
BINSEC:

Binary-level Semantic Analysis to the Rescue

Sébastien Bardin
joint work with

Richard Bonichon, Robin David, Adel Djoudi, Benjamin
Farinier, Josselin Feist, Laurent Mounier, Marie-Laure Potet,

Thanh Dihn Ta, Franck Védrine

CEA LIST (Paris-Saclay, France)

BINSEC team RMLL 2016: The Security Track 1/ 44

About the BINSEC project

A research project :

funded by ANR (2013-2017)

axis 1 (security) and 2 (software engineering)

formal techniques for binary-level security analysis

Partners : CEA (coordinator), Airbus Group, INRIA Bretagne Atlantique,
Université Grenoble Alpes, Université de Lorraine

People : Sébastien Bardin, Frédéric Besson, Sandrine Blazy, Guillaume
Bonfante, Richard Bonichon, Robin David, Adel Djoudi, Benjamin Farinier,
Josselin Feist, Colas Le Guernic, Jean-Yves Marion, Laurent Mounier,
Marie-Laure Potet, Than Dihnh Ta, Franck Védrine, Pierre Wilke, Sara Zennou

Platform : CEA, Université Grenoble Alpes

BINSEC team RMLL 2016: The Security Track 2/ 44

Takeaway

Binary-level security analysis

many applications, many challenges

syntactic and dynamic methods are not sufficient

Semantic approaches can help !

semantic exploration, semantic disassembly

yet, still hard to design

The BINSEC Platform [CEA & Uni. Grenoble Alpes]

open source, dual goal :

◮ help design new binary-level analyzers (basic building blocks)
◮ provide innovative analyzers

current : multi-architecture support, semantic exploration & semantic
disassembly, poc on vulnerability analysis and deobfuscation

still young : beta-version just released [http ://binsec.gforge.inria.fr/]

BINSEC team RMLL 2016: The Security Track 3/ 44

About my lab @CEA

CEA LIST, Software Safety & Security Lab

rigorous tools for building
high-level quality software

2nd part of V-cycle

automatic software analysis

mostly source code

BINSEC team RMLL 2016: The Security Track 4/ 44

About formal verification

Between Software Engineering and Theoretical Computer Science

Goal = proves correctness in a mathematical way

Key concepts : M |= ϕ

M : semantic of the program

ϕ : property to be checked

|= : algorithmic check

Kind of properties

absence of runtime error

pre/post-conditions

temporal properties

BINSEC team RMLL 2016: The Security Track 5/ 44

From (a logician’s) dream to reality

Industrial reality in some key areas, especially safety-critical domains

hardware, aeronautics [airbus], railroad [metro 14], smartcards, drivers
[Windows], certified compilers [CompCert] and OS [Sel4], etc.

Ex : Airbus

Verification of

runtime errors [Astrée]

functional correctness [Frama-C ⋆]

numerical precision [Fluctuat ⋆]

source-binary conformance [CompCert]

ressource usage [Absint]

⋆ : by CEA DILS/LSL

BINSEC team RMLL 2016: The Security Track 6/ 44

From (a logician’s) dream to reality

Industrial reality in some key areas, especially safety-critical domains

hardware, aeronautics [airbus], railroad [metro 14], smartcards, drivers
[Windows], certified compilers [CompCert] and OS [Sel4], etc.

Ex : Microsoft

Verification of drivers [SDV]

conformance to MS driver policy

home developers

and third-party developers

Things like even software verification, this has been the Holy Grail of

computer science for many decades but now in some very key areas, for
example, driver verification we’re building tools that can do actual proof
about the software and how it works in order to guarantee the reliability.

- Bill Gates (2002)

BINSEC team RMLL 2016: The Security Track 6/ 44

Benefits of binary-level analysis

Outline

Preambule

Benefits of binary-level analysis

Challenges of binary-level analysis

Semantic approaches

BINSEC platform

Achievements

Conclusion

BINSEC team RMLL 2016: The Security Track 7/ 44

Benefits of binary-level analysis

Binary-level software analysis

BINSEC team RMLL 2016: The Security Track 8/ 44

Benefits of binary-level analysis

What for ? (1)

How much do you trust your external components ?

