
Binary-Level Testing of Embedded Programs

Sébastien Bardin∗, Philippe Baufreton†, Nicolas Cornuet‡,
Philippe Herrmann∗ and Sébastien Labbé‡

∗ CEA, LIST, Saclay, France
Email: first.name@cea.fr

† Sagem - SAFRAN Electronics, Massy, France
Email: philippe.baufreton@sagem.com

‡ EDF Research & Development, Chatou, France
Email: first.name@edf.fr

Abstract—Dynamic Symbolic Execution (DSE) is a powerful
approach to automatic test data generation. It has been heavily
used in recent years for finding bugs in desktop programs. In this
article, we discuss the use of binary-level DSE for testing safety-
critical embedded systems. More especially, we present several
innovative features implemented in our DSE toolOSMOSE, and
we show through four case-studies how these features can be used
in practical situations.

Keywords—Automatic testing, symbolic execution, binary-level
analysis

I. I NTRODUCTION

Dynamic Symbolic Execution (DSE) is a powerful ap-
proach to automatic test data generation [3], [13], [14], [16],
[24], [26]. It has been heavily used in recent years for
automatically finding bugs in desktop programs [13], [14],
[17]. While many DSE tools work on the source code of
the program under test, a few other ones work on a binary-
level description [3], [17], [18] (i.e. the executable file). This
approach shows a number of advantages, making it possible
for example to analyse mobile codes or programs incorporating
commercial off-the-shelf components [3], [9], [18].

Fig. 1. Binary-level program analysis

In this article, we discuss the use of binary-level DSE
for testing safety-critical embedded systems. Testing safety-

Work partially funded by ANR project BINCOA, grant ANR-08-SEGI-006.

critical embedded systems is significantly different from testing
desktop applications. For example, while embedded programs
are simpler in many ways (smaller size, no dynamic memory
allocation), the testing process aims at full coverage and
validation experts can pass a long time trying to achieve it
or justifying for every uncovered branch. There are several
ways in which companies working in safety-critical domains
could benefit from automated binary-level testing.

• Even in the industry of safety-critical systems a com-
pany may not have access to the program source code
of a piece of software it has acquired, typically when
the company is not a major customer for the vendor.
Then these executables have to be certified without
any programming language description.

• A similar problem is the one of legacy code. Refac-
toring a certified code involves going through the
certification process again. Yet, in some safety crit-
ical industries, product life-cycles span over several
decades: the source code may no longer be available,
or the programming language may not be supported
anymore. In both cases, binary-level analysis is the
only option left.

• In aeronautics, the DO-178B standard [22] imposes
that verification must be performed on the binary level
as soon as the conformity between the high level
code and the machine code cannot be ensured. Since
manual binary-level analysis is very expensive, con-
structors prefer to avoid any technology which would
blur the conformity, including optimising compilers
which would increase performances and lower costs.

In the past years, we developed and used our own binary-
level DSE tool OSMOSE [3], [5] in a number of case-studies
from aeronautics (in collaboration with SAGEM, French aero-
nautic equipment manufacturer) and energy (in collaboration
with EdF, French energy supplier). In this article, we describe
several features that we found of practical interest for the
success of these case-studies. Our contribution include:

• the description of original and practically-relevant
features for DSE tools, including a generic search API,
search directives for reducing the exploration space
and test suite replay & completion;

• an experience report on four real-life case-studies,
describing the use of OSMOSE in different situations:

unit-level testing of a medium-size program, system-
level testing of a small but complex program, under-
standing and testing a third-party program and finally
a comparison of binary-level testing strategies with
several source-level testing strategies.

Outline. The rest of the paper is organised as follows. First, we
describe DSE (Section II), we give a succinct characterisation
of the class of programs we target (Section III) and we present
the OSMOSE tool (Section IV). Then we describe the new
features that we propose for DSE (Section V) and the case-
studies we have performed (Section VI). Finally we discuss
related work (Section VII) and conclude (Section VIII).

II. BACKGROUND

A. Notation

Given a programP over a vector of input variablesV
taking values in some domainD, a test datat for P is any valu-
ation ofV , i.e.t ∈ D. The execution ofP overt, denotedP (t),
is formalised as a path (or run)σ , (loc1, S1) . . . (locn, Sn),
where theloci denote control-locations (or control-points, or
simply locations) ofP and the Si denote the successive
internal states ofP (≈ valuation of all global and local
variables as well as memory-allocated structures) before the
execution of eachloci. A test datat reaches a specific location
loc with internal stateS, denotedt ❀P (loc, S), if P (t) is of
the form σ1 · (loc, S) · σ2. We also writet ❀P σ to denote
that test datat covers (or follows) the pathσ. A test suiteTS
is a finite set of test data.

B. DSE in brief

We remind here a few basic facts about Symbolic Execu-
tion (SE) [19] and Dynamic Symbolic Execution (DSE) [16],
[24], [26]. Let us consider a program under testP with a vector
of input variablesV over domainD and a pathσ of P . The key
insight of SE is that it is possible in many cases to compute
a path predicateφσ for σ such that for any input valuation
t ∈ D, we have:t satisfiesφσ iff P (t) coversσ. In practice,
path predicates are often under-approximated and only the left-
to-right implication holds, which is already fine for test data
generation: SE outputs a set of pairs(ti, σi) such that each
ti is ensured to cover the correspondingσi. Therefore, SE is
soundfrom a testing point of view.

A simplified view of SE is depicted in Algorithm 1. While
high level, it is sufficient to understand the rest of the paper.
We assume that the set of paths ofP , denotedPaths(P),
is finite. In practice, this assumption is enforced through a
bound on path lengths. SE relies on the availability of both
a procedure for path predicate computation (with predicates
in some theoryT) and a solver taking a formulaφ ∈ T and
returning eithersat with a solutiont or unsat. The algorithm
builds iteratively a test suiteTS by exploring all paths from
Paths(P).

