Binary-Level Testing of Embedded Programs

Sébastien Bardin Philippe Baufretofy Nicolas Cornuét
Philippe Herrmanh and Sébastien Labbé

* CEA, LIST, Saclay, France
Email: first. nane@ea. fr
T Sagem - SAFRAN Electronics, Massy, France

Email: phi | i ppe. bauf

reton@agem com

! EDF Research & Development, Chatou, France
Email: first. name@df.fr

Abstract—Dynamic Symbolic Execution (DSE) is a powerful
approach to automatic test data generation. It has been hedy
used in recent years for finding bugs in desktop programs. Inhis
article, we discuss the use of binary-level DSE for testingadety-
critical embedded systems. More especially, we present sal
innovative features implemented in our DSE toolOsMOSE, and
we show through four case-studies how these features can bsad
in practical situations.

Keywords—Automatic testing, symbolic execution, binary-level
analysis
l.

Dynamic Symbolic Execution (DSE) is a powerful ap-
proach to automatic test data generation [3], [13], [14§][1

INTRODUCTION

critical embedded systems is significantly different frasting
desktop applications. For example, while embedded progrram
are simpler in many ways (smaller size, no dynamic memory
allocation), the testing process aims at full coverage and
validation experts can pass a long time trying to achieve it
or justifying for every uncovered branch. There are several
ways in which companies working in safety-critical domains
could benefit from automated binary-level testing.

e Even in the industry of safety-critical systems a com-
pany may not have access to the program source code
of a piece of software it has acquired, typically when
the company is not a major customer for the vendor.
Then these executables have to be certified without

any programming language description.

[24], [26]. It has been heavily used in recent years for

automatically finding bugs in desktop programs [13], [14],
[17]. While many DSE tools work on the source code of

the program under test, a few other ones work on a binary-

level description [3], [17], [18] (i.e. the executable fil@his

approach shows a number of advantages, making it possible

for example to analyse mobile codes or programs incorpugati
commercial off-the-shelf components [3], [9], [18].

Model Source code
int foo(int x, int
x>0 /X :=x-1 f (y) {
int k= x;
int c=y;
while (c¢>0) do {
k++;
e}
return k;
}
Assembly Executable
LI ABFFF780BD70696CA101001BDE45
load A 100 145634789234ABFFE678ABDCF456
add B A 5A2B4C6D009F5F5D1E0835715697
cmp B O 145FEDBCADACBDAD459700346901
jle label 3456KAHA305G67H345BFFADECAD3
00113456735FFD451E13AB080DAD
344252FFAADBDA457345FD780001
label: FFF22546ADDAE989776600000000
move @100 B

Fig. 1. Binary-level program analysis

In this article, we discuss the use of binary-level DSE
for testing safety-critical embedded systems. Testingtgaf

Work partially funded by ANR project BINCOA, grant ANR-0&ES&1-006.

e A similar problem is the one of legacy code. Refac-
toring a certified code involves going through the
certification process again. Yet, in some safety crit-
ical industries, product life-cycles span over several
decades: the source code may no longer be available,
or the programming language may not be supported
anymore. In both cases, binary-level analysis is the
only option left.

In aeronautics, the DO-178B standard [22] imposes
that verification must be performed on the binary level
as soon as the conformity between the high level
code and the machine code cannot be ensured. Since
manual binary-level analysis is very expensive, con-
structors prefer to avoid any technology which would
blur the conformity, including optimising compilers
which would increase performances and lower costs.

In the past years, we developed and used our own binary-
level DSE tool GMOSE[3], [5] in a number of case-studies
from aeronautics (in collaboration with SAGEM, French aero
nautic equipment manufacturer) and energy (in collabonati
with EdF, French energy supplier). In this article, we discr
several features that we found of practical interest for the
success of these case-studies. Our contribution include:

e the description of original and practically-relevant
features for DSE tools, including a generic search API,
search directives for reducing the exploration space

and test suite replay & completion;

an experience report on four real-life case-studies,
describing the use of MOSEIn different situations:

unit-level testing of a medium-size program, system-

Algorithm 1: Symbolic Execution algorithm

level testing of a small but complex program, under-
standing and testing a third-party program and finally
a comparison of binary-level testing strategies with
several source-level testing strategies.

Input: a programP with finite set of pathsPaths(P)
Output: T'S, a set of pairgt, o) such thatP(t) ~p o
1 TS :=0;
2 Spaths = Paths(P);

3 while Spains # 0 do

. . . : chooses ; = ;
Outline. The rest of the paper is organised as follows. First, we * € Spaths; Spaths = Spatns\{0} ;

describe DSE (Section Il), we give a succinct charactéoisat Z g\?vri?ghugeoﬁgz grgg icatg, for o ;

of the class of programs we target (Section IIl) and we priesen 5 casesat(t)'a TS := TSU{(t,0)}
the OsMOSE tool (Section V). Then we describe the new caseunsat: skip. ’
features that we propose for DSE (Section V) and the case- end '

studies we have performed (Section VI). Finally we discuss10 end

related work (Section VII) and conclude (Section VIII). 11 return TS

Il. BACKGROUND

A. Notation DSE [16], [24], [26] enhances SE by interleaving concrete
and symbolic executions. The dynamically collected infarm
tion can help the symbolic step, for example by suggesting
relevant approximations. State-of-the-art SE/DSE toakslyt
explore the set of paths, maintaining a set of explored path
prefixes and discovering new path prefixes through flipping a
single branching instruction along an already exploredh.pat
Such a detailed view of SE can be found in Section V-A.
Another standard improvement over Algorithm 1 is to add a
coverage-based stop criterion (instructions or branchds}
algorithm maintains a séb of uncovered branches (resp. in-
structions), it stops whef is empty (modifyl i ne 3), and
Gis updated when a new test data is generated (madlifye

7).

