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Abstract. The theory BV of bit-vectors, i.e. fixed-size arrays of bitgipped

with standard low-level machine instructions, is becomiagy popular in formal
verification. Standard solvers for this theory are based bit-kevel encoding

into propositional logic and SAT-based resolution techeiy In this paper, we
investigate an alternative approach based on a word-leeelding into bounded
arithmetic and Constraint Logic Programming (CLP) redolutechniques. We
define an original CLP framework (domains and propagatcedjodted to bit-
vector constraints. This framework is implemented in agiygte and thorough
experimental studies have been conducted. The new appi®atiown to per-
form much better than standard CLP-based approaches, awhsalerably re-
duce the gap with the best SAT-based BV solvers.

1 Introduction

The first order theory of bit-vectors allows reasoning ab@utables interpreted over
fixed-size arrays of bits equipped with standard low-levathine instructions such as
machine arithmetic, bitwise logical instructions, shiftsextraction. An overview of
this theory can be found in Chapter 6 of [27]. The bit-vectmary, and especially its
quantifier-free fragment (denoted QFBYV, or simply BV), i€bming increasingly pop-
ular in automatic verification of both hardware [4, 7, 36] @odftware [10, 11, 14, 15].
Most successful BV solvers (e.g.[3, 5, 24, 25, 40]) rely ooagting the BV formulainto
an equisatisfiable propositional logic formula, which isritsubmitted to a SAT solver.
The encoding relies ohit-blasting each bit of a bit-vector is represented as a propo-
sitional variable and BV operators are modelled as logicauids. The main advan-
tage of the method is to ultimately rely on the great efficjeotmodern DPLL-based
SAT solvers [19, 20, 32, 33]. However, this approach has asfesvtcomings. First, bit-
blasting may result in very large SAT formulas, difficult tohse for the best current
SAT solvers. This phenomenon happens especially on “aetisroriented” formulas.
Second, the SAT-solving process cannot rely on any infaonatbout the word-level
structure of the problem, typically missing simplificatsosuch as arithmetic identities.
State-of-the-art approaches complement optimised bgtinlg [6, 12, 34] with word-
level preprocessing [9, 24] and dedicated SAT-solving iséas [40].

* Work partially funded by Agence Nationale de la Rechercliar(igANR-08-SEGI-006).



Constraint Logic ProgrammingConstraint Logic Programming (CLP) over finite do-
mains can be seen as a natural extension of the basic DPLEeguoeto the case of
finite but non boolean domains, with an interleaving of pggteaon and search steps [1,
18]. Intuitively, the search procedure explores exhaaktithe tree of all partial valu-
ations of variables to find a solution. Before each labelfitep, a propagation mecha-
nism narrows each variable domain by removing some inctamgigalues. In the fol-
lowing, constraints over bounded arithmetic are denotetby. Given a theoryr’,
CLP(T") denotes CLP technigues designed to deal with constraetsio

Alternative word-level (CLP-based) approach for Bm order to keep advantage of
the high-level structure of the problem, a BV constraint banencoded into &<™
constraint using the standard (one-to-one) encoding lestweé-vectors of sizé& and
unsigned integers less than or equalto— 1. A full encoding of BV requires non-
linear operators and case-splits [21, 39, 41]. At first sigtP(N=") offers an in-
teresting framework for word-level solving of BV constrinsince non-linear oper-
ations and case-splits are supported. However, there arenyjor drawbacks leading
to poor performance. Firstly, bitwise BV operators canrethcoded directly and re-
quire a form of bit-blasting. Secondly the encoding introelsitoo many case-splits and
non-linear constraints. Recent experiments show thatahe nvord-level approach is
largely outperformed by SAT-based approaches [37]. In tlewing, we denote by
N5y bounded integer constraints coming from an encoding of B\straints.

The problem. Our longstanding goal is to design an efficient word-levePchased
solver for BV constraints. In our opinion, such a solver cooltperform SAT-based
approaches on arithmetic-oriented BV problems typicaligiag in software verifica-
tion. This paper presents a first step toward this goal. Wigdeeew efficient domains
and propagators in order to develop a true CEH.E&I) solver, while related works rely
on standard CLR{=") techniques [21, 39, 41]. We also deliberately restrict atir
tention to the conjunctive fragment of BV in order to focudyoon BV propagation
issues, without having to consider the orthogonal issuenfiting formulas with arbi-
trary boolean skeletons. Note that the conjunctive fragrdees have practical interests
of its own, for example in symbolic execution [10, 14].

Contribution. We rely on the CLP{<™) framework developed in COLIBRI, the solver
integrated in the model-based testing tool GaTeL [31].

The main results of this paper are twofold. First, we set epbtsic ingredients of
a dedicated CLR{3;1/) framework, avoiding both bit-blasting and non-linear ediog
into NSM_ The paper introduces two main features: K\@J‘,”-propagators for exist-
ing domains (union of intervals with congruence [28], dedats/C), and (2) a new
domain bit-listBL designed to work in combination withs/C and BL-propagators.
While Is/C comes with efficient propagators on linear arithmetic caists, BL is
equipped with efficient propagators on “linear” bitwise straints, i.e. bitwise opera-
tions with one constant operand. Second, these ideas hamdrbplemented in a pro-
totype on top of COLIBRI and thorough empirical evaluatidvave been performed.
Experimental results prove that dedicated C-propagators andBL allow a signifi-
cant increase of performance compared to a direct SEP{) approach, as well as



considerably lowering the gap with state-of-the-art SABdd approaches. Moreover,
the CLPN%{‘? )-based approach scales better than the SAT-based appvitathe size
of bit-vector variables, and is superior on non-linearramiétic problems.