BINSEC team RMLL 2016: The Security Track 9/ 44

Benefits of binary-level analysis

What for ? (2)

How much do you trust your compiler ?

BINSEC team RMLL 2016: The Security Track 10/ 44

Benefits of binary-level analysis

What for ? (2)

Security bug introduced by a non-buggy compiler

void getPassword(void) {

char pwd [64];

if (GetPassword(pwd,sizeof(pwd))) {

/* checkpassword */

}

memset(pwd,0,sizeof(pwd));

}

Optimizing compilers may remove dead code

pwd never accessed after memset

Thus can be safely removed

And allows the password to stay longer in memory

Mentioned in OpenSSH CVE-2016-0777

BINSEC team RMLL 2016: The Security Track 11/ 44

Benefits of binary-level analysis

What for ? (3)

Is it Stuxnet ?

BINSEC team RMLL 2016: The Security Track 12/ 44

Challenges of binary-level analysis

Outline

Preambule

Benefits of binary-level analysis

Challenges of binary-level analysis

Semantic approaches

BINSEC platform

Achievements

Conclusion

BINSEC team RMLL 2016: The Security Track 13/ 44

Challenges of binary-level analysis

Binary-level security analysis

Several major security analyses are performed at byte-level

vulnerability analysis [exploit finding]

malware dissection and detection [deobfuscation]

State-of-the-technique

very skilled experts, many efforts and basic tools

dynamic analysis : gdb, fuzzing [easy to miss behaviours]

syntactic analysis : objdump, IDA Pro [easy to get fooled]

BINSEC team RMLL 2016: The Security Track 14/ 44

Challenges of binary-level analysis

Binary-level security analysis

Several major security analyses are performed at byte-level

vulnerability analysis [exploit finding]

malware dissection and detection [deobfuscation]

State-of-the-technique

very skilled experts, many efforts and basic tools

dynamic analysis : gdb, fuzzing [easy to miss behaviours]

syntactic analysis : objdump, IDA Pro [easy to get fooled]

state-of-the-art tools are not enough !

BINSEC team RMLL 2016: The Security Track 14/ 44

Challenges of binary-level analysis

Challenge : correct disassembly

Input

an executable code (array of bytes)

an initial address

a basic decoder : file × address 7→ instruction × size

Output : (surapproximation of) the program Control-Flow Graph

problem : successors of jmp eax ?

BINSEC team RMLL 2016: The Security Track 15/ 44

Challenges of binary-level analysis

Limits of syntactic approaches

Ex : IDA is fooled by simple syntactic tricks

With IDA

BINSEC team RMLL 2016: The Security Track 16/ 44

Challenges of binary-level analysis

Even worse : obfuscated code

Understand or recognize malware despite obfuscation

◮ self-modifying code, virtual machines

◮ opaque predicates, stack tampering, etc.

BINSEC team RMLL 2016: The Security Track 17/ 44

Challenges of binary-level analysis

Challenges : vulnerabilities

Use-after-free (UaF) – CWE-416

dangling pointer on deallocated-then-reallocated memory

may lead to arbitrary data/code read, write or execution

standard vulnerability in C/C++ applications (e.g. web browsers) .
firefox (CVE-2014-1512), chrome (CVE-2014-1713)

1 cha r ∗ l o g i n , ∗ pas swords ;
l o g i n=(cha r ∗) ma l l oc (. . .) ;

3 [. . .]
f r e e (l o g i n) ; // login is now a dangling pointer

5 [. . .]
pa s swords=(cha r ∗) ma l l oc (. . .) ; // may re-allocate memory of *login

7 [. . .]
p r i n t f (”%s \n” , l o g i n) ; // security threat : may print the passwords !