Given a programP over a vector of input variable¥
taking values in some domaib, a test data for P is any valu-
ation ofV, i.e.t € D. The execution oP overt, denotedP(t),
is formalised as a path (or rum)2 (locy, S1) - .. (locn, Sy),
where theloc; denote control-locations (or control-points, or
simply locations) of P and the .S; denote the successive
internal states ofP (= valuation of all global and local
variables as well as memory-allocated structures) befose t
execution of eacloc;. A test data reaches a specific location
loc with internal stateS, denotedt ~p (loc, S), if P(t) is of
the formoy - (loc, S) - 02. We also writet ~p o to denote
that test data covers (or follows) the path. A test suite7'S
is a finite set of test data.

IIl. A FEW WORDS ABOUT SAFETYCRITICAL PROGRAMS

B. DSE in brief

We remind here a few basic facts about Symbolic Execu- We are interested in safety-critical control-command pro-
tion (SE) [19] and Dynamic Symbolic Execution (DSE) [16], grams typically found in aeronautics and energy. We reeatth
[24], [26]. Let us consider a program under t&swith a vector ~ briefly a few characteristics commonly found in these system
of input variabled” over domainD and a pathr of P. The key
insight of SE is that it is possible in many cases to comput(?ive
a path predicateg, for o such that for any input valuation
t € D, we have:t satisfiesp, iff P(t) coverse. In practice,
path predicates are often under-approximated and onleftte |
to-right implication holds, which is already fine for testtala
generation: SE outputs a set of paits, o;) such that each
t; is ensured to cover the corresponding Therefore, SE is
soundfrom a testing point of view.

From a high-level point of view, these programs are reac-
, 1.e. they are composed of a main (non-terminatingploo
performing data acquisition, internal computation andiatcir
activation. They often begin with a long (and mostly sequen-
tial) initialisation phase. They also often contain sekis,
i.e. software-level mechanisms for hardware-fault deect
These idioms are of the form A := 0, assert(A==0)aamser t
violation here will typically denote a malfunction in menyor
Self-tests add to the programs many artificial and (normally
A simplified view of SE is depicted in Algorithm 1. While infeasible paths. Finally, these programs are self-coathi
high level, it is sufficient to understand the rest of the pape there are no dynamic library and the (simple) operatingesgst
We assume that the set of paths Bf denotedPaths(P), is included in the code.
is finite. In practice, this assumption is enforced through a . : . .
bound on path lengths. SE relies on the availability of both From & low-level point of view, there is no dynamic mem-

a procedure for path predicate computation (with prediz:ateqry allocation. Memory is_ alloqated statically during ialtsa-
in some theoryT") and a solver taking a formula € T and tion. Programs can contain strings, but they do not perfaryn a

returning eithersat with a solutiont or unsat The algorithm ~ 2dvance string manipulation. Floating-point numbers t§pa

builds iteratively a test suité'S by exploring all paths from and floating-pqint arit.hmetic are commonly foun(_j. Einally,
Paths(P). interrupts, multithreading and time-based synchrorosatcan

be found as well (but no dynamic thread creation). We do not
The major complexity issue in Algorithm 1 is that SE must claim supporting such features automatically. TheMOSE

in some ways explore alPaths(P). Therefore, the size of tool is designed to help the certification expert. It eases

Paths(P) is one of the two major bottlenecks of SE, the otheranalysis and testing on sequential portions of the code, but

one being the average cost of solving path predicates. non-sequential aspects of the program must still be de#ft wi

by experts. This view is in adequacy with the methodologies Motorola 6800 and Intel C509; x86 is in progress),
observed at EdF and SAGEM. then simulation and symbolic reasoning come for free;

e we can run @MOsEon an architecture different from
IV.. THE OSMOSETOOL the one of the program under test.
A. Overview . . .
_ _ Both aspects are crucial when testing embedded systers, sin
OsMoOsE is a binary-level DSE tool [3], [5]. It takes as many different architectures are used, sometimes with legry
input an executable file, an entry address, a descriptiohef t computational power.
initial memory state and a coverage criterion (plus optiona . . . ,
DSE parameters). The main output of the tool is a set of test . DBA works over afinite set of variables ranging over fixed-
data with their expected trace executions. Other outpldec width blt-ve_ctors and a f|r_1|te set of (disjoint) f|>_<ed-3|za_§aqzrs
a coverage measure (if relevant) and a description of th fbb3|’|teds (p#]-veé:ctjors of size 8). So\;ge_lf)g the mstru?n(}ns ar
program under test (control-flow graph, call graph, stasst ba elle ‘{V' t'a reSSes ranging over ihere are only tour
etc.). Tests are correct by construction (they should follo asic instructions:
their expected paths), while coverage measure and program o | hs := rhs, goto addr
information may be incomplete (the analysis may miss part of
the program because of dynamic jumps [5], see Section V-F). ® goto addr
Currently supported testing criteria include path, instian e ite(cond)? goto addr : goto addr’
and branch coverage. Moreover, for the last two criteria,
we distinguish between unit-level coverage and systemklev ~® goto expr

coverage. A user view of MOSEIs provided in Figure 2. Expressions and conditions are built upon a small set of

standard fixed-width bit-vector operators, including (&d /
@ unsigned) arithmetic operators, (signed / unsigned) rmetic

scenarii,

objectives
shifts, concatenation and restriction. Contrary to realcps-

A
‘ " sor instructions, these operators are side-effect freeryev

GUI l environment Osmose Refinement
V R J expression evaluates to a bit-vector of statically knovae.si
This is not a restriction considering current Instructioat S
other options / model Architectures (ISA). Conditions are expressions evaifiggtih a

relational operators, logical bitwise operators, sizeeestons,

X

bit-vector of size 1. Expressions and operators are sursathri
hereafter:

executable
file

e 0x0010<16>, VAR<size>

I
e @expr, k) /1 menory access
Fig. 2. User view of GMOSE o expr{i .. j} /] restriction
e expr : expr /1 concatenation