Outline. The rest of the paper is structured as follows. Section 2riescthe rele-
vant background on BV and CLP, Sections 4 and 5 presentsatedipropagators and
domains, Section 6 presents experimental results and berkk. Section 7 discusses
related work and Section 8 provides a conclusion.

2 Background

2.1 Bit-vector Theory

Variables in BV are interpreted over bit-vectors, i.e. fbgége arrays of bits. Given a
bit-vectora, its size is denoted by, and its i-th bit is denoted by, a; being the
least significant bit ofi. A bit-vectora represents (and is represented by) a unique non-
negative integer betwe@rand2°« — 1 (power-two encoding) and also a unique integer
between-2%-~! and2~1 — 1 (two’s complement encoding). The unsigned encoding
of a is denoted by[a],. Common operators consist of: bitwise operators “ardd), (
“or” (), “xor” (zor) and “not” (~); bit-array manipulations such as left shig&gj, un-
signed right shift £,,), signed right shift &), concatenation:{), extraction ¢[..;]),
unsigned and signed extensiors:,(a,i) andexts(a,)); arithmetic operators4,

6, ®, @y, modulo%,,, <., <., >, >) With additional constructs for signed arith-
metic (s, %s, <s» <s, =5, >s); and a case-split operatate(cond, termy, terms).

The exact semantics of all operators can be found in [27] fol@wing provides only

a brief overview. Most operators have their intuitive meagniSigned extension and
signed shift propagate the sign-bit of the operand to theltre&rithmetic operations
are performed moduld”, with N the size of both operands. Unsigned (resp. signed)
operations consider the unsigned (resp. signed) integedéang.

Conjunctive fragmenfThis paper focuses on the conjunctive fragment of BV, i.e. no
other logical connector thanis allowed.

2.2 Constraint Logic Programming

Let U/ be a set of values. A constraint satisfaction problem (CS@)# is a triplet
R = (X, D,C)where the domai® C U/ is afinite cartesian produft = d; X...xd,,

X is a finite set of variables, ..., z,, such that each variable ranges ovetl; and

C is afinite set of constraints, . . ., ¢,, such that each constraintis associated with
a set of solutiond.., C U. In the following, we consider only the case of finite do-
mains, i.el{ is finite. The setLz of solutions ofR is equal toD N, L.,. A value

of x; participating in a solution ofR is called a legal value, otherwise it is said to
be spurious. In other words, the sek (z;) of legal values ofr; in R is defined as
the i-th projection ofL%. Let us also defind..(x;) as the i-th projection of., and
L. p(z;) = Lc(x;) Nd;. The CLP approach follows a search-propagate scheme. Intu-
itively, propagation narrows the CSP domains, keepinggtl values of each variable



but removing some of the spurious values. Formally, a prafag® refines a CSP
R = (X,D,C) into another CSBR’ = (X, D’,C) with D’ C D. Only the current
domainD is actually refined, hence we wrife(D) for D’. A propagatorP is correct
(or ensures correct propagationYiz (z1) X ... x Lr(z,) € P(D) C D. The use of
correct propagators ensures that no legal value is lostgpriopagation, which in turn
ensures that no solution is lost, ileg, = Lx. Usually, propagators are defined locally
to each constraint. Such a propagatd?, is said to be locally correct over domeih

if Lep(z1) X ... X Lep(zn) C P.(D) C D. Local correctness implies correctness.
A constraintc over domairD is locally arc-consistent if for all, L. p(z;) = D;. This
means that from the point of view of constraindnly, there is no spurious value in any
d;. A CSPR is globally arc-consistent if all its constraints are Idgalrc-consistent. A
propagator is said to ensure local (global) arc-consistétiee resulting CSP is locally
(globally) arc-consistent. Such propagators are consitlas an interesting trade-off
between large pruning and fast propagation.

2.3 Efficient CLP over bounded arithmetic

An interesting class of finite CSPs is the class of CSPs defimedbounded integers
(N=M), N=M problems coming from verification issues have the partitylto exhibit
finite but huge domains. Specific CLW¢*) techniques have recently been developed
for such problems.

Abstract domains. Domains are not represented concretely by enumeratioy aitee
rather compactly encoded by a symbolic representationvaitp efficient (but usu-
ally approximated) basic manipulations such as interseaid union of domains or
emptiness testing. Even though primarily designed folicsetalysis, abstract inter-
pretation [13] provides a convenient framework for abgtdmmains in CLP. An ab-
stract domaini* ., belonging to some complete latticd, 1, LI, C, L, T) is attached to
each variabler. This abstract domain defines a set of integefs. | that must over-
approximate the set of legal valuesigfi.e. L (x) C [[d#x]] . The concretisation func-
tion [-] must satisfya C b = [a] C [b] and[ L] = (). We suppose that there exists
a Galois connexion between the abstract and the completaido@iven an arbitrary
set of integerd, the minimal.4-abstraction ofl, denotedd), is defined as the least el-
ementd# € A such thatl C [d#]. Existence of such an element is ensured by Galois
connexion. Several abstract domains can be combined wititefficartesian product,
providing that the concretisation of the cartesian prodsidefined as the intersection
of concretisations of each abstract domain, and that afbsipeerations are performed
in component-wise fashion. Intervalsare a standard abstract domain fo¥. The
congruence domai@ has been recently proposed [28].