The major complexity issue in Algorithm 1 is that SE must
in some ways explore allPaths(P). Therefore, the size of
Paths(P) is one of the two major bottlenecks of SE, the other
one being the average cost of solving path predicates.

Algorithm 1 : Symbolic Execution algorithm

Input : a programP with finite set of pathsPaths(P)
Output : TS, a set of pairs(t, σ) such thatP (t) ❀P σ
TS := ∅;1

Spaths := Paths(P);2

while Spaths 6= ∅ do3

chooseσ ∈ Spaths; Spaths := Spaths\{σ} ;4

compute path predicateφσ for σ ;5

switch solve(φσ) do6

casesat(t): TS := TS ∪ {(t, σ)}7

caseunsat: skip8

end9

end10

return TS;11

DSE [16], [24], [26] enhances SE by interleaving concrete
and symbolic executions. The dynamically collected informa-
tion can help the symbolic step, for example by suggesting
relevant approximations. State-of-the-art SE/DSE tools lazily
explore the set of paths, maintaining a set of explored path
prefixes and discovering new path prefixes through flipping a
single branching instruction along an already explored path.
Such a detailed view of SE can be found in Section V-A.
Another standard improvement over Algorithm 1 is to add a
coverage-based stop criterion (instructions or branches). The
algorithm maintains a setG of uncovered branches (resp. in-
structions), it stops whenG is empty (modifyline 3), and
G is updated when a new test data is generated (modifyline
7).

III. A FEW WORDS ABOUT SAFETY-CRITICAL PROGRAMS

We are interested in safety-critical control-command pro-
grams typically found in aeronautics and energy. We recall here
briefly a few characteristics commonly found in these systems.

From a high-level point of view, these programs are reac-
tive, i.e. they are composed of a main (non-terminating) loop
performing data acquisition, internal computation and actuator
activation. They often begin with a long (and mostly sequen-
tial) initialisation phase. They also often contain self-tests,
i.e. software-level mechanisms for hardware-fault detection.
These idioms are of the form A := 0, assert(A==0): anassert
violation here will typically denote a malfunction in memory.
Self-tests add to the programs many artificial and (normally)
infeasible paths. Finally, these programs are self-contained:
there are no dynamic library and the (simple) operating system
is included in the code.

From a low-level point of view, there is no dynamic mem-
ory allocation. Memory is allocated statically during initialisa-
tion. Programs can contain strings, but they do not perform any
advance string manipulation. Floating-point numbers (floats)
and floating-point arithmetic are commonly found. Finally,
interrupts, multithreading and time-based synchronisations can
be found as well (but no dynamic thread creation). We do not
claim supporting such features automatically. The OSMOSE
tool is designed to help the certification expert. It eases
analysis and testing on sequential portions of the code, but
non-sequential aspects of the program must still be dealt with

by experts. This view is in adequacy with the methodologies
observed at EdF and SAGEM.

IV. T HE OSMOSETOOL

A. Overview

OSMOSE is a binary-level DSE tool [3], [5]. It takes as
input an executable file, an entry address, a description of the
initial memory state and a coverage criterion (plus optional
DSE parameters). The main output of the tool is a set of test
data with their expected trace executions. Other output include
a coverage measure (if relevant) and a description of the
program under test (control-flow graph, call graph, statistics,
etc.). Tests are correct by construction (they should follow
their expected paths), while coverage measure and program
information may be incomplete (the analysis may miss part of
the program because of dynamic jumps [5], see Section V-F).
Currently supported testing criteria include path, instruction
and branch coverage. Moreover, for the last two criteria,
we distinguish between unit-level coverage and system-level
coverage. A user view of OSMOSE is provided in Figure 2.

e x e c u t a b l e
f i l e

t e s t s u i t e

b u g s ,
t h r e a t s

h i g h - l e v e l
m o d e l

i n p u t o u t p u tt o o l

R e f i n e m e n t

o t h e r o p t i o n s

s c e n a r i i ,
o b j e c t i v e s

O s m o s e

R e f i n e m e n t

G U I e n v i r o n m e n t

Fig. 2. User view of OSMOSE

OSMOSEdoes not address the oracle issue: we assume the
availability of an external oracle, to which the generated test
suite is passed. Yet, the tool can detect a few classes of run-
time errors (typically division by 0) as well as emit warnings
when an execution path contradicts user-given information
(for example, the specification of dynamic targets, see Section
V) or programming idioms recognised as good practice (for
example, a violation ofreturn-call policy).

Since we target reactive systems, we allow for the specifi-
cation of volatile memory zones, i.e. part of the memory that
can be non-deterministically modified (within a user-specified
range). Therefore, a test data consists not only of the inputof
the program, but also of a sequences of values read for each
volatile memory zone.

B. Intermediate language

OSMOSE is an architecture-independent tool: each instruc-
tion of the executable file under test is first translated into
a small intermediate language (called DBA [6]) well-suited
to formal analysis, then fed to the DSE core engine. This
approach shows significant advantages:

• supporting a new architecture requires only to write
a new front-end (we already support PowerPC 32,

Motorola 6800 and Intel C509; x86 is in progress),
then simulation and symbolic reasoning come for free;

• we can run OSMOSEon an architecture different from
the one of the program under test.

Both aspects are crucial when testing embedded systems, since
many different architectures are used, sometimes with verylow
computational power.