OsmosEdoes not address the oracle issue: we assume the
availability of an external oracle, to which the generatest t o ext,s(expr,n) /] extension
suite is passed. Yet, the tool can detect a few classes of run-
time errors (typically division by 0) as well as emit warning o eXPr {<us Sus, =7 Zus: >us) XP
when an execution path contradicts user-given information e expr {+,—, X, /us, %us} €XPr
(for example, the specification of dynamic targets, seei@ect |
V) or programming idioms recognised as good practice (for ® €XPr {A.V, @} expr, lexpr
example, a violation of et ur n-cal | policy). o expr {<<,>>,s} expr

Since we target reactive systems, we allow for the specifi- \Most architectures and ISAs can be modelled accurately
cation of volatile memory zones, i.e. part of the memory thaysing the following rules. Each register in the processor is
can be non-deterministically modified (within a user-spedi modelled by a variable in the DBA, additional variables {“lo
range). Therefore, a test data consists not only of the iaput ca|” variables) may be introduced to encode ISA instruction
the program, but also of a sequences of values read for eagfaeding intermediate results, e.g. for side-effects sucfiag

volatile memory zone. updating. A single array is usually sufficient for memory.
_ Additional arrays may allow for example to distinguish a@ 1/
B. Intermediate language bus from a memory bus. Figure 3 presents a few examples of

OsMOSEis an architecture-independent tool: each instruc/SA instruction modelling through DBA. We suppose that each
tion of the executable file under test is first translated intdSA instruction is encoded on four bytes. The ISA instrustio
a small intermediate language (called DBA [6]) well-suited!S On the left column, and the corresponding DBA is on the

to formal analysis, then fed to the DSE core engine. Thidight. ISA instructions are supposed to be located at addres
approach shows significant advantages: Ox5003 in the executable file. For the second example (an

addition instruction), we suppose that the instructionatps
e supporting a new architecture requires only to writea carry flagFc (the carry-flag is set to 0 iff theinsigned
a new front-end (we already support PowerPC 32addition is correct).

RO:=5 . .
O———0O branch) coverage, even more in the case of unit-level cgeera

0x5003 0x5007 As an illustration, Figure 4 shows the instructions covergd
Axiz A+B _ Fcim (AX<A) A Ax DSE after 4 tests have been generated, in the case of (a) DFS

O (O (O—) search and (b) BFS search. Here BFS search achieves almost

0x5003 0x5007 50% more coverage than DFS search.
O——0O

0x5003 0x1000

Jump A

O——— m

0x5003 O O O O

(a) DFS (b) BFS

Fig. 4. Coverage achieved by DSE for 4 tests

Fig. 3. DBA encoding of a few typical instructions
Yet, while DFS is considered as having a poor “coverage

speed”, BFS is not a panacea because it tends to get stuck into
C. Advanced concerns loops. Many heuristics have been proposed in the literature

such as Best First [14], Hybrid DFS [21] or Generational
Constraint solving. OsMOSE performs bit-level reasoning search [17]. Unfortunately, it appears that relying on algin
through constraints expressed in the theory of bitvectars p heuristics is often not sufficient and that different progsa
arrays [7]. Memory is modelled as an array of bytes, whichrequire different heuristics in order to achieve very high
is sufficient since safety-critical programs do not performcoverage.
dynamic memory allocation. Strings are also viewed as array
of bytes. Again, this is sufficient since the programs we
consider do not rely heavily on string manipulations.

We design a generic search engine allowing to quickly im-
plement search heuristics. We describe the API, then we show
how to emulate existing heuristics (both standard and-siate

Floats are more problematic because they are commonkpe-art) and finally we describe the heuristics implemeited
found in safety-critical systems. Some of the case-studie©SMOSE
presented in the rest of the paper do contain floats, but they
do not involve tricky reasoning over floating-point aritiime The search API.We first need to define thactive prefixe®f
(FPA) and perform only comparisons, load and store. So we path [17]. Let us consider a pathand a branch(,b) of the
encode them as simple bitvector operations. In case mongrogram under test covered hy whereC is a condition and
complex floating-point operations are found, our solver carb is a truth value. We denote by the prefix relation between
be naturally connected to FPA solvers based on constrainpaths. A pathr’ is an active prefix ofr if 7/ £ 7”7 - (C, —b)
programming [2], [20]. Yet, it must be clear that FPA solvig and=” - (C,b) =< . Intuitively, 7’ is obtained fromr through
still a challenge in automated reasoning and software aisaly modifying a single decision along the path.

Constraint-level optimisations include heavy preprocess We assume the availability of two following functions
(constant and equality propagation, “dead-code” elimémat init_val and update. Functioninit_val : ¢
splitting a formula into independent subformulas), reuse odat a creates an initial input data (an arbitrary fixed value,
existing solutions and incremental solving. Such techesgu or a non deterministic value). Functiampdate : data
are now guite common in DSE. x set <pat h> — set <pat h> launches the program on

dat a and updates the set of active path prefixes, removing
Path exploration. The path search heuristics is a standard(resp. adding) those path prefixes covered (resp. defined) by
depth-first search (DFS). Search-level optimisationsuithe!l the new execution. Our generic search engine requires the
the LookAhead pruning [4], which consists in removing a pathfollowing input:
prefix when it cannot lead to yet uncovered items (branches or

instructions). This technique involves performing globtatic * an abstract data typ¢AL representing the score of a
reasoning within DSE, and we found it to be very effective for prefix,

reducing the search space and quickly guide the exploration o functionscore : path ~ VAL for evaluating a
toward uncovered branches or instructions. prefix,

V. NEW FEATURES FOR PRACTICAL USE functioncompare : VAL x VAL = {<,=>}.
We describe in this section several new features sf O We then easily deduce functionget _best

MOSE which we found very useful for testing embeddedSet <path> — path. The generic DSE algorithm is
programs. presented in Algorithm 2.