In the context of CLP over abstract domains, it is intergstinconsider new kinds
of consistency. Given a certain class of abstract domdiasd a CSPR over abstract
domainsd#,,...,d#, € A, a constraint € R over domainD is locally .A-arc-
consistent if for alli, [d#;] = L. p(z;). Intuitively, a propagator ensuring local-
arc-consistency ensures local arc-consistency only forailas representable id. The
constraintc is locally abstractd-arc-consistent if for ali, [d#;] = [(Lep(2:))].
Intuitively, no more local propagation can be performedddrecause of the limited
expressiveness of.



Other features for solving large CLP(N=™) problems. Other techniques for solv-
ing largeN=M problems include global constraints to quickly detect tig§ability
(e.g. global difference constraint [23]) and restrictethfe of rewriting ruleqsimpli-
fication rules)to dynamically perform syntactic simplifications of the CER]. Note
that in that case, the formal framework for propagation@mésd so far must be modi-
fied to allow propagators to add and delete constraints.

3 Encoding BV into Non-Linear Arithmetic

This section describes how to encode BV constraints intelimear arithmetic prob-
lems. First, each bit-vector variableis encoded aga],. Then BV constraints over
bit-vectorsa, b, etc. are encoded &~ constraints over integer variabl@s],, [b],,,
etc. Unsigned relational operators correspond exactiyhosd of integer arithmetic,
e.g.a <, bis equivalent tofa],, < [b],. Unsigned arithmetic operators can be en-
coded into non-linear arithmetic using the correspondibeger operator and a modulo
operation. For exampla & b],, = ([a],, + [b],) mod 2V, with N = S, = S,,. Con-
catenation of: andb is encoded aga], x 25 + [b],. Extraction can be viewed as a
concatenation of three variables. Unsigned extensiorbpstmes an equality between
(integer) variables. Unsigned left and right shifts withcastant shift argumertare
handled respectively like multiplications and divisions23®l.. Signed operators can
be encoded into unsigned operators, using case-sghjsb@sed on operand signs (re-
call thata >, 0 iff a <, 2% ~1). For example, the signed extension= ext,(a, k)

is encoded agte([a], < 2571, [a], . [a], + 2% — 25+). Except for the bitwise “not”
operation~ which is efficiently encoded gs- z], = 2 — 1 — [z],,, encoding other
bitwise operations requires a bit-blasting like method. éach BV variable:, this en-
coding introduces a new boolean variable per bit ¢flenoteda; for bit i), a N-ary
consistency constraint relating theto [a],,: Zi\il a; x 271 = [a] , and3N ternary
constraints over bits of operands and results modellindpiheperation. For example,
the “and” operator on a single bit can be encoded with@r amin operator.

This direct encoding suffers from at least two drawbacksstFhe size of the en-
coding of bitwise constraints depends on the number of &itding both a linear num-
ber of new variables, a linear number of ternary constraintsthree N-ary constraints.
Second, the encoding introduces many constructs whichotireall handled by current
CLP[N=M) solvers, such as case-splits and non-linear operatiantsafly, only a very
small fragment of BV is encoded in an efficient manner for QIP!): concatenation,
extraction, bitwise not, unsigned shifts and unsignedimial operators. Current state-
of-the-art CLP domains and propagators f6¥ do not perform well for problems
typically coming from BV. For example, considering the coamta ® 3 = b with
a andb on 8 bits, domainsi, = [251..255] andd, = [0..255], a perfect propagation
would reducel,, to dj, = [0..2] U [254..255], thus a perfect interval propagation cannot
do better thanl; = [0..255], i.e. no spurious value is removed, keepii§ spurious
values out 0256 possible values. The same problem occurs with signed opesatt
is thus not surprising that common CIN¥™) solvers perform very badly oNéy
problems, as experimentally shown in [37] and confirmed ictiSe 6.



Our approach. Considering these different issues, we propose the faligudirec-
tions to design an efficient CLN@% framework. First, it seems mandatory to rely on
unions of intervals plus congruencks(C) rather than single intervals (plus congru-
ence). This is an original point of view in CLP, since COLIBRL] is the only CLP
solver based on unions of intervals. Second, we proposestédailowing improve-
ments: (1) the use of origindk/C-propagators designed for BV-constraints instead of
relying on combination of existingi<™ propagators; and (2) a new dom#i to ef-
ficiently propagate information of bitwise operations witth relying on bit-blasting in
order to complementts/C, which is well suited for linear arithmetic. This CLIFPEVW)
framework works as follows: each varialtehas a numerical domaihs/C and aBL
domain, legal values far being restricted to the intersection of the concretisatioi
the two domains; each constraint has two associated firtdeo§@ropagators: one for
Is/C and one foi3L; domains can be synchronised together, i.e. specific peipeg
are designed to propagate information from one domain tthano

4 Dedicatengl“,/I-Propagators for Is/C Domains

This section describes dedicated propagators for a EE@’O framework overls/C
domains. The goal is to completely avoid bit-blasting areditiroduction of additional
case-splits and non-linear constraints at the CLP level.