DBA works over a finite set of variables ranging over fixed-
width bit-vectors and a finite set of (disjoint) fixed-size arrays
of bytes (bit-vectors of size 8). Some of the instructions are
labelled with addresses ranging overN. There are only four
basic instructions:

• lhs := rhs, goto addr

• goto addr

• ite(cond)? goto addr : goto addr’

• goto expr

Expressions and conditions are built upon a small set of
standard fixed-width bit-vector operators, including (signed /
unsigned) arithmetic operators, (signed / unsigned) arithmetic
relational operators, logical bitwise operators, size extensions,
shifts, concatenation and restriction. Contrary to real proces-
sor instructions, these operators are side-effect free. Every
expression evaluates to a bit-vector of statically known size.
This is not a restriction considering current Instruction Set
Architectures (ISA). Conditions are expressions evaluating to a
bit-vector of size 1. Expressions and operators are summarised
hereafter:

• 0x0010<16>, VAR<size>

• @(expr, k) // memory access

• expr{i .. j} // restriction

• expr :: expr // concatenation

• extu,s(expr,n) // extension

• expr {<u,s,≤u,s,=, 6=,≥u,s, >u,s} expr

• expr {+,−,×, /u,s,%u,s} expr

• expr {∧,∨,⊕} expr, !expr

• expr {<<,>>u,s} expr

Most architectures and ISAs can be modelled accurately
using the following rules. Each register in the processor is
modelled by a variable in the DBA, additional variables (“lo-
cal” variables) may be introduced to encode ISA instructions
needing intermediate results, e.g. for side-effects such as flag
updating. A single array is usually sufficient for memory.
Additional arrays may allow for example to distinguish an I/O
bus from a memory bus. Figure 3 presents a few examples of
ISA instruction modelling through DBA. We suppose that each
ISA instruction is encoded on four bytes. The ISA instruction
is on the left column, and the corresponding DBA is on the
right. ISA instructions are supposed to be located at address
Ox5003 in the executable file. For the second example (an
addition instruction), we suppose that the instruction updates
a carry flagFc (the carry-flag is set to 0 iff theunsigned
addition is correct).

Fig. 3. DBA encoding of a few typical instructions

C. Advanced concerns

Constraint solving. OSMOSE performs bit-level reasoning
through constraints expressed in the theory of bitvectors plus
arrays [7]. Memory is modelled as an array of bytes, which
is sufficient since safety-critical programs do not perform
dynamic memory allocation. Strings are also viewed as arrays
of bytes. Again, this is sufficient since the programs we
consider do not rely heavily on string manipulations.

Floats are more problematic because they are commonly
found in safety-critical systems. Some of the case-studies
presented in the rest of the paper do contain floats, but they
do not involve tricky reasoning over floating-point arithmetic
(FPA) and perform only comparisons, load and store. So we
encode them as simple bitvector operations. In case more
complex floating-point operations are found, our solver can
be naturally connected to FPA solvers based on constraint-
programming [2], [20]. Yet, it must be clear that FPA solvingis
still a challenge in automated reasoning and software analysis.

Constraint-level optimisations include heavy preprocessing
(constant and equality propagation, “dead-code” elimination,
splitting a formula into independent subformulas), reuse of
existing solutions and incremental solving. Such techniques
are now quite common in DSE.

Path exploration. The path search heuristics is a standard
depth-first search (DFS). Search-level optimisations include
the LookAhead pruning [4], which consists in removing a path
prefix when it cannot lead to yet uncovered items (branches or
instructions). This technique involves performing globalstatic
reasoning within DSE, and we found it to be very effective for
reducing the search space and quickly guide the exploration
toward uncovered branches or instructions.

V. NEW FEATURES FOR PRACTICAL USE

We describe in this section several new features of OS-
MOSE which we found very useful for testing embedded
programs.

A. A generic search engine

Designing a good search heuristics is a major concern
in DSE. Search heuristics do not matter for path coverage,
however they can make a huge difference for instruction (or

branch) coverage, even more in the case of unit-level coverage.
As an illustration, Figure 4 shows the instructions coveredby
DSE after 4 tests have been generated, in the case of (a) DFS
search and (b) BFS search. Here BFS search achieves almost
50% more coverage than DFS search.

(a) DFS (b) BFS

Fig. 4. Coverage achieved by DSE for 4 tests

Yet, while DFS is considered as having a poor “coverage
speed”, BFS is not a panacea because it tends to get stuck into
loops. Many heuristics have been proposed in the literature,
such as Best First [14], Hybrid DFS [21] or Generational
search [17]. Unfortunately, it appears that relying on a single
heuristics is often not sufficient and that different programs
require different heuristics in order to achieve very high
coverage.

We design a generic search engine allowing to quickly im-
plement search heuristics. We describe the API, then we show
how to emulate existing heuristics (both standard and state-of-
the-art) and finally we describe the heuristics implementedin
OSMOSE.

The search API.We first need to define theactive prefixesof
a path [17]. Let us consider a pathπ and a branch (C,b) of the
program under test covered byπ, whereC is a condition and
b is a truth value. We denote by� the prefix relation between
paths. A pathπ′ is an active prefix ofπ if π′ , π′′ · (C,¬b)
andπ′′ · (C, b) � π. Intuitively, π′ is obtained fromπ through
modifying a single decision along the path.

We assume the availability of two following functions
init_val and update. Function init_val : ε 7→
data creates an initial input data (an arbitrary fixed value,
or a non deterministic value). Functionupdate : data
× set<path> 7→ set<path> launches the program on
data and updates the set of active path prefixes, removing
(resp. adding) those path prefixes covered (resp. defined) by
the new execution. Our generic search engine requires the
following input:

• an abstract data typeVAL representing the score of a
prefix,

• function score : path 7→ VAL for evaluating a
prefix,

• functioncompare : VAL × VAL 7→ {<,=, >}.

We then easily deduce functionget_best :
set<path> 7→ path. The generic DSE algorithm is
presented in Algorithm 2.