Emulating existing heuristics. We conside®VAL values de-

fined by tuples formed over the following basic path infor-
Designing a good search heuristics is a major concermation: prefix length, call-depth of the last instructiontbé

in DSE. Search heuristics do not matter for path coveragerefix, an integer random seed chosen at prefix creation, the

however they can make a huge difference for instruction (ogeneration of the prefix and the estimated gain of coverieg th

A. A generic search engine

two ones are defined in the following way: the score is a
pair (length, depth), and the order is defined byingep.s, ©
maziengtn, fOr MinCall-DFS, and bymingeptn 0 miniengen for
MinCall-BFS. These two heuristics give priorities to prefix

of low call-depth. They appear to be very effective in a unit
testing framework where we are interested only in covering
the function under test. Actually, it turns out that MinCall
DFS combined with the Look-Ahead pruning technique is a
very robust choice for unit testing.

Algorithm 2 : DSE algorithm with generic search engine

Input: a programP with finite set of pathsPaths(P)
Output: T'S, a set of pairgt, o) such thatP(t) ~p o

1 7S :=0;

2 Spaths ‘= updat e(i ni t_val (), 0);

3 while Spqins # 0 do

4 o = get _best (Spaths);

5 Spaths = Spaths\{a})

6 compute path predicatg, for o ;

;

8

9

switch solve(,) do Interestingly, we do keep in €MOSE two other testing

casesat(): algorithms with dedicated search heuristics: (1) a random
TS =TSU{(t,o)}; test data generation algorithm, which can be hardly emdilate
10 Spaths ‘= updat e(t, Spatns) ; through our generic API, and (2) a standard DFS-based DSE

11 caseunsat: skip algorithm, allowing efficient memory consumption compared
12 end with its emulation through the generic API.
13 end

14 return T'S; B. Search directives

Even cleverly-tuned search heuristics are not always suffi-

last branch of the prefix. The last two kinds of information cient to achieve full coverage, and user assistance is rejui

require a few explanations. The initial path has generalion QZS;LLO (%?égg\}g;lzfvﬁ]to% V\rlgv?geS'gEiggg é??cl)ear:gng c‘;ir es et
and a new prefix gets the generation of its “father” plus 1. glop 9

The gain estimates roughly how many uncovered items couIE)SE engine through reducing the search space. The former

. ' X rsion of GSMOSE offers only a directive limiting the path
be accessed through covering the prefix. It can be define 2 - ;
in different flavoulrjsg dep\(/entldir?g on F'ihelxnature of the glain ngth fraxLengt h) and a directive defining the entry point

(optimistic, pessimistic, average) and of the quality o th of the test generation processnt ry). We present a list of
estimation (typically, bounded analysis versus globaticsta

analysis), yet a higher gain is assumed to be better than a

smaller one. Finally, the step of the DSE algorithm is the
number of loop iterations of the main algorithm.

We use two notations for orders oVAL: R;,.q denotes
the orderR applied to theknd element of the tupl&/AL, and
o denotes the lexicographic order composition. For example,
the order defined byningepin, © maxiengr, Must be read as
follows: it implies thatVAL values encompasses at least a
depth element and dength element, andd,!) < (d',1') iff
d<dord=dnNl>T.

We list several existing heuristics and a possible order for
emulating them into our framework:

o DFS: ordermaziengtn
o BFS: orderminengtn
e random prefix: ordemingeed

e hybrid-dfs [21]: we consider a static interleaving of
k steps of DFS followed byk steps of random
path. We use the following order: {tep%2k) <
k thenminsecq elsemaxiengin, Where% is the in-
teger remainder operand.

e best-first [14]: we consider a static interleaving of
k steps of DFS followed by one step of “maximal
gain”. The order is the following: ifstep%k) <
k —1 thenmingeeq elsemaxgqin-

e generational [17]: the order i®ax ger, © MAT gqin -
Implemented heuristics. OsSMOSE implements three basic

heuristics (random path, DFS, BFS) and two (original) ad-
vanced heuristics: MinCall-DFS and MinCall-BFS. The last

the new directives hereafter.

unsat _br (‘addr, bool): the branch going from
instruction at addressddr with condition evaluating

to bool is considered unsatisfiable. The symbolic
part of DSE will not try to fire this branch and
a warning is reported if a concrete execution does,
pointing out a specification issue. This directive is very
useful when testing programs with many infeasible
branches, typically embedded programs with software-
level protections against hardware defects. It may
also serve as a basic communication mechanism for
combining DSE with global static analysis [10], the
latter being used to detect infeasible branches.

exit addr: a path reaching addresaddr is
stopped. This directive is especially useful for incre-
mental DSE (see other new features).

repeat addr [addr-reset] N: the search is
restricted to paths going at most times through
addressaddr . Considering reactive systems, the di-
rective allows to limit the unfolding of the top-level
loop. The optionahddr - r eset argument allows to
reset the “loop count” each time the path goes through
addressaddr - r eset . The goal is typically to limit
inner-loop unfolding, through specifying the loop exit
address for reset point.

maxTryBranch (addr, bool) N the whole
DSE process will be limited to try covering branch
(addr, bool) at mostN times. Once the limit is
reached, active path prefixes covering the branch
are discarded. The key difference wittepeat is
that the limitation does not concern a single path,
hence the two directives are complementary. It can
be useful in an incremental DSE setting in order to

detect likely-unsatisfiable branches (then check their To cope with this issue, we add the possibility to output
status, and possibly add amsat directive). a summary of all the paths starting from an entry address
))) o ~and reaching a given target address. Together with thedsirea
Finally, the user is also given the possibility to restrict ayailable features for specifying an entry address andigalin

possible values of any variable or memory locatibhg) to memory state, the user can try to analyse the program under
values in a given interval or list, throughr@st ri ct Domai n test in a compositional manner.