4.1 Propagators for union of intervals

Propagators for unsigned BV constraints are based on perfgrmodular arithmetic
or integer arithmetic operations directly on single ingsywith forward and backward
propagation steps. These operations are extended to wfiomervals by distribution
over all pairs of intervals. Then, local propagators arengefiby interleaving these
propagation steps until a local fixpoint is reached. For edanfor constraind B =
R overN bits, the forward propagation step over single intervahaded®,, is defined
by (LU denotes union of intervals with normalisation, without approximation):

[ml..Ml] Pbr [mg..Mz] = [m1 +mo.. M7 + Mg] if M1+ My < 2N

[m1 +m2—2N..M1+M2—2N] If ma —‘r’ITLQZQN
[m1 +ma..2Y — 1] U [0..M1 + M2 — 27] otherwise

This definition is extended to unions of intervalg, by distribution ando;, is
defined similarly. Forward and backward propagation stepslefined as follows:

pr o (A a,d¥ g, d# R) — (d¥ o, d¥ g, d" A 1, d¥ )

pa : (d# A, d* g, d*R) — (d# g O, d¥ p,d¥ g, d" R)

Py (d#A,d#B,d#R) — (d#A,d#R Ors d#A,d#R)
The propagator fo is then defined as a greatest fixpoint of all propagation steps
vX.(pa(X) M pp(X) M pr(X) N X)(Xo). Existence follows from the Knaster-Tarski
theorem, effective computability comes from Kleene fixeiptheorem and domain
finiteness. It can be computed using the procedure presienitégure 1.

Such propagators and domains are very well-suite®, to, unsigned comparisons,
unsigned extension and bitwise negation: they ensure Igeafc consistency for these
constraints. For signed operations, the main idea is tmparinside each propagation



procedure propagate-add-i$6 .4, Isg, [sr)

(d*4,d%p,d"*r) = (Isa,Isp,IsR)

d* g == (d% 4 ®1s d¥ 5) N d¥ R;

d# 4 := (d* g ©r1s d¥ ) N d¥ 4;

d#p := (d¥*r O1s d* 4) N d¥ 5;

if (d#A,d#B,d#R) # (Isa,Ism,Isr) then
propagate-add-igt” 4, d* 5, d* r)

else retur{d” 4, d* g, d* gr)

Fig. 1: Is-propagator for constrailt & B = R

step a case-split based on sign, compute interval promadfati each case and then join
all the results. Note that all these computations are peddrocally to the propagators,
such that no extra variables nor constraints are added @ltRdevel. Propagation steps
for signed extension are depicted in Figure 2.

procedure Propagator foext s(A, N ) = R
A: bit-vector of sizeN, R: bit-vector of sizeN' > N
Propagation steps
pr: (d# A, d# R) — ((dF aM[0.2Y "1 —1))L(d# 4n[2V 12N 1))+, (2N —2V), d# )
pa i (d*a,d¥ ) — (¥4, (d*r1[0.2Y7 1)) U
(dFrm[2N"1 42N 9N oN' gy, (2N —2N))
propagatorv X.(pa(X) M pr(X) N X)(Isa, Isr).

Fig. 2: Is-propagator for constraimxt s(A, N ) = R

Non-linear arithmetic, concatenation, extraction andtsitian be dealt with in the
same way. However only correct propagation is ensured.dgatprs fol, | andzor
are tricky to implement without bit-blasting. Sing-propagators (see Section 5) are
very efficient for linear bitwise constraints, only coarsg bheapl s-propagators are
considered here and the exact computation is delayed wikildperands are instanti-
ated. Approximated propagation f&r relies on the fact that = a & b implies both
[r], < la], and[r], < [b],. The same holds fdrby replacing> with <. No approx-
imate I s-propagator forzor is defined, relying only o8.L, simplification rules (see
Section 4.2) and delayed exact computation.

Property 1 Is-propagators ensure locals-arc-consistency forp, ©, comparisons,
extensions and bitwise not. Moreover, correct propagais@nsured for non-linear BV
arithmetic operators, shifts, concatenation and exti@acti

Efficiency. While unions of intervals are more precise than single wast they can in
principle induce efficiency issues since the number of ratisrcould grow up to half
of the domain sizes. Note that it is always possible to bohechumber of intervals in
a domain, adding an approximation step inside the propagditoreover, we did not
observe any interval blow-up during our experiments (sexi&@e6).



4.2 Otherissues

Simplification rulesThese rules perform syntactic simplifications of the CSR.[R2%s
different from preprocessing in that the rules can be firethgtpropagation step. Rules
can be local to a constraint (e.g. rewritidgr 1 = C' into A = C) or global (syntactic
equivalence of constraints, functional consistency) ettoreover, simplification rules
may rewrite signed constraints into unsigned ones (whamssage known) and{%]“f-
constraints intdN<¥ -constraints (when presence or absence of overflow is known)
The goal of this last transformation is to benefit both fromititeger global difference
constraint and better congruence propagation on integestints.

Congruence domairince the new3 £ domain can already propagate certain forms
of congruence via the consistency propagators (see Sesjtiamly very restricted C-
propagators are considered for BV-constraints, based oty paopagation. However,
efficient C-propagation is performed when a BV-constraewritten into a standard
integer constraint via simplification. Consistency betweengruence domains and in-
terval domains (i.e. all bounds of intervals respect thegcoence) is enforced in a
standard way with an additional consistency propagatdr [28

5 New Domain: BitList BL

This section introduces the BitList domaf\C, a new abstract domain designed to
work in synergy with intervals and congruences. Indded(" models well linear in-
teger arithmetic whiléBL is well-suited to linear bitwise operations (except f@r),
i.e. bitwise operations with one constant operand.