Emulating existing heuristics. We considerVAL values de-
fined by tuples formed over the following basic path infor-
mation: prefix length, call-depth of the last instruction ofthe
prefix, an integer random seed chosen at prefix creation, the
generation of the prefix and the estimated gain of covering the

Algorithm 2 : DSE algorithm with generic search engine

Input : a programP with finite set of pathsPaths(P)
Output : TS, a set of pairs(t, σ) such thatP (t) ❀P σ
TS := ∅;1

Spaths := update(init_val(), ∅) ;2

while Spaths 6= ∅ do3

σ := get_best(Spaths);4

Spaths := Spaths\{σ} ;5

compute path predicateφσ for σ ;6

switch solve(φσ) do7

casesat(t):8

TS := TS ∪ {(t, σ)} ;9

Spaths := update(t, Spaths) ;10

caseunsat: skip11

end12

end13

return TS;14

last branch of the prefix. The last two kinds of information
require a few explanations. The initial path has generation0,
and a new prefix gets the generation of its “father” plus 1.
The gain estimates roughly how many uncovered items could
be accessed through covering the prefix. It can be defined
in different flavours, depending on the nature of the gain
(optimistic, pessimistic, average) and of the quality of the
estimation (typically, bounded analysis versus global static
analysis), yet a higher gain is assumed to be better than a
smaller one. Finally, the step of the DSE algorithm is the
number of loop iterations of the main algorithm.

We use two notations for orders overVAL: Rknd denotes
the orderR applied to theknd element of the tupleVAL, and
◦ denotes the lexicographic order composition. For example,
the order defined bymindepth ◦ maxlength must be read as
follows: it implies thatVAL values encompasses at least a
depth element and alength element, and(d, l) ≤ (d′, l′) iff
d < d′ or d = d′ ∧ l ≥ l′.

We list several existing heuristics and a possible order for
emulating them into our framework:

• DFS: ordermaxlength

• BFS: orderminlength

• random prefix: orderminseed

• hybrid-dfs [21]: we consider a static interleaving of
k steps of DFS followed byk steps of random
path. We use the following order: if(step%2k) <
k thenminseed elsemaxlength, where% is the in-
teger remainder operand.

• best-first [14]: we consider a static interleaving of
k steps of DFS followed by one step of “maximal
gain”. The order is the following: if(step%k) <
k − 1 thenminseed elsemaxgain.

• generational [17]: the order ismaxgen ◦maxgain.

Implemented heuristics. OSMOSE implements three basic
heuristics (random path, DFS, BFS) and two (original) ad-
vanced heuristics: MinCall-DFS and MinCall-BFS. The last

two ones are defined in the following way: the score is a
pair (length, depth), and the order is defined bymindepth ◦
maxlength for MinCall-DFS, and bymindepth◦minlength for
MinCall-BFS. These two heuristics give priorities to prefixes
of low call-depth. They appear to be very effective in a unit
testing framework where we are interested only in covering
the function under test. Actually, it turns out that MinCall-
DFS combined with the Look-Ahead pruning technique is a
very robust choice for unit testing.

Interestingly, we do keep in OSMOSE two other testing
algorithms with dedicated search heuristics: (1) a random
test data generation algorithm, which can be hardly emulated
through our generic API, and (2) a standard DFS-based DSE
algorithm, allowing efficient memory consumption compared
with its emulation through the generic API.

B. Search directives

Even cleverly-tuned search heuristics are not always suffi-
cient to achieve full coverage, and user assistance is required
in order to guide the DSE tool. We design and implement a set
of search directivesallowing to provide guidance to the core
DSE engine through reducing the search space. The former
version of OSMOSE offers only a directive limiting the path
length (maxLength) and a directive defining the entry point
of the test generation process (entry). We present a list of
the new directives hereafter.

• unsat_br (addr,bool): the branch going from
instruction at addressaddr with condition evaluating
to bool is considered unsatisfiable. The symbolic
part of DSE will not try to fire this branch and
a warning is reported if a concrete execution does,
pointing out a specification issue. This directive is very
useful when testing programs with many infeasible
branches, typically embedded programs with software-
level protections against hardware defects. It may
also serve as a basic communication mechanism for
combining DSE with global static analysis [10], the
latter being used to detect infeasible branches.

• exit addr: a path reaching addressaddr is
stopped. This directive is especially useful for incre-
mental DSE (see other new features).

• repeat addr [addr-reset] N: the search is
restricted to paths going at mostN times through
addressaddr. Considering reactive systems, the di-
rective allows to limit the unfolding of the top-level
loop. The optionaladdr-reset argument allows to
reset the “loop count” each time the path goes through
addressaddr-reset. The goal is typically to limit
inner-loop unfolding, through specifying the loop exit
address for reset point.

• maxTryBranch (addr,bool) N: the whole
DSE process will be limited to try covering branch
(addr,bool) at mostN times. Once the limit is
reached, active path prefixes covering the branch
are discarded. The key difference withrepeat is
that the limitation does not concern a single path,
hence the two directives are complementary. It can
be useful in an incremental DSE setting in order to

detect likely-unsatisfiable branches (then check their
status, and possibly add anunsat directive).

Finally, the user is also given the possibility to restrict
possible values of any variable or memory location (lhs) to
values in a given interval or list, through arestrictDomain
lhs dom [addr] directive. The restriction can be global or
local to a given address. This option is commonly found in
DSE tools.

C. Goal-oriented testing

DSE is fundamentally a blind forward approach, well-
suited for covering large sets of items such as paths, branches
or instructions. The former version of OSMOSEproposed only
these three coverage objectives. Yet, it is often useful to
support more goal-oriented objectives, typically covering one
specific instruction. We add support for this kind of objective,
specifying a set of branches or instructions as objective sets.
It integrates smoothly within our existing coverage-basedDSE
framework: instead of precomputing the set of all targets
(branches or instruction, unit mode or not), we simply let the
user specify it. While DSE is clearly not the most appropriate
choice here (a backward approach would seem better [12]),
combining DSE with LookAhead pruning provides decent
results for goal-oriented testing.