| hs dom [addr] directive. The restriction can be global or

local to a given address. This option is commonly found in ~Memory state description includes constant values, range
DSE tools. constraints as well as equalities between some registers or

memory locations. This is a very restricted specificatiortime
anism, so it cannot model properly the output of any piece of

C. Goal-oriented testing code. Hence the technique must be used with care:

DSE is fundamentally a blind forward approach, well-
suited for covering large sets of items such as paths, besnch
or instructions. The former version of SMOSE proposed only
these three coverage objectives. Yet, it is often useful to
support more goal-oriented objectives, typically covgrame

e loss of completeness: if some paths to be summarised
have been discarded (typically, a too small path length
limit) then the resulting memory state will not be
complete and subsequent DSE can miss feasible paths;

specific instruction. We add support for this kind of objeeti e loss of correctness: if the intended summary falls out
specifying a set of branches or instructions as objectite se of our memory state formalism, then subsequent DSE
It integrates smoothly within our existing coverage-baS&E will be run on an over-approximated memory state and
framework: instead of precomputing the set of all targets correctness may be compromised. One can still replay
(branches or instruction, unit mode or not), we simply let th the tests in @MOSE on the whole program to check
user specify it. While DSE is clearly not the most approjriat for inconsistencies in the test suite.

choice here (a backward approach would seem better [12]),

combining DSE with LookAhead pruning provides decent Yet, while this feature cannot be used in any setting,

results for goal-oriented testing. it proves very valuable for some simple cases of modular
reasoning, especially the initialisation or self-testpitases.

D. Test suite replay and completion

We implement the possibility of storing generated testF' Specification of dynamic targets

suites and then replaying them irs@0SE In replay mode, the Dynamic jumps are instructions of the formot o R
tool checks consistency between the intended executiee trawhere the value oR may vary at runtime. They pose a serious
and the observed execution trace. Moreover, the DSE dhgorit jssue in binary-level program analysis since they prevent a
can now be started from an existing test suite. The testsllare @asy syntactic recovery of the control-flow graph [8]. DSE is
run and corresponding active prefixes are generated. Tien tinuch less sensitive to this issue [5] since one needs only to
DSE loop is launched. These two simple feature show severaécover a subset of feasible jump targets. Yet, in presefice o
significant practical advantages: dynamic jumps the recovered CFG is only partial, posing two
L)) problems: (1) the coverage measure cannot be trusted (which
 \Validation: the test suite can be replayed in a s problematic for critical systems), and (2) the precisin
trusted simulation environment, comparing observeq okahead pruning is affected (any dynamic jump must be

exet_:ution traces and coverage information to the inforgnsidered to point anywhere), reducing the ability to prun
mation output by GMOSE It proves useful for both . alevant paths.

external validation purposes and internal debugging

concerns. We add the possibility for the user to specify sets of
. L . . dynamic targets. The specification is of the fojranp@ddr
e Test suite completion: it provides the ability to com- | eads to: addr1 addr?2 . .. meaning that the in-

plete existing test suite, regarding how the tests havgyyciion at addresaddr is a dynamic jump which can lead

been obtained (manual testing, random testing, eic.}yny o addresses contained addr 1; addr 2, etc. (over-
Esp_eC|aII_y, it allows to integrate smoothly binary-level approximation). The benefits are the following:
testing within an existing testing process.

e Complex search heuristics: test replay is a very con- * LookAhead performs beter,

venient way for chaining different search heuristics, ¢ the coverage can be trusted if all possible targets have
through launching DSE with one heuristics, saving the been specified.
tests and completing them with another heuristics.

The important point here is that the specification must be
an over-approximation. Additional (infeasible) targetd e
discarded by symbolic reasoning: they can slowdown the-reso

Many reactive systems present a long initialisation / self{ution process, but they cannot affect the correctnessagibes
testing phase. It makes path space exploration expengiee, s of DSE. However, missing targets will hide legitimate parts
the behaviours of the core functionalities are mixed up withthe program to the DSE procedure, leading to overly optimist
this first step. Moreover, one can note that initialisat@nften coverage measure and incomplete testing (within the ldnite
deterministic with only a very few number of (very long) path search space).

E. Output of concrete or symbolic states

Since specifying dynamic targets can be error-prong, O

TABLE I. UNIT-LEVEL TESTING OF AN AERONAUTIC APPLICATION

MOSE performs several consistency checks. We report a warf-name # #Br | Osmose | Osmose | random | random

ing whenever the instruction at addresidr is not a dynamic cover time cover | time

jump or the dynamic jump at addressldr does lead to [§§§g§§] (sec.t)

an address outside the specified set. In the second ca 5 ane0 557 T T60% 10 0% 0

we systematically check this possibility for each prefixhpat [19]

through a constraint of the formA e & {addr, ..., addr,}, planel 290 | 140 | 98% 60 64% 100

wheree is the jump expressiorR(in the example given above) [43]

andqs is a path predicate_ plane2 201 72 100% 10 35% 20
[37]

Dynamic target specifications can be obtained either man-plane3 977 | 190 50% 60 96% 60
ually or through dedicated static analysis tools. In aenting ed S [egc]) 5 550
for example, validation engineers using the widespread aif P"® ° (15] °
tool [15] for wcet cqmputation aIready have_to provide sUCNpanes (/7 [121 > 100% 1 100% 10
sets of targets. It is a much easier task if the executable 4103 | 509 [2]
code comes from a home-compiled source code. In that caseplaneé (*) | 250 18 94% 100 83% 120
most targets can be retrieved automatically with help frbmt | gég gg - [290] - —
compiler. When the source code and the compilation chain afeP@"”) 12640 | 2790 ° (4] °
not available, it becomes a much more challenging problenfr@res ® 957 | 14 14% 10 50% 500
Recent binary-level static analysis techniques try to esklit. 30969 | 4952 [3]

We implement such a connexion between our own CFGBuilder plane9 (*) | 627 74 7% 600 63% 600
prototype [8] and @MoSE CFGBuilder is first used for 31793 | 5034 [12]

computing upper-sets of targets, then these sets are used
input for OsmMOSE (cf. Figure 5).

safe
control-flow
graph

N

0
110111001 DBA
001001000 formal model
001111011
110101101

test input
partial cfg
coverage

Fig. 5. Binary-level analysis

VI.