BINSEC team RMLL 2016: The Security Track 18/ 44

Challenges of binary-level analysis

Limits of dynamic analysis

Find a needle in the heap !

sequence of events, importance
of aliasing

strongly depend on implem of
malloc and free

BINSEC team RMLL 2016: The Security Track 19/ 44

Binary-level semantic approaches

Outline

Preambule

Benefits of binary-level analysis

Challenges of binary-level analysis

Semantic approaches

BINSEC platform

Achievements

Conclusion

BINSEC team RMLL 2016: The Security Track 20/ 44

Binary-level semantic approaches

Our proposal : binary-level semantic analysis

Semantic tools help make sense of binary

Develop the next generation of binary-level tools !

motto : leverage formal methods from safety critical systems

Challenges

source-level 7→ binary-level

safety 7→ security

many (complex) architectures

BINSEC team RMLL 2016: The Security Track 21/ 44

Binary-level semantic approaches

BINSEC approach

BINSEC team RMLL 2016: The Security Track 22/ 44

leverage powerful methods from formal software analysis

pragmatic formal methods (combination, tradeoffs, etc.)

common basic analysis + dedicated analysis (vuln., malware)

Binary-level semantic approaches

Focus : modelling

BINSEC team RMLL 2016: The Security Track 23/ 44

Example of x86

more than 1,000 instructions

. ≈ 400 basic

. + float, interrupts, mmx

many side-effects

error-prone decoding

. addressing modes, prefixes, ...

Binary-level semantic approaches

Focus : modelling

BINSEC team RMLL 2016: The Security Track 23/ 44

Intermediate Representation [cav11]

architecture independent

(really) reduced set of instructions

. 9 instructions, less than 30 operators

simple, clear semantic, no side-effect

lhs := rhs

goto addr, goto expr

ite(cond)? goto addr : goto addr’

assume, assert, nondet, malloc, free

Binary-level semantic approaches

x86 front-end

✄

✂

�

✁
81 c3 57 1d 00 00

x86reference
⇒

✄

✂

�

✁
ADD EBX 1d57

(0 x29e , 0) tmp := EBX + 7511;
(0 x29e , 1) OF := (EBX{31 ,31}=7511{31 ,31}) && (EBX{31,31}<>tmp{31 ,31}) ;
(0 x29e , 2) SF := tmp{31 ,31} ;
(0 x29e , 3) ZF := (tmp = 0) ;
(0 x28e , 4) AF := ((e x tu (EBX{0 ,7}) 9) + (e x tu 7511{0 ,7} 9)){8 , 8} ;
(0 x29e , 6) CF := ((e x tu EBX 33) + (e x tu 7511 33)){32 ,32} ;
(0 x29e , 7) EBX := tmp ; goto (0 x2a4 , 0)

BINSEC team RMLL 2016: The Security Track 24/ 44

Binary-level semantic approaches

Semantic disassembly

simple obfuscation confuses soa disassemblers such as IDA

... because they rely on syntax

semantic techniques complement and strengthen these approaches

BINSEC team RMLL 2016: The Security Track 25/ 44

Binary-level semantic approaches

Semantic disassembly (2)

With IDA

BINSEC team RMLL 2016: The Security Track 26/ 44

Binary-level semantic approaches

Semantic disassembly (2)

With IDA + BINSEC

BINSEC team RMLL 2016: The Security Track 26/ 44

Binary-level semantic approaches

Semantic disassembly : keys

Generalize constant propag

⊥

. . . −2 −1 0 1 2 . . .

⊤

Framework : abstract interpretation

notion of abstract domain

⊥,⊤,⊔, ⊓, ⊑, eval#

more or less precise domains

. intervals, polyhedra, etc.

fixpoint until stabilization

BINSEC team RMLL 2016: The Security Track 27/ 44

Binary-level semantic approaches

Semantic exploration

int main () {

int x = input();

int y = input();

int z = 2 * y;

if (z == x) {

if (x > y + 10)

failure;

}

success;