D. Test suite replay and completion

We implement the possibility of storing generated test
suites and then replaying them in OSMOSE. In replay mode, the
tool checks consistency between the intended execution trace
and the observed execution trace. Moreover, the DSE algorithm
can now be started from an existing test suite. The tests are all
run and corresponding active prefixes are generated. Then the
DSE loop is launched. These two simple feature show several
significant practical advantages:

• Validation: the test suite can be replayed in a
trusted simulation environment, comparing observed
execution traces and coverage information to the infor-
mation output by OSMOSE. It proves useful for both
external validation purposes and internal debugging
concerns.

• Test suite completion: it provides the ability to com-
plete existing test suite, regarding how the tests have
been obtained (manual testing, random testing, etc.).
Especially, it allows to integrate smoothly binary-level
testing within an existing testing process.

• Complex search heuristics: test replay is a very con-
venient way for chaining different search heuristics,
through launching DSE with one heuristics, saving the
tests and completing them with another heuristics.

E. Output of concrete or symbolic states

Many reactive systems present a long initialisation / self-
testing phase. It makes path space exploration expensive, since
the behaviours of the core functionalities are mixed up with
this first step. Moreover, one can note that initialisation is often
deterministic with only a very few number of (very long) paths.

To cope with this issue, we add the possibility to output
a summary of all the paths starting from an entry address
and reaching a given target address. Together with the already
available features for specifying an entry address and an initial
memory state, the user can try to analyse the program under
test in a compositional manner.

Memory state description includes constant values, range
constraints as well as equalities between some registers or
memory locations. This is a very restricted specification mech-
anism, so it cannot model properly the output of any piece of
code. Hence the technique must be used with care:

• loss of completeness: if some paths to be summarised
have been discarded (typically, a too small path length
limit) then the resulting memory state will not be
complete and subsequent DSE can miss feasible paths;

• loss of correctness: if the intended summary falls out
of our memory state formalism, then subsequent DSE
will be run on an over-approximated memory state and
correctness may be compromised. One can still replay
the tests in OSMOSE on the whole program to check
for inconsistencies in the test suite.

Yet, while this feature cannot be used in any setting,
it proves very valuable for some simple cases of modular
reasoning, especially the initialisation or self-testingphases.

F. Specification of dynamic targets

Dynamic jumps are instructions of the formgoto R
where the value ofR may vary at runtime. They pose a serious
issue in binary-level program analysis since they prevent an
easy syntactic recovery of the control-flow graph [8]. DSE is
much less sensitive to this issue [5] since one needs only to
recover a subset of feasible jump targets. Yet, in presence of
dynamic jumps the recovered CFG is only partial, posing two
problems: (1) the coverage measure cannot be trusted (which
is problematic for critical systems), and (2) the precisionof
LookAhead pruning is affected (any dynamic jump must be
considered to point anywhere), reducing the ability to prune
irrelevant paths.

We add the possibility for the user to specify sets of
dynamic targets. The specification is of the form:jump@addr
leads to: addr1 addr2 ... , meaning that the in-
struction at addressaddr is a dynamic jump which can lead
only to addresses contained inaddr1; addr2, etc. (over-
approximation). The benefits are the following:

• LookAhead performs better,

• the coverage can be trusted if all possible targets have
been specified.

The important point here is that the specification must be
an over-approximation. Additional (infeasible) targets will be
discarded by symbolic reasoning: they can slowdown the reso-
lution process, but they cannot affect the correctness guarantee
of DSE. However, missing targets will hide legitimate partsof
the program to the DSE procedure, leading to overly optimistic
coverage measure and incomplete testing (within the limited
search space).

Since specifying dynamic targets can be error-prone, OS-
MOSE performs several consistency checks. We report a warn-
ing whenever the instruction at addressaddr is not a dynamic
jump or the dynamic jump at addressaddr does lead to
an address outside the specified set. In the second case,
we systematically check this possibility for each prefix path
through a constraint of the formφ∧ e 6∈ {addr1, . . . , addrn},
wheree is the jump expression (R in the example given above)
andφ is a path predicate.

Dynamic target specifications can be obtained either man-
ually or through dedicated static analysis tools. In aeronautics
for example, validation engineers using the widespread aiT
tool [15] for wcet computation already have to provide such
sets of targets. It is a much easier task if the executable
code comes from a home-compiled source code. In that case
most targets can be retrieved automatically with help from the
compiler. When the source code and the compilation chain are
not available, it becomes a much more challenging problem.
Recent binary-level static analysis techniques try to address it.
We implement such a connexion between our own CFGBuilder
prototype [8] and OSMOSE: CFGBuilder is first used for
computing upper-sets of targets, then these sets are used as
input for OSMOSE (cf. Figure 5).

Fig. 5. Binary-level analysis

VI. CASE-STUDIES

A. Unit-level testing of medium-size application

The first case-study is the automatic binary-level testing of
a critical embedded program from aeronautics (from SAGEM).
The program is part of the control-system of an aircraft engine.
It is designed in SCADE, and a C program is automatically
generated. The underlying architecture is a PowerPC 32-bit.
The program under test is medium size: it is divided into 250
procedures for about 30,000 machine instructions. Maximal
call-depth is 10.

The goal was to use OSMOSE in an automatic manner in
order to assess its unit-level coverage abilities. We perform
two sets of experiments: we run unit-level test generation over
40 procedures with small call-depths (between 0 and 4), and
we also run it on a few procedures with higher call-depths
(between 6 and 10). We measure the achieved coverage, and
we also compare it to the coverage achieved through random
testing (built on top of OSMOSE simulator, run with a budget

TABLE I. U NIT-LEVEL TESTING OF AN AERONAUTIC APPLICATION

name #I #Br OSMOSE OSMOSE random random
cover time cover time

(sec.†) (sec.†)
[#tests‡]

plane0 237 36 100% 10 40% 20
[19]

plane1 290 140 98% 60 64% 100
[43]

plane2 201 72 100% 10 35% 20
[37]

plane3 977 190 50% 60 96% 60
[3]

plane4 2347 500 87% 600 68% 600
[15]

plane5 (*) 121 2 100% 1 100% 10
4103 509 [2]

plane6 (*) 250 18 94% 100 83% 120
425 34 [9]

plane7 (*) 506 20 80% 20 75% 500
15640 2790 [4]

plane8 (*) 957 14 14% 10 50% 500
30969 4952 [3]

plane9 (*) 627 74 77% 600 63% 600
31793 5034 [12]

†: Time is given in seconds, rounded to the nearest ten.