A. Unit-level testing of medium-size application

CASE-STUDIES

The first case-study is the automatic binary-level testihg o
a critical embedded program from aeronautics (from SAGEM).
The program is part of the control-system of an aircraft ragi
It is designed in SCADE, and a C program is automatically
generated. The underlying architecture is a PowerPC 32-bit
The program under test is medium size: it is divided into 250
procedures for about 30,000 machine instructions. Maximal
call-depth is 10.

The goal was to use €MOSE in an automatic manner in
order to assess its unit-level coverage abilities. We perfo

t@%ime is given in seconds, rounded to the nearest ten.

t: only tests providing incremental branch / instruction @age are output to
the user

(*): first line give #1 and #Br for the function under test (FY@nly, second
line give #| and #Br for the FUT and all its callees

of 20x more tests than those required bgMdSE). The DSE
search heuristics is DFS, and LookAhead pruning is activate
Procedures under test are randomly chosen.

Part of the data is available in Table I. We report the
following results.

e \ery good coverage results have been achieved for
procedures with low call-depth (even for some pro-
cedures with up to 2,000 instructions). Actually, full
coverage was achieved for 31 procedures out of 40,
good coverage76% — 95%) for 4 procedures, and
unsatisfactory coverage<(50%) for the remaining 5
procedures.

e Results are much mitigated for procedures with high
call-depth, the path explosion problem becoming a
serious issue. &MOSE still achieves good coverages
on some procedures, but results are less robust.

OsMosE performs better than random testing for the
vast majority of the procedures, in terms of both time
and coverage, while on each procedure random testing
generates 20x more test data.

B. Full testing of a small application

The second case-study is another aircraft program from
two sets of experiments: we run unit-level test generatimro SAGEM. Yet, the context of analysis is significantly diffate

40 procedures with small call-depths (between 0 and 4), anthe program is rather small (17 procedures, 2,600 instrosti

we also run it on a few procedures with higher call-depthsand 113 branches), but the goal is to perform full testirg,(i.
(between 6 and 10). We measure the achieved coverage, andver every branch starting from the top-level entry point)
we also compare it to the coverage achieved through randoand the program is recognised by testing teams to be hard
testing (built on top of @MOSE simulator, run with a budget to analyse.

The program was a challenge fois@0sE and we had to all information needed for &vOSE initial state specification
use many of the new features described in this paper to achieyvolatile memory zones).
high coverage, namely: advanced search heuristics (Gl-B
Call-DFS) and several search directivesngat br and
repeat). We list here the main difficulties.

We first use @MOSE for recovering missing information
about infeasible branches. We test each library function /
module in isolation within the most generic input contexe W
e First of all, many branches are simply hard to cover,manage to detect 65 uncovered branches. Manual inspection

in the sense that only very few paths exercise themproves that all of them are indeed infeasible. In the rest of
Random testing or a direct use ob@osewith DFS the analysis, we use the new keywardsat for preventing
stuck to 50% branch coverage. Going further require§2SMOSE to try covering these branches. Inspecting the in-
careful guidance. Indeed, many paths turns out to péeasible paths also allows us to detect likely-volatile memn
infeasible (we count 2x more infeasible paths thanzones and a few important constant values not referenced in
feasible ones). the available documentation. Asking the third-party vendo
turns out that our intuition is correct, and that we have iolgiz

» Second, covering all branches require to explore & the information required to define a correct initial memo
huge path space. There are two difficulties here: (Liate.

one loop requires to be unrolled at least 380 times,
leading to long paths; and (2) a volatile memory zone ~ We then try to generate a test suite starting from the entry
(time register) is read within a simple loop (“read- point of the program. We limit the number of cycles of the top-
loop”), leading to many artificial paths. level loop to 1. With this parameter, SMOSE needs 35 min
to generate 6 tests achieving 70% coverage of branches. When
We proceed the following way, taking advantage of the newunsat directives are added, computation time drops to 25 min
features described in Section V. for the same result. This result contradicts the documientat

N statement that “all branches (except consistency chebksild
e Search directives have been used to reduce the sear Fé feasible within the first cycle”.

space, through restricting the main loop (we put a limit
of 400) with ther epeat directive, and restricting We also try a modular approach: the initialisation module
each read-loop on volatile memory to a single readis analysed alone, and we record the memory state obtained at
each time the loop is entered (theset option is the end of the module. We save it and launch the analysis on
required here). Hence we can still search for longthe other 10 modules, starting from the saved memory state.
paths (required by the program) without a major Results are remarkable: a similar test suite is generated, y
blowup of the number of paths. computation time drops to only 2 min. Finally, test genemati

e We use a combination of Call-BES and Call-DES in ©V€r more cycles (2 and 3) appears to be much more expensive

order to achieve most of the coverage by exercisingand leads to the same coverage.

top-level branches in priority. Then we use DFS (with ~ As a conclusion, on this example S®OSE proves to
LookAhead) for the last remaining branches. be a powerful tool for recovering meaningful facts about
. .] fthe program under test (infeasible branches, entries). etc.
We achieved the following results: 15 procedures out Ofyioreqver, it helps to pinpoint problems in the documentatio
17 have been fully covered, the two remaining leaf proceslure cknowledge by the vendor). The modular approach to DSE
being covered at only 50% (for branches). The two uncovereq;;o\ved by the new features of SMOSE seems promising,

procedures are library functions, and some of their brasich€gpeacially for proarams with complex initialisation phase
have been shown to be uncoverable within the context of the P y prog P P
Erogr:;m under test. Yet, we did not investigate every uneme D. Automatic testing and test suite completion
ranch. '