A BL is a fixed-size array of values ranging oer, 0, 1, x}: these values are de-
notedx-bit in the following. Intuitively, given a5L bl = (bl4,...,blx), bl; = 0 forces
bit i to be equal td), bl; = 1 forces biti to be equal tal, bl; = * does not impose
anything on biti andbl; = L denotes an unsatisfiable constraint. The{set0, 1, x}
is equipped with a partial ordér defined byl C 0 C xand L = 1 C *. This order
is extended tdB L in a bitwise manner. A non-negative intedeis in accordance with
bl (of size N), denotedk C bl, if its unsigned encoding oWV bits, denoteoﬂkﬂgv
satisfiesﬂk]]gv C bl. The concretisation dfl, denotedbl], is defined as the set of all
(non-negative) integerssuch thak C bl. As such, the concretisation of# contain-
ing L is the empty set. Join (resp. meet) operatqresp.rn) are defined or-bits as
min and max operations over the complete lattite0, 1, x,C), and are extended in a
component-wise fashion 8L.

BL-propagators. Precise and cheap propagators can be obtained for all aonstr
involving only local (bitwise) reasoning, i.e. bitwise apdons, unsigned shifts, con-
catenation, extraction and unsigned extension. They caolbed withN independent
fixpoint computation onx-bit variables.3£-propagator for constraint & B = R is
presented in Figure 3, where. extends naturally overx-bits.

Signed shift and signed extension involve mostly local eeasy, however, non-
local propagation steps must be added to ensure thedx$ of the result representing
the sign take the same value, and that signs of operands sultsrare consistent. As



procedure Propagator for A & B = R
A, B, R bit-vectors of sizeV
At the x-bit level (a;, b;, r; beingx-bit values)
pr - (ai, bi, Ti) — (ai, bi, a; Ny bl)
Pa - (CLZ', bi,n’) — (ite(ri =1, 1,7;t6(b¢ =1,7, ai)), b, T’i)
pb 2 Similar top,
propagatop, for x-bit: vX.(pa(X) M pp(X) M p-(X) N X)(Xo).
propagator for the constraint: perfopm in a component-wise manner

Fig. 3: BL-propagator for constraift & B = R

BL cannot model equality constraints between unknevhbit values, these propagators
ensure only local abstra¢tl-arc-consistency. The same idea holds for comparisons.
Propagators are simple and cheap: foKA B, propagate the longest consecutive se-
quence of 1s (resp. 0s) starting from the most signifigdnit from A to B (resp. B to
A). Again, these propagators ensure only local absiBazarc-consistency.

Arithmetic constraints involve many non-local reasonimgl éntermediate results.
Moreover backward propagation steps are difficult to deflimis, this work focuses
only on obtaining cheap and correct propagation. Propag&donon-linear arithmetic
use a simple forward propagation step (no fixpoint) based @rcait encoding of the
operations interpreted orbit values. Propagators fay andS are more precise since
they use a complete forward propagation and some limitekMza propagation. The
BL-propagator forb is depicted in Figure 4. An auxiliari L representing the carry
is introduced locally to the propagator and the approadbgen the standard circuit
encoding for®: N local equations; = a; xor b; xor ¢; to compute the result, and
N non-local equations for carries;; = (a; A b;) V (a; A¢;) V (b A ¢;). Note that
the local equations are easy to invert thanks to properfie®a Information in the
BL is propagated from least significant bit to most significaiht(dda the carry). A
maximal propagation would require also a propagation inofhgosite way. However,
experiments show that this alternative is expensive witlamy clear positive impact.
All these operations may appear to be a form of bit-blasting the encoding is used
only locally to the propagator and no new variables are added

Property 2 BL-propagators ensure locds L-arc-consistency for bitwise constraints,
unsigned shifts, unsigned extension, concatenation astdaton. 3L-propagators en-
sure local abstracB3 £-arc-consistency for signed shift, signed extension ahdaah-
parisons. Finally,5£-propagators are correct for all arithmetic constraints.

Ensuring consistency betweerds/C and BL. Specific propagators are dedicated to
enforce consistency between the numerical donfajfC’ and theBL domain. Let us
consider a variable with domainsbl, I, = U,[m;..M;] and congruencéc, M) in-
dicating thatz = ¢ mod M. Information can be propagated froi to Is/C' in two
ways, one for intervals and one for congruence. First, iaisyeo compute an inter-
val I, = [my..M] such that[bl], € I,, my T bl and M, T bl: to computemn
(resp. M), just replace alk values inbl with a 0 (resp.1). The domain/; can then
be refined tol, M I,. Second, ifseq is the longest sequence of well-defined (i.e. 0



A, B, R: bitlist

let NV be the size ofd, B andB

1. (A',B',R) := (A,B,R)

2: C = xx*x...x0 /* bit-vector of size N+1 */
3: fori=1to N do
4: R, := (A, zor, B, xor, C}) M R;
5. A, := (R} xor. B; zor, Ci)N A
6 )
7
8
9

B; (A} zor, R} zor, n B,
C} = (A} xory B, zor. R})NC;
Clir = ((AL s Bl) Vs (Al Ax C) Vi (BLAL C) A Clyn.
. end for
10: return @/, B', R')

Fig. 4: BL-propagator for constrailf & B = R

or 1) least significant-bits of b/, one can infer a congruence constraint:osuch that

x = [seq], mod 2°7*¢(¢1)  For example, ibl = x1x101 (on 6 bits), them: = 5mod 8,
andz € [21..61]. Information can also be propagated from intervals and n@mres

to BL: if (c, M) is such thatM is equal to some* then thek least bits ofbl can be
replaced by the encoding ofon k bits. Moreover, le’ be the smallest integer such
that the maximal bound,, of I satisfiesl; < 2*. Then the most significant bits of
rank greater thak’ of bl must be replaced bys. These consistency propagators do not
impose that all interval bounds ifs satisfy theBL constraint. This situation can be
detected and it is always possible to increment/decrenhentrin/max-bound values
until a value suiting bottis/C andB L is reached. However, experiments (not reported
in this paper) suggest that it is too expensive to be wortlawvhi