‡: only tests providing incremental branch / instruction coverage are output to
the user

(*): first line give #I and #Br for the function under test (FUT) only, second
line give #I and #Br for the FUT and all its callees

of 20x more tests than those required by OSMOSE). The DSE
search heuristics is DFS, and LookAhead pruning is activated.
Procedures under test are randomly chosen.

Part of the data is available in Table I. We report the
following results.

• Very good coverage results have been achieved for
procedures with low call-depth (even for some pro-
cedures with up to 2,000 instructions). Actually, full
coverage was achieved for 31 procedures out of 40,
good coverage (75% − 95%) for 4 procedures, and
unsatisfactory coverage (< 50%) for the remaining 5
procedures.

• Results are much mitigated for procedures with high
call-depth, the path explosion problem becoming a
serious issue. OSMOSE still achieves good coverages
on some procedures, but results are less robust.

• OSMOSE performs better than random testing for the
vast majority of the procedures, in terms of both time
and coverage, while on each procedure random testing
generates 20x more test data.

B. Full testing of a small application

The second case-study is another aircraft program from
SAGEM. Yet, the context of analysis is significantly different:
the program is rather small (17 procedures, 2,600 instructions
and 113 branches), but the goal is to perform full testing (i.e.,
cover every branch starting from the top-level entry point)
and the program is recognised by testing teams to be hard
to analyse.

The program was a challenge for OSMOSE, and we had to
use many of the new features described in this paper to achieve
high coverage, namely: advanced search heuristics (Call-BFS,
Call-DFS) and several search directives (unsat_br and
repeat). We list here the main difficulties.

• First of all, many branches are simply hard to cover,
in the sense that only very few paths exercise them.
Random testing or a direct use of OSMOSEwith DFS
stuck to 50% branch coverage. Going further requires
careful guidance. Indeed, many paths turns out to be
infeasible (we count 2x more infeasible paths than
feasible ones).

• Second, covering all branches require to explore a
huge path space. There are two difficulties here: (1)
one loop requires to be unrolled at least 380 times,
leading to long paths; and (2) a volatile memory zone
(time register) is read within a simple loop (“read-
loop”), leading to many artificial paths.

We proceed the following way, taking advantage of the new
features described in Section V.

• Search directives have been used to reduce the search
space, through restricting the main loop (we put a limit
of 400) with therepeat directive, and restricting
each read-loop on volatile memory to a single read
each time the loop is entered (thereset option is
required here). Hence we can still search for long
paths (required by the program) without a major
blowup of the number of paths.

• We use a combination of Call-BFS and Call-DFS in
order to achieve most of the coverage by exercising
top-level branches in priority. Then we use DFS (with
LookAhead) for the last remaining branches.

We achieved the following results: 15 procedures out of
17 have been fully covered, the two remaining leaf procedures
being covered at only 50% (for branches). The two uncovered
procedures are library functions, and some of their branches
have been shown to be uncoverable within the context of the
program under test. Yet, we did not investigate every uncovered
branch.

C. Software comprehension and testing

The third case study is an embedded program used in
power plant, provided to EdF (major French energy provider)
by a third-party vendor. We do not work directly on the
original program, but on a representative version specifically
created by the vendor for the case-study. The goal is both to
understand better the program behaviour and structure, andto
automatically test it.

The program is written in assembly language for the
Motorola 6800 architecture. It counts about 3,000 instructions
divided into an initialisation module, 10 computation modules
(forming the main loop of the program) and 10 library func-
tions. Again, while rather small, the code is difficult to analyse:
many branches are unsatisfiable (self-test), the initialisation
step is long and complex, and each main loop cycle adds
about 1,000 branches. Moreover, the documentation provided
by the vendor is very sparse, making it difficult to identify

all information needed for OSMOSE initial state specification
(volatile memory zones).

We first use OSMOSE for recovering missing information
about infeasible branches. We test each library function /
module in isolation within the most generic input context. We
manage to detect 65 uncovered branches. Manual inspection
proves that all of them are indeed infeasible. In the rest of
the analysis, we use the new keywordunsat for preventing
OSMOSE to try covering these branches. Inspecting the in-
feasible paths also allows us to detect likely-volatile memory
zones and a few important constant values not referenced in
the available documentation. Asking the third-party vendor, it
turns out that our intuition is correct, and that we have obtained
all the information required to define a correct initial memory
state.

We then try to generate a test suite starting from the entry
point of the program. We limit the number of cycles of the top-
level loop to 1. With this parameter, OSMOSE needs 35 min
to generate 6 tests achieving 70% coverage of branches. When
unsat directives are added, computation time drops to 25 min
for the same result. This result contradicts the documentation
statement that “all branches (except consistency checks) should
be feasible within the first cycle”.

We also try a modular approach: the initialisation module
is analysed alone, and we record the memory state obtained at
the end of the module. We save it and launch the analysis on
the other 10 modules, starting from the saved memory state.
Results are remarkable: a similar test suite is generated, yet
computation time drops to only 2 min. Finally, test generation
over more cycles (2 and 3) appears to be much more expensive
and leads to the same coverage.

As a conclusion, on this example OSMOSE proves to
be a powerful tool for recovering meaningful facts about
the program under test (infeasible branches, entries, etc.).
Moreover, it helps to pinpoint problems in the documentation
(acknowledge by the vendor). The modular approach to DSE
allowed by the new features of OSMOSE seems promising,
especially for programs with complex initialisation phase.