}

given a path of the program

automatically find input that
follows the path

then, iterate over all paths

x = input()

y = input()

z = 2 * y

z == x

x > y + 10

PC:=⊤ ∧ 2y0 6= x0

PC:=⊤ ∧ 2y0 = x0 ∧ x0 > y0 + 10

PC:=⊤ ∧ 2y0 = x0 ∧ x0 ≤ y0 + 10

σ:=∅

PC:=⊤

σ := {x → x0, y → y0, z → 2y0}

PC:=⊤ ∧ 2y0 = x0

BINSEC team RMLL 2016: The Security Track 28/ 44

Binary-level semantic approaches

Path predicate computation

Loc Instruction

0 input(y,z)
1 w := y+1
2 x := w + 3
3 if (x < 2 * z) (branche True)
4 if (x < z) (branche False)

BINSEC team RMLL 2016: The Security Track 29/ 44

Binary-level semantic approaches

Path predicate computation

Loc Instruction

0 input(y,z)
1 w := y+1
2 x := w + 3
3 if (x < 2 * z) (branche True)
4 if (x < z) (branche False)

let W1 , Y0 + 1 in

BINSEC team RMLL 2016: The Security Track 29/ 44

Binary-level semantic approaches

Path predicate computation

Loc Instruction

0 input(y,z)
1 w := y+1
2 x := w + 3
3 if (x < 2 * z) (branche True)
4 if (x < z) (branche False)

let W1 , Y0 + 1 in
let X2 , W1 + 3 in

BINSEC team RMLL 2016: The Security Track 29/ 44

Binary-level semantic approaches

Path predicate computation

Loc Instruction

0 input(y,z)
1 w := y+1
2 x := w + 3
3 if (x < 2 * z) (branche True)
4 if (x < z) (branche False)

let W1 , Y0 + 1 in
let X2 , W1 + 3 in

X2 < 2× Z0

BINSEC team RMLL 2016: The Security Track 29/ 44

Binary-level semantic approaches

Path predicate computation

Loc Instruction

0 input(y,z)
1 w := y+1
2 x := w + 3
3 if (x < 2 * z) (branche True)
4 if (x < z) (branche False)

let W1 , Y0 + 1 in
let X2 , W1 + 3 in

X2 < 2× Z0∧X2 ≥ Z0

BINSEC team RMLL 2016: The Security Track 29/ 44

Binary-level semantic approaches

Semantic exploration (2)

Crackme challenges

input == secret 7→ success

input 6= secret 7→ failure

BINSEC team RMLL 2016: The Security Track 30/ 44

Binary-level semantic approaches

Semantic exploration (2)

With BINSEC [https ://youtu.be/0xUc2jbpjQo]

find the path leading to success

“invert” the conditions, find the secret : bunny slope@flare.com

check : it works !

BINSEC team RMLL 2016: The Security Track 30/ 44

Binary-level semantic approaches

Semantic exploration (2)

With BINSEC [https ://youtu.be/0xUc2jbpjQo]

find the path leading to success

“invert” the conditions, find the secret : bunny slope@flare.com

check : it works !

BINSEC team RMLL 2016: The Security Track 30/ 44

Applications

coverage : solve(PC)

bug finding : solve(PC ∧ Error)

exploit finding :
solve(PC ∧ Error ∧ Hijack ∧ Payload)

Binary-level semantic approaches

Semantic exploration : keys

Symbolic Execution

path predicate computation

formula preprocessing + SMT solver

sound execution of the program [path necessarily feasible]

Dynamic Symbolic Execution [DSE]

combine dynamic and symbolic reasoning

much more robust [missing code, self-modification, etc.]