6 Experiments

This section presents an empirical evaluation of the tephes developed so far. These
experiments have two goals. The first goal (Goal 1) is to astfes practical benefit
of the new CLPE51/) framework, if any, compared to off-the-shelf CLP solvensia
straightforward non-linear encoding. To this end, a consparis performed between
non-linear integer encoding for some well-known CLP sddveand a prototype imple-
menting our results. All tools are compared on a common seeafch heuristics to
evaluate the stability of the results w.r.t. the searchisgar The second goal (Goal 2)
is to compare the current best SAT-based approaches andsh€bP-based approach
identified above. We focus on quantifying the gap betweertwleeapproaches, com-
paring the benefits of each approach on different classesrsti@ints and evaluating
scalability issues w.r.t. domain sizes (i.e. bit-width).

CLP(N31/) implementation. COLIBRI is a CLPN=") solver integrated in the model-
based testing tool GaTeL [30, 31]. It provides abstract mizabdomains (unions of
intervals, congruence), propagators and simplificatidesréor all common arithmetic
constraints and advanced optimisations like global déffiee constraint [23]. COLIBRI
is written in Eclipse [2], however it does not rely on the CNP{/) library Eclipse/IC.



Our own prototype is written on top of COLIBRI (version v2Q0&@dding the3.L do-
main and all5£- andIs/C-propagators described in sections 4 and 5. The following
implementation choices have been made: (1)/fodomains the number of intervals
is limited to 500; (2) the consistency propagator betwéefC' and BL is approxi-
mated: only inconsistent singleton are removed fitbimFour different searches have
beenimplementedq n,r and, split,snmart). The three first searches are basic dfs
with value selection based on the minimal value of the dorfrdim), a random value

(r and) or splitting the domain in halfgpl i t ). Thesmar t search is an enhancement
of m n: the search selects at each step the most constrainedleddatabelling ; after
one unsuccessful labelling, the variable is pugirarantine its domain is split and it
cannot be labelled anymore until all non labelled variabkesin quarantine.

Experimental setting. All problems are conjunctive QFBV formulas (includiiig op-
erators). There are two different test benches. The firs{Dheis a set of 164 problems
coming from the standard SMT benchmark repository [38] doraatically generated
by the test generation tool OSMOSE [10]. (T1) is intendedtmpare tool performance
on a large set of medium-sized examples. Problems involv&lyn8-bit and 32-bit
width bit-vectors and range from small puzzles of a few doaperators to real-life
problems with 20,000 operators and 1,700 variables. (Taaittioned into a roughly
equal number of bitwise problems, linear arithmetic protdeind non-linear arithmetic
problems. There are also roughly as many SAT instances a®\UMStances. The sec-
ond test bench (T2) is a set of 87 linear and non-linear problaken from (T1) and
automatically extended to bit-width of 64, 128, 256 and 5di¥i¢ulty of the prob-
lem may be altered). (T2) is intended to compare scalahilityarithmetic constraints
w.r.t. the domain size.

Competing tools are described hereafter. Our own prototypees in 3 versions,
depending on domains and propagators used: COL (COLIBRdiarerv2007 with
non-linear encoding), COL-D (COLIBRI v2007 with dedicated C-propagators) and
COL-D-BL (COL-D with BL). A new version of COLIBRI (v2009) with better sup-
port for non-linear arithmetic is also considered (COL-200rhe other CLP solvers
are the standard tools GNU Prolog [17], Eclipse/IC [2], Gh{#6] and Abscon [29].
GNU Prolog and Eclipse/IC use single interval domains wBieco and Abscon rep-
resent domains by enumeration. GNU Prolog and EclipseAQsed with built-in dfs-
min, dfs-random and dfs-split heuristics. Choco and Absmenused with settings of
the CLP competition [16]. Selected SAT-based solvers aré 8] (winner of the
2006 SMT-BV competition [38]), Boolector [3] (winner 2008nhd MathSat [5] (win-
ner 2009). We take the last version of each tool.

All experiments were performed on a PC Intel 2Ghz equippeatl @GBytes of
RAM. Time out is set up to 20s for (T1) and 50s for (T2).

Results. A problem with all the CLP solvers we have tried except COLIBRthat

they may report overflow exception when domain values ardaie: integer values
are limited to224 in GNU Prolog, betweef?* and232 in Choco and Abscon ar@b?

in Eclipse/IC. In particular, GNU Prolog and ABSCON repormy bugs due to over-
flows in internal computations. Moreover, Choco and Absaencéearly not designed
for large domains and perform very poorly on our examplesfiooing previous exper-
imental results [37]. Thus, we report in the following ondsults of Eclipse/IC. Results



are presented in Table 1 (a) (T1) and (c) (T2). A detailed camispn of COLIBRI-D-
BL-smart, STP, Boolector and MathSat can be found in Tablg.1 (

A few remarks about the resulfsirst, Eclipse/IC performs surprisingly better than
the standard version of COLIBRI. Actually, the non-lineaceding of BV problems
prevents most of the optimisations of COLIBRI to succeetgesithey target linear in-
teger arithmetic. However, COLIBRI v2009 with optimise@dpagators for non-linear
arithmetic performs much better than Eclipse/IC. Secondthat appears to be less
efficient than Boolector and STP, which is rather surprisimge it won the 2009 SMT
competition. Recall that we consider only conjunctive peafs and that our test bench
exhibits a large proportion of (non-linear) arithmetic Ipiems.