D. Automatic testing and test suite completion

The first goal of the case-study is to evaluate the binary-
level coverage achieved by several source-level testing methods
and compared them with those achieved by OSMOSE. Then,
when OSMOSE performs better, we want to check the feasi-
bility of completing the source-level test suite by OSMOSE.

We consider function blocks defined inScicos, a graph-
ical dynamical system modeller and simulator [23]. Program-
ming based on function blocks is a widespread approach in the
development of automation and control systems. We consider
4 basic blocks commonly found in control applications: signal
saturation, integration, product and selector. The block for
integral is depicted in Figure 6. Blocks are written in C then
compiled into PowerPC 32. Once compiled, the blocks have
between 200 and 580 instructions, and between 10 and 86
branches.

We consider the following coverage criteria: instruction (I),
branch (B) and MCDC. We adds or b to distinguish between
source-level and binary-level. We compare test suites generated

vo id i n t e u l e r (s c i c o s b l o c k ∗block , i n t f l a g){
i n t i ;
i n t ∗∗ work= Ge tP t rW orkP t rs (b loc k) ;
i n t ∗ u1= G e t I n P o r t P t r s (block , 1) ;
i n t ∗ y1= G e t O u t P o r t P t r s (block , 1) ;
i n t ∗ r p a r = Ge tR pa rP t r s (b loc k) ;
i n t d t = r p a r [0] ;
i n t ∗rw ;

/∗ c o n d i t i o n a l s t a t e m e n t i n s e r t e d to p r e v e n t from
s e gme n ta t i on f a u l t s∗ /

i f (u1 != NULL && y1 != NULL && Get InPor tRows (block
, 1) <= 5){

i f (f l a g == 1){
rw=∗ work ;
f o r (i =0 ; i<Get InPor tRows (block , 1) ; i ++){

y1 [i]= d t ∗ u1 [i]+ rw [i] ;
rw [i]= y1 [i] ;

}
}
i f (f l a g == 4){

i f ((∗ work= s c i c o s m a l l o c (s i z e o f(i n t)∗
(1+ Get InPor tRows (block , 1)) , b l oc k)) == NULL){

s e t b l o c k e r r o r (−16) ;
re turn ;

}
rw=∗ work ;
f o r (i =0 ; i<Get InPor tRows (block , 1) ; ++ i){

rw [i]= r p a r [1] ;
}

}
i f (f l a g == 5){

s c i c o s f r e e (∗ work) ;
}

}
}

Fig. 6. Integral processing

by OSMOSE to the following generation strategies: (manual)
functional testing through partition testing and boundarytest-
ing, (manual) test suites achieving source-level instruction /
branch / MCDC coverage, and test suites generated by CREST
[11], a source-level DSE tool.

We record results in tables such as those depicted in Ta-
ble II. We can observe that OSMOSEprovides better coverage
than other testing strategies, whatever criterion is considered.
Notably, OSMOSEprovides better binary-level branch coverage
than (manual) functional testing, (manual) source-level MCDC
coverage and source-level DSE. Moreover, experiments show
that OSMOSE is indeed able to complete existing test suites.
For example, Table II shows the coverage achieved by OS-
MOSE when completing CREST test suite. This is interesting
from a testing methodology point of view: binary-level testing
does not have to be performed from scratch, instead it can
be smoothly integrated within standard testing processes and
takes advantages of existing test suites in order to focus test
generation only on uncovered parts of the program under test.

From these experiments, we tried to understand why
binary-level DSE seems more powerful than source-level
strategies. We found mainly three reasons. First and obvious
reason, decisions with multiple conditions at the source-level
are compiled in separate decisions at the binary level. Sec-
ond (less obvious) reason, it appears thatnop instructions
are sometimes added to empty branches during compilation,
forcing binary-level instruction coverage to covers them.Fi-
nally, binary-level tools are more amenable to reason on low-
level data manipulation than source-level tools, and sometimes
they manage to cover branches that are (wrongly) considered
uncoverable by tools or experts working at a higher level of

description.

Finally, concerning the relationship between source-level
coverage criteria and binary-level coverage criteria, thepresent
work can be seen as an empirical complement to the work done
in COUVERTURE [1], where the authors identify assumptions
under which binary-level branch coverage implies source-level
MCDC coverage. On the one hand we do not impose any
hypothesis on the compilation chain, on the other hand our
results are experimental rather than theoretical.

VII. R ELATED WORKS

DSE tools have blossomed up recently [3], [11], [13], [14],
[16], [24]–[26], and the technique has been heavily used in
recent years for finding bugs in desktop programs. Most of
these tools work from source code and target bug finding rather
than full coverage. SAGE [17] is a famous binary-level DSE
tool. Yet, there are a number of significant differences withour
own work: SAGE is heavily optimised toward finding bugs in
very large x86 applications in a fully automatic way, while we
are interested in full coverage of (smaller) embedded programs
run on different architectures, with possible guidance from
validation experts. Our generic search API gets inspiration
from the Fitnex approach [27] of PEX [25].

VIII. C ONCLUSION

In this article, we discuss the use of binary-level DSE for
testing safety-critical embedded systems. We present several
innovative features of practical interest when analysing such
systems, including a generic search API, search directives
for reducing the exploration space and test suite replay &
completion. These features have been implemented in our DSE
tool OSMOSE, and we show through four real-life case-studies
how they can be used in practical situations.