The first goal of the case-study is to evaluate the binary-
C. Software comprehension and testing level coverage achieved by several source-level testirthods

.and compared them with those achieved bgMOSE Then,

o s, Sy o srecded program e, finen o perorms beter, we vt o chec e fes:
by a third-party vendor. We do not work directly on the ility of completing the source-level test suite bys@OSE

original program, but on a representative version spedtifica We consider function blocks defined 8ti cos, a graph-
created by the vendor for the case-study. The goal is both tiwal dynamical system modeller and simulator [23]. Program
understand better the program behaviour and structuretcand ming based on function blocks is a widespread approach in the
automatically test it. development of automation and control systems. We consider
4 basic blocks commonly found in control applications: sign
saturation, integration, product and selector. The blomk f
integral is depicted in Figure 6. Blocks are written in C then
compiled into PowerPC 32. Once compiled, the blocks have
between 200 and 580 instructions, and between 10 and 86
branches.

The program is written in assembly language for the
Motorola 6800 architecture. It counts about 3,000 instounst
divided into an initialisation module, 10 computation mbstu
(forming the main loop of the program) and 10 library func-
tions. Again, while rather small, the code is difficult to fse:
many branches are unsatisfiable (self-test), the initiaéia
step is long and complex, and each main loop cycle adds We consider the following coverage criteria: instructitn (
about 1,000 branches. Moreover, the documentation prdvidebranch (B) and MCDC. We add, or _, to distinguish between
by the vendor is very sparse, making it difficult to identify source-level and binary-level. We compare test suitesrgéss

void int_euler(scicosblock xblock, int flag){
int i;
int xx_work=GetPtrWorkPtrs(block);
int x_ul=GetInPortPtrs(block, 1);
int x_yl=GetOutPortPtrs(block, 1);
int x_rpar=GetRparPtrs(block);
int dt=_rpar[0];
int xrw;

/+ conditional statement inserted to prevent from
segmentation faultsx/

if (_ul !'= NULL & _yl != NULL && GetInPortRows(block
1) <= 5){

if (flag == 1){
rw=s_work ;
for (i=0 ; i<GetlnPortRows(block ,1) ; i++)
_yl[il=dt*x_ul[il+rw[i];
rwlil=_yl[il];

}
if (flag == 4){
if ((x_work= scicos malloc(sizeof(int)x
(1+GetinPortRows(block ,1)) ,block)) == NULL {)
set_block_error(—16);

return ;

rw=x_work ;

for (i=0 ; i<GetlnPortRows(block ,1) ; ++i{
rwl[i]= _rpar[1];

}
if (flag == 5){

description.

Finally, concerning the relationship between sourcetleve
coverage criteria and binary-level coverage criteria pifeesent
work can be seen as an empirical complement to the work done
in COUVERTURE [1], where the authors identify assumptions
under which binary-level branch coverage implies souesedl
MCDC coverage. On the one hand we do not impose any
hypothesis on the compilation chain, on the other hand our
results are experimental rather than theoretical.

VIl. RELATED WORKS

DSE tools have blossomed up recently [3], [11], [13], [14],
[16], [24]-[26], and the technique has been heavily used in
recent years for finding bugs in desktop programs. Most of
these tools work from source code and target bug finding rathe
than full coverage. SAGE [17] is a famous binary-level DSE
tool. Yet, there are a number of significant differences witin
own work: SAGE is heavily optimised toward finding bugs in
very large x86 applications in a fully automatic way, while w
are interested in full coverage of (smaller) embedded pnogr
run on different architectures, with possible guidanceamfro
validation experts. Our generic search API gets inspinatio
from the Fitnex approach [27] ofeX [25].

scicos free (x_work);
}

}
}

Fig. 6. Integral processing

VIIl. CONCLUSION

In this article, we discuss the use of binary-level DSE for

testing safety-critical embedded systems. We presentaeve
))) innovative features of practical interest when analysiaghs
by OsmosEto the following generation strategies: (manual) systems, including a generic search API, search directives

functional testing through partition testing and bound@st- for
ing, (manual) test suites achieving source-level insipact
branch / MCDC coverage, and test suites generatedrssC
[11], a source-level DSE tool.

We record results in tables such as those depicted in Ta-
ble Il. We can observe that SMOSE provides better coverage
than other testing strategies, whatever criterion is a@isd. [y
Notably, GsmoOsEprovides better binary-level branch coverage
than (manual) functional testing, (manual) source-lev€iIMC
coverage and source-level DSE. Moreover, experiments show
that OsMOSE is indeed able to complete existing test suites.[2]
For example, Table Il shows the coverage achieved lsy O
MOSE when completing ®EST test suite. This is interesting 3l
from a testing methodology point of view: binary-level tagt 4]
does not have to be performed from scratch, instead it cah
be smoothly integrated within standard testing proceseés a 5]
takes advantages of existing test suites in order to focsts te
generation only on uncovered parts of the program under tegg;

From these experiments, we tried to understand why
binary-level DSE seems more powerful than source—leveh]
strategies. We found mainly three reasons. First and obviou
reason, decisions with multiple conditions at the souexell
are compiled in separate decisions at the binary level. Segsg]
ond (less obvious) reason, it appears thap instructions
are sometimes added to empty branches during compilation,
forcing binary-level instruction coverage to covers thd. 9
nally, binary-level tools are more amenable to reason on low
level data manipulation than source-level tools, and sonst 10]
they manage to cover branches that are (wrongly) consideréd
uncoverable by tools or experts working at a higher level of

reducing the exploration space and test suite replay &

completion. These features have been implemented in our DSE
tool OsmosE and we show through four real-life case-studies
how they can be used in practical situations.