A few remarks about our implementatigh) We did not observe any interval blow-
up during computation, even when setting up a larger linfilo@intervals per domain).
(2) We have implemented a full consistency propagation eetwdomainds/C and
BL as described in Section 5: it appears to be less efficientttrearestricted consis-
tency propagation described earlier in this section.

Comments.Goal 1 It is clear from Table 1 that the CLR{;) framework devel-
oped so far allows a significant improvement compared to thedsard CLP=)

approach with non-linear encoding. Actually, our compl@leP(Ng‘IY) solver with
smart search is able to solve 1.7x more examples in 2.4x less tiare Helipse/IC,
and 3x more examples in 3.5x less time than standard COLIB®RIitional interesting

facts must be highlighted:

— Each new feature allows an additional improvement: COL{DpRrforms better
than COL-D which performs better than COL. Moreover, thipiovement is ob-
served for each of the four heuristics considered here.

— Thesmart search permits an additional gain only when dedicated patpas are
used. It does not add anything to the standard version of BRLI

— Every enhanced version of COLIBRI (v2007) performs bettentEclipse/IC and
COLIBRI v2009.

Goal 2 According to (T1), global performance of our prototypes eithin those of
MathSat and STP in both number of successes and computatienBoolector being
a step ahead of the other three tools. Surprisingly, ouoprpe performs better than
the BV-winner 2009, but worse than the BV-winner 2006. Wettem conclude that, at
least for medium-sized conjunctive problems, CLP can cdaewih current SAT-based
approaches. Considering results by category (Table 1d¢bj)prototype is the best on
non-linear UNSAT problems and very efficient on non-lineaT problems (Boolector
solves one more example, but takes 1.5x more time). Fira@dlysidering results from
T2 and Table 1 (c), CLR{5,/) scales much better than SAT-based approaches on arith-
metic problems: the number of time outs and computation israémost stable between
64-bit and 512-bit. STP reports very poor scalability. H&athSat both performs and
scales much better than the other SAT-based tools. Noteltigatio the automatic scal-
ing of examples, many LA SAT problems are turned into LA UNS#®dblems where
MathSat is much better.



1 Zam )

TO

Tool CategoryTime[# success
Eclipse/IC-min | NSM |1760| 78/164
Eclipse/IC-rand | NS |2040 72/164
Eclipse/IC-split | NS™ |1750| 79/164
COL-min NSM (2436 43/164
COL-rand N=M 12560 36/164
COL-split NSM |2550 40 /164
COL-smart N<M (2475 40/164
COL-2009-min | NSM 1520 89/164
=37 category COL-D-BL STP Boolect MathSat
COL-2009-rand | N=M |1513 89/164 smart
COL-2009-split | N=M 1682 85/164 BW SAT 30 (30/30) | 2(30/30) 0 (30/30) 2 (30/30)
— BW UNSAT | 3(30/30) | 12(30/30) | 0(30/30) | 4 (30/30)
COL-2009-smart N="" 11410 95/164| | A SAT 164 (28/30) | 88(30/30) | 9 (30/30) | 303 (15/30)
- =37 LAUNSAT | 360 (7/25) | 68(25/25) | 42 (23/25) | 223 (16/25)
COL-D-min Npy [1453 94/164| |\ A'SAT | 148 (23/29) | 357 (13/29)| 220 (24/29) | 221 (18/29)
COL-D-rand N%(\f 1392 96/164 NLA UNSAT| 7 (20/20) 82 (16/20) | 20(20/20) | 41(19/20)
, Total 712 (138/164)589 (145/164)291 (157/164)794 (1287164
COL-D-split NsM |1593 89/164 ( ¢ ( (
<M . .
coLD-smart | N5y |893]125/164 (b) T1: Time and # successes for Time out=20s
COL-D-BL-min NEI&I 1174 108/164 (BW: bitwise LA: linear arith. NLA: non-linear arith.)
COL-D-BL-rand | N5 [1116] 111/164
. <M
COL-D-BL-split | N34/ |1349 103/164
COL-D-BL-smar{ N5 |712|138/164
bit-width 64 128 256 512
MathSat SAT | 794 128/164) COL-D-BL-smar| 8 TO, 443s| 10 TO, 500§ 10 TO, 5035 10 TO, 5103
STP SAT | 618/ 144/164| |[STP 10 TO, 1093$17 TO, 205427 TO, 3500835 TO, 3686
Boolector 2710, 213s| 6TO, 3855| 810, 6565|16 TO, 1056
Boolector SAT | 291 157/164| IMathSat 270, 180s| 210, 308s| 2TO, 379s| 270, 5455
(a) T1: Time and #successes (c) T2: #TO and time, Time out = 50s
Time out = 20s
& - — - Boolector o ° — — Boolector /_/o
— STP S | — stP o
-=- COLIBRI-D-BL B -=- COLIBRI-D-BL
o - MathSAT - MathSAT
& 1 g g 5
N / N
S o X X = el X g8 ]° _--o
x __.-mo P
o T I NomimmmZ - Q
° 87T ©
o’ o o o o o~
T T T T T T T T T T
100 200 300 400 500 100 200 300 400 500
number of bits number of bits
T2: #TO w.r.t. bit-width T2: Total time w.r.t. bit-width
Table 1. Experimental results