REFERENCES

[1] Bordin, M., Comar, C., Gingold, T., Guitton, J., Hainque, O., Quinot,
T.: Object and Source Coverage for Critical Applications with the
COUVERTURE Open Analysis Framework. In: Embedded Real Time
Software and Systems (ERTSS 2010)

[2] Botella, B., Gotlieb, A., Michel, C.: Symbolic execution of floating-point
computations. Journal of Softw. Test., Verif. Reliab., 16(2), 2006

[3] Bardin, S., Herrmann, P.: Structural Testing of Executables. In: ICST
2008. IEEE Computer Society, Los Alamitos (2008)

[4] Bardin, S., Herrmann, P.: Pruning the search space in path-based test
generation. In: ICST 2009. IEEE Computer Society, Los Alamitos (2009)

[5] Bardin, S., Herrmann, P.: OSMOSE: Automatic StructuralTesting of
Executables. Softw. Test., Verif. Reliab. 21(1): 29-54(2011)

[6] Bardin, S., Herrmann, P., Leroux, J., Ly, O., Tabary, R.,Vincent, A.:
The BINCOA Framework for Binary Code Analysis. In: CAV 2011.
Springer, Heidelberg (2010)

[7] Bardin, S., Herrmann, P., Perroud, F.: An Alternative toSAT-based
Approaches for Bit-Vectors. In: TACAS 2010. Springer, Heidelberg
(2010)

[8] Bardin, S., Herrmann, P., Védrine, F.: Refinement-based CFG Recon-
struction from Unstructured Programs. In: VMCAI 2011. Springer,
Heidelberg (2011)

[9] Balakrishnan, G., Reps, T. W., Melski, D., Teitelbaum, T.: WYSINWYX:
What You See Is Not What You eXecute. In: IFIP Working Conference
on Verified Software: Theories, Tools, Experiments. (2005)

[10] Chebaro, O., Kosmatov, N., Giorgetti, A., Julliand, J.: Combining Static
Analysis and Test Generation for C Program Debugging. In: TAP 2010.
Springer, Heidelberg (2010)

TABLE II. C OVERAGE MEASUREMENTS FORScicos BLOCKS

(1) Integration block

Functional CREST Is Bs MCDCs OSMOSE Completion
testing (manual⋆) (manual⋆) (manual⋆) of CREST

Is 100 % 100 % 100 % 100 % 100 % 100 % 100 %
Ib 98.7 % 97.9 % 97.9 % 98.7 % 98.7 % 98.7 % % 98.7 %
Bs 100 % 90 % 85 % 100 % 100 % 100 % 100 %
Bb 85.2 % 73.5 % 70.5 % 79.4 % 85.2 % 88.2 % 88.2 %

(2) Saturation block

Functional CREST Is Bs MCDCs OSMOSE Completion
testing (manual⋆) (manual⋆) (manual⋆) of CREST

Is 100% 100% 100% 100% 100% 100% 100%
Ib 99% 99% 100% 100% 100% 100% 100%
Bs 88.4% 80.7% 100% 100% 100% 100% 100%
Bb 86.6% 76.6% 93.3% 100% 100% 100% 100%

(3) Product block

Functional CREST Is Bs MCDCs OSMOSE Completion
testing (manual⋆) (manual⋆) (manual⋆) of CREST

Is 100% 100% 100% 100% 100% 100% 100%
Ib 100% 100% 100% 100% 100% 100% 100%
Bs 100% 100% 83% 100% 100% 100% 100%
Bb 87.5% 100% 75% 87.5% 100% 100% 100%

⋆: manually-crafted test suite achieving 100% coverage for the specified criterion

[11] CREST: automatic test generation tool for C.
http://code.google.com/p/crest.

[12] Charreteur, F., Gotlieb, A.: Constraint-Based Test Input Generation for
Java Bytecode. In: ISSRE 2010. IEEE Computer Society, Los Alamitos
(2010)

[13] C. Cadar, D. Dunbar, D. Engler: KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs. In:
OSDI 2008. Usenix Association (2008)

[14] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill and D. R. Engler.
EXE: automatically generating inputs of death. In: CCS 2006. ACM,
New York (2006)

[15] Ferdinand, C., Heckmann, R.: aiT: worst case executiontime prediction
by static program analysis. In: IFIP Congress Topical Sessions 2004.
Kluwer, Dordrecht (2004)

[16] Godefroid, P., Klarlund, N., Sen, K.: DART: Directed Automated
Random Testing. In: PLDI 2005. ACM, New York (2005)

[17] Godefroid, P., Levin, M. Y., Molnar, D.: Automated Whitebox Fuzz
Testing. In: NDSS 2008.

[18] Godefroid, P., Levin, M. Y., Molnar, D.: SAGE: whiteboxfuzzing for
security testing. Commun. ACM 55(3): 40-44 (2012)

[19] King, J. C.: Symbolic execution and program testing. Communications
of the ACM, 19(7), july 1976.

[20] Marre, B., Michel, C.: Improving the Floating Point Addition and
Subtraction Constraints. In: CP 2010. Springer, Heidelberg (2010)

[21] Majumdar, R., Sen, K.: Hybrid Concolic Testing. In: ICSE 2007. IEEE,
Computer Society, Los Alamitos (2007)

[22] Software Considerations in Airborne Systems and Equipment Certifi-
cation. In: RTCA 1992.

[23] SCICOS: Block diagram modeler/simulator.
http://www.scicos.org

[24] Sen, K., Marinov, D., Agha, G.: CUTE: A Concolic Unit Testing Engine
for C. In: ESEC/FSE 2005. ACM, New York (2005)

[25] Tillmann, N., de Halleux, P.: Pex-White Box Test Generation for .NET.
In: TAP 2008. Springer, Heidelberg (2008)

[26] Williams, N., Marre, B., Mouy, P.: On-the-Fly Generation of K-Path
Tests for C Functions. In: ASE 2004. IEEE, Computer Society,Los
Alamitos (2004)

[27] Xie, T., Tillmann, N., de Halleux, P., Schulte, W.: Fitness-Guided Path
Exploration in Dynamic Symbolic Execution. In: DSN 2009. IEEE, Los
Alamitos (2009)

