s
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T2: Total time w.r.t. bit-width

Table 1.Experimental results



7 Related Work

Word-level BV solving has already been investigated through translations into linear
arithmetic with disjunctions [8, 35, 42] or non-linear arithmetic [21, 39, 41]. On the one
hand, none of these works consider specific resolution techniques: they all rely on stan-
dard approaches for integer arithmetic, i.e. linear integer programming or CLP(N≤M ).
On the other hand, these encodings require bit-blasting at least for bitwise operations
which leads to large formulas. Experiments are performed only with very low bit-width
(4 or 8) and no experimental comparison with SAT-based solvers is conducted. The
work reported in [7] presents many similarities with this paper. In particular, the authors
describe a dedicated domain similar toBL and they advocate the use of dedicated prop-
agators for domainI (single interval). There are several significant differences with our
own work. First, our experiments demonstrate that more elaborated domains are nec-
essary to gain performance. Second, their dedicated domains and propagators are not
described, they do not seem to handle signed operations and it is not clear whether or
not they rely on bit-blasting for bitwise operations. Moreover, issues such as consis-
tency or efficiency are not discussed. Third, there is no empiric evaluation against other
approaches. Finally, experimental results reported in [37] confirm our own experiments
concerning SAT-based approaches and traditional CLP(N

≤M )-based approaches.

8 Conclusion

Ideas presented in this paper allow a very significant improvement of word-level CLP-
based BV solving, considerably lowering the gap with SAT-based approaches and even
competing with them on some particular aspects (non-linearBV arithmetic, scalabil-
ity w.r.t. the domain size). Considering that our implementation relies only on basic
searches, we think that this work is a significant step towardthe longstanding goal of
designing an efficient word-level CLP-based BV solver able to compete with the best
SAT-based tools. There is still room for improvement on boththe search aspect (learn-
ing, intelligent backtracking, etc.) and the propagation aspect (deeper understanding
of the trade-off for local propagators, dedicated global propagators, etc.). And there
remain many challenging issues: the best SAT-based approaches are still ahead on ar-
bitrary conjunctive QFBV formulas, and formulas with arbitrary boolean skeletons and
array operations should be investigated as well. The maturity of our framework is sum-
marised in Table 2.

Acknowledgements.We are very grateful to Bruno Marre and Benjamin Blanc for de-
signing, developing and maintaining the COLIBRI solver, aswell as for many insightful
comments and advices.



characteristics SAT-based BVCOLIBRI-D-BL

reasoning level bit word
propagation basic propagation yes yes

propagation trade-off yes no
search variable selection yes moderate

value selection yes moderate
learning yes no
intelligent backtrack yes no

supported formulasarray operations yes no
arbitrary boolean connectors yes no

Table 2.Maturity of our CLP-based framework for BV
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A Propagators for A ⊕ B = R

Simplification rules and parity propagators for A⊕ B = R are presented in Figure 5 and
Figure 6. Some of the symmetric cases for A and B are omitted.

Local rules
– A ⊕ 0 = R →֒ A=R
– A ⊕ B = A →֒ B=0
– A ⊕ B = R, R≥ A or R ≥ B →֒ A+B=R, R≥ A and R≥ B
– A ⊕ B = R, R< A or R < B →֒ A+B−2N=R, R< A and R< B

Global rules
– A ⊕ B = R, B=⊖A →֒ R=0
– A ⊕ B = R1, A⊕ B = R2 →֒ R1=R2 (functional consistency)
– A ⊕ B = R1, B⊕ A = R2 →֒ R1=R2 (functional consistency + commutativity)
– A ⊕ B1 = R, A⊕ B2 = R →֒ B1=B2

Fig. 5: Simplification rules for constraintA ⊕ B = R

. A and B same parity֒→ R is even

. A and B different parities֒→ R is odd

. A and R same parity֒→ B is even (symmetric case for B)

. A and R different parities֒→ B is odd (symmetric case for B)

Fig. 6: C-propagators for constraintA ⊕ B = R

B Operations on⋆-bits

The∧⋆ operation is defined by (q, q1, q2 denote⋆-bit values):⊥∧⋆ q = ⊥, 0∧⋆ q = 0,
1 ∧⋆ q = q, ⋆ ∧⋆ ⋆ = ⋆, q1 ∧⋆ q2 = q2 ∧⋆ q1.

C Experiments with Choco, Abscon and GNU Prolog on small
examples

This section reports experimental results obtained with the CLP solvers Abscon [29],
Choco [26] and GNU Prolog [17] on a small set of 6 examples parametrised with var-
ious bit-vector sizes. Versions considered are the CSP-COMP 2006 version of Abscon
(Abscon 109), the CSP-COMP 2008 version of Choco (Choco 2) and GNU Prolog ver-
sion 1.3.1. The first two tools are launched with the same setting as indicated on the
CSP-COMP web site. GNU Prolog is launched with a depth-first search (min value)
labelling procedure. Exprimental results are reported in Table 3. Note that when inte-
ger domains become too large, overflows or other bugs may happen. In particular, for
N=32, these three tools do not manage to answer successfullyto any of the constraints.



CLP solver N=4 N=8 N=12 N=16 N=24
CHOCO 102 (6/7)112.8 (6/7)260 (6/7) 418 (3/7) ( 0/7)
ABSCON 1.8 (7/7) 6.1 (7/7) 162 (6/7) (0/7) ( 0/7)
GNU Prolog 300 (4/7) 300 (4/7) 300 (4/7) 400 (3/7) 400 (3/7)
Eclipse/IC 0.1 (7/7) 0.04 (7/7) 0.24 (7/7) 90 (7/7) 364 (4/7)
COLIBRI-min 0 (7/7) 0.1 (7/7) 1 (7/7) 28 (7/7) 392 ( 4/7)

T (x/y): T time in seconds, x: #successful answer, y: total # problems
N: size of the bit-vector variables (in bits)
Time out: 100s

Table 3.Comparison of different CLP solver on integer encoding of BVconstraints