7 Related Work

Word-level BV solving has already been investigated thiotrgnslations into linear
arithmetic with disjunctions [8, 35, 42] or non-linear aritetic [21, 39, 41]. On the one
hand, none of these works consider specific resolution tqaba: they all rely on stan-
dard approaches for integer arithmetic, i.e. linear int@gegramming or CLR{<™).
On the other hand, these encodings require bit-blastingaat for bitwise operations
which leads to large formulas. Experiments are performéghwith very low bit-width

(4 or 8) and no experimental comparison with SAT-based sslieconducted. The
work reported in [7] presents many similarities with thippa In particular, the authors
describe a dedicated domain similarig and they advocate the use of dedicated prop-
agators for domait (single interval). There are several significant diffeeswith our
own work. First, our experiments demonstrate that morece&tbd domains are nec-
essary to gain performance. Second, their dedicated demaaith propagators are not
described, they do not seem to handle signed operationg anddt clear whether or
not they rely on bit-blasting for bitwise operations. Moveg issues such as consis-
tency or efficiency are not discussed. Third, there is no mgvaluation against other
approaches. Finally, experimental results reported ihd8firm our own experiments
concerning SAT-based approaches and traditional SEP{)-based approaches.

8 Conclusion

Ideas presented in this paper allow a very significant imgmoent of word-level CLP-
based BV solving, considerably lowering the gap with SASdshapproaches and even
competing with them on some particular aspects (non-liBd&arithmetic, scalabil-
ity w.r.t. the domain size). Considering that our implenagioin relies only on basic
searches, we think that this work is a significant step towlaedongstanding goal of
designing an efficient word-level CLP-based BV solver abledmpete with the best
SAT-based tools. There is still room for improvement on lbthsearch aspect (learn-
ing, intelligent backtracking, etc.) and the propagatispext (deeper understanding
of the trade-off for local propagators, dedicated globapagators, etc.). And there
remain many challenging issues: the best SAT-based apmeace still ahead on ar-
bitrary conjunctive QFBYV formulas, and formulas with araity boolean skeletons and
array operations should be investigated as well. The mgtfrour framework is sum-
marised in Table 2.

AcknowledgementsWe are very grateful to Bruno Marre and Benjamin Blanc for de-
signing, developing and maintaining the COLIBRI solvermadi as for many insightful
comments and advices.



characteristics SAT-based BYCOLIBRI-D-BL
reasoning level bit word
propagation basic propagation yes yes
propagation trade-off yes no
search variable selection yes moderate
value selection yes moderate
learning yes no
intelligent backtrack yes no
supported formulasrray operations yes no
arbitrary boolean connectgrs  yes no

Table 2. Maturity of our CLP-based framework for BV
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A PropagatorsforA @ B=R

Simplification rules and parity propagators fodAB = R are presented in Figure 5 and
Figure 6. Some of the symmetric cases for A and B are omitted.

Local rules
- A®P0=R— A=R
-APB=A<—=B=0
- A®B=R,R>AorR>B«— A+B=R,R>Aand R>B
- A®B=R,R<AorR<B— A+B—2"=R,R<Aand R< B
Global rules
- A®B=R,B=5A — R=0
- A®B=R1,A®B=R2— R1=R2 (functional consistency)
- A®B=R1, B A=R2— R1=R2 (functional consistency + commutativity)
- A®Bl=R,A®B2=R— B1=B2

Fig. 5: Simplification rules for constrait & B = R

. A and B same parity— R is even

. A and B different parities— R is odd

. A and R same parity— B is even (symmetric case for B)

. Aand R different parities— B is odd (symmetric case for B)

Fig. 6: C-propagators for constraist & B = R

B Operations onx-bits

The A, operation is defined by;(q1, g2 denotex-bit values): L A, g = 1,0A, ¢ =0,
IAcqg=q* Nk =%q1 N @2 = q2 N\ q1

C Experiments with Choco, Abscon and GNU Prolog on small
examples

This section reports experimental results obtained wighG@hP solvers Abscon [29],
Choco [26] and GNU Prolog [17] on a small set of 6 examplesmpatdsed with var-
ious bit-vector sizes. Versions considered are the CSP-EQB806 version of Abscon
(Abscon 109), the CSP-COMP 2008 version of Choco (Choco@)aMU Prolog ver-
sion 1.3.1. The first two tools are launched with the saménge#ts indicated on the
CSP-COMP web site. GNU Prolog is launched with a depth-faatch (min value)
labelling procedure. Exprimental results are reportedabld 3. Note that when inte-
ger domains become too large, overflows or other bugs mayemapp particular, for
N=32, these three tools do not manage to answer successfalhy of the constraints.



CLPsolver | N=4 N=8 | N=12 | N=16 | N=24
CHOCO  |102 (6/7)112.8 (6/7)260 (6/7)[418 (3/7)] _(0/7)
ABSCON  |1.8(7/7)| 6.1 (7/7) |162 (6/7) _(0/7) | _(0/7)
GNU Prolog |300 (4/7}] 300 (4/7)|300 (4/7)[400 (3/7) 400 (3/7)
Eclipse/IC  |0.1 (7/7) 0.04 (7/7)[0.24 (7/7) 90 (7/7)| 364 (4/7)
COLIBRI-min| 0(7/7) | 0.1 (7/7) | 1(7/7) | 28 (7/7)|392 (417

T (x/y): T time in seconds, x: #successful answer, y: totategbfems
N: size of the bit-vector variables (in bits)
Time out: 100s

Table 3. Comparison of different CLP solver on integer encoding of @Wstraints