REFERENCES

Bordin, M., Comar, C., Gingold, T., Guitton, J., Hainqu®., Quinot,

T.. Object and Source Coverage for Critical Applicationsthwihe
COUVERTURE Open Analysis Framework. In: Embedded Real Time
Software and Systems (ERTSS 2010)

Botella, B., Gotlieb, A., Michel, C.: Symbolic executiof floating-point
computations. Journal of Softw. Test., Verif. Reliab., 206006

Bardin, S., Herrmann, P.: Structural Testing of Exeblga. In: ICST
2008. IEEE Computer Society, Los Alamitos (2008)

Bardin, S., Herrmann, P.: Pruning the search space ih-lpased test
generation. In: ICST 2009. IEEE Computer Society, Los Atam{2009)

Bardin, S., Herrmann, P.: OSMOSE: Automatic Structufakting of
Executables. Softw. Test., Verif. Reliab. 21(1): 29-54(20

Bardin, S., Herrmann, P., Leroux, J., Ly, O., Tabary, Rncent, A.:
The BINCOA Framework for Binary Code Analysis. In: CAV 2011.
Springer, Heidelberg (2010)

Bardin, S., Herrmann, P., Perroud, F.: An Alternative S&T-based
Approaches for Bit-Vectors. In: TACAS 2010. Springer, Helmbrg
(2010)

Bardin, S., Herrmann, P., Védrine, F.: Refinement-da€&G Recon-
struction from Unstructured Programs. In: VMCAI 2011. Spger,
Heidelberg (2011)
Balakrishnan, G., Reps, T. W., Melski, D., Teitelbaum, WYSINWY X:
What You See Is Not What You eXecute. In: IFIP Working Confiees
on Verified Software: Theories, Tools, Experiments. (2005)
Chebaro, O., Kosmatov, N., Giorgetti, A., Julliand, Jombining Static
Analysis and Test Generation for C Program Debugging. In? P810.
Springer, Heidelberg (2010)

TABLE II.

COVERAGE MEASUREMENTS FORSCi COS BLOCKS

(1) Integration block

Functional | CREST Is B MCDC;, OsMOSE || Completion
testing (manuak) | (manuak) | (manuak) of CREST
I 100 % 100 % 100 % 100 % 100 % 100 % 100 %
Iy 98.7 % 979 % | 979 % 98.7 % 98.7 % 98.7 % % 98.7 %
B, 100 % 90 % 85 % 100 % 100 % 100 % 100 %
By 85.2 % 735%| 70.5% 79.4 % 85.2 % 88.2 % 88.2 %
(2) Saturation block
Functional | CREST [Bs MCDC;, OsMOSE || Completion
testing (manuak) | (manuak) | (manuak) of CREST
ls 100% 100% 100% 100% 100% 100% 100%
Iy 99% 99% 100% 100% 100% 100% 100%
Bs 88.4% 80.7% 100% 100% 100% 100% 100%
By 86.6% 76.6% 93.3% 100% 100% 100% 100%
(3) Product block
Functional | CREST [Bs MCDC;, OsMOSE || Completion
testing (manuak) | (manuak) | (manuak) of CREST
I 100% 100% 100% 100% 100% 100% 100%
Iy 100% 100% 100% 100% 100% 100% 100%
Bs 100% 100% 83% 100% 100% 100% 100%
By 87.5% 100% 75% 87.5% 100% 100% 100%
*: manually-crafted test suite achieving 100% coverage Herspecified criterion
[11] CREST: automatic test generation tool for C. [27] Xie, T., Tillmann, N., de Halleux, P., Schulte, W.: Fégs-Guided Path
http://code. googl e. com p/ crest. Exploration in Dynamic Symbolic Execution. In: DSN 20098E, Los
[12] Charreteur, F., Gotlieb, A.: Constraint-Based TegtuinGeneration for Alamitos (2009)
Java Bytecode. In: ISSRE 2010. IEEE Computer Society, Lasnkbs
(2010)
[13] C. Cadar, D. Dunbar, D. Engler: KLEE: Unassisted andofatic
Generation of High-Coverage Tests for Complex SystemsrBnag In:
OSDI 2008. Usenix Association (2008)
[14] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill and D. Ragter.
EXE: automatically generating inputs of death. In: CCS 2086M,
New York (2006)
[15] Ferdinand, C., Heckmann, R.: aiT: worst case exectitine prediction
by static program analysis. In: IFIP Congress Topical ®ess2004.
Kluwer, Dordrecht (2004)
[16] Godefroid, P., Klarlund, N., Sen, K.: DART: Directed #mated
Random Testing. In: PLDI 2005. ACM, New York (2005)
[17] Godefroid, P., Levin, M. Y., Molnar, D.: Automated Wéklox Fuzz
Testing. In: NDSS 2008.
[18] Godefroid, P., Levin, M. Y., Molnar, D.: SAGE: whitebdyzzing for
security testing. Commun. ACM 55(3): 40-44 (2012)
[19] King, J. C.: Symbolic execution and program testing.m@aunications
of the ACM, 19(7), july 1976.
[20] Marre, B., Michel, C.: Improving the Floating Point Aididn and
Subtraction Constraints. In: CP 2010. Springer, Heidgll{010)
[21] Majumdar, R., Sen, K.: Hybrid Concolic Testing. In: IEQ007. IEEE,
Computer Society, Los Alamitos (2007)
[22] Software Considerations in Airborne Systems and Egeipt Certifi-
cation. In: RTCA 1992.
[23] SCICOsS: Block diagram modeler/simulator.
http://ww. sci cos. org
[24] Sen, K., Marinov, D., Agha, G.: CUTE: A Concolic Unit Tew Engine

for C. In: ESEC/FSE 2005. ACM, New York (2005)

[25] Tillmann, N., de Halleux, P.: Pex-White Box Test Gertiena for .NET.
In: TAP 2008. Springer, Heidelberg (2008)

[26] Williams, N., Marre, B., Mouy, P.: On-the-Fly Genemrii of K-Path
Tests for C Functions. In: ASE 2004. IEEE, Computer Societys
Alamitos (2004)