BINSEC team RMLL 2016: The Security Track 31/ 44

Platform

Outline

Preambule

Benefits of binary-level analysis

Challenges of binary-level analysis

Semantic approaches

BINSEC platform

Achievements

Conclusion

BINSEC team RMLL 2016: The Security Track 32/ 44

Platform

BINSEC platform

The BINSEC Platform [CEA & Uni. Grenoble Alpes]

open source, lgpl v2.1

mostly OCaml, 30 kloc (and pintool in C++)

dual goal

◮ help design new binary-level analyzers (basic building blocks)
◮ provide innovative analyzers

allows for combination of techniques

current : multi-architecture support, semantic exploration & semantic
disassembly, poc on vulnerabilities and deobfuscation

still young : beta-version just released [http ://binsec.gforge.inria.fr/]

Thx to a bunch of enthusiastic students : Robin David, Adel Djoudi, Josselin

Feist, Than Dihn Ta, Benjamin Farinier

BINSEC team RMLL 2016: The Security Track 33/ 44

Platform

BINSEC platform (2)

BINSEC team RMLL 2016: The Security Track 34/ 44

Platform

BINSEC platform (2)

BINSEC team RMLL 2016: The Security Track 34/ 44

• loader ELF/PE
• decoder (x86) + IR simplification
• 460/500 instructions : 380/380 “basic”, 80/120 SIMD, no float/system
• prefixes : op size, addr size, repetition
• standard syntactic disassembly techniques : recursive, linear, combination

Basic services to build analysis on :
• Simulation
• Static analysis [semantic disassembly] [Adel Djoudi – tacas15, sub. fm16]
• Symbolic execution [semantic exploration] [Robin David – saner16,issta16]
• Combinations

Platform

BINSEC platform (2)

BINSEC team RMLL 2016: The Security Track 34/ 44

Static analysis

• Generic fixpoint computation
• Safe CFG recovery
• Tradeoffs for correctness, precision, efficiency

Symbolic execution

• Path predicate optimization
• Generic concretization & symbolization
• Generic path search
• Pintool

Platform

DBA simplifications

Instruction level simplifications

◮ Idiom simplifications [local rewriting rules]

Block level simplifications

◮ Constants propagation
◮ Remove redundant assigns

Program level simplifications

◮ Flag slicing (remove must-killed variables)
◮ granularity : function level+automatic summary of callees

BINSEC team RMLL 2016: The Security Track 35/ 44

Platform

DBA simplifications

Instruction level simplifications

◮ Idiom simplifications [local rewriting rules]

Block level simplifications

◮ Constants propagation
◮ Remove redundant assigns

Program level simplifications

◮ Flag slicing (remove must-killed variables)
◮ granularity : function level+automatic summary of callees

BINSEC team RMLL 2016: The Security Track 35/ 44

Approach

• Inspired from standard compiler
optim

• Targets : flags & temp

• Sound : w.r.t. incomplete CFG

• Inter-procedural (summaries)

Platform

DBA simplifications : Experiments

program native DBA opt (DBA)
loc loc time loc red

bash 166K 559K 673.61s 389K 30.45%
cat 8K 23K 18.54s 18K 23.02%
echo 4K 10K 6.96s 8K 24.26%
less 23K 80K 69.99s 55K 30.96%
ls 19K 63K 65.69s 44K 30.58%
mkdir 8K 24K 19.74s 17K 29.50%
netstat 17K 50K 52.59s 40K 20.05%
ps 12K 36K 36.99s 27K 23.98%
pwd 4K 11K 7.69s 9K 23.56%
rm 10K 30K 24.93s 22K 25.24%
sed 10K 32K 28.85s 23K 26.20%
tar 64K 213K 242.96s 154K 27.48%
touch 8K 26K 24.28s 18K 27.88%
uname 3K 10K 6.99s 8K 23.62%

reduction
time dba instr tmp assigns flag assigns

BINSEC 1279.81s 28.64% 90.00% 67.04%

BINSEC team RMLL 2016: The Security Track 36/ 44

Platform

BINSEC platform (3)

What can be reused ?

whole analyses

◮ semantic exploration
◮ semantic disassembly

basic blocks [need cleaner APIs]

◮ decoding
◮ disassembly (cfg, call graph)
◮ abstract fixpoint computation
◮ path predicate, formula simplification & solving
◮ generic path exploration
◮ pintool

BINSEC team RMLL 2016: The Security Track 37/ 44

Achievements

Outline

Preambule

Benefits of binary-level analysis

Challenges of binary-level analysis

Semantic approaches

BINSEC platform

Achievements

Conclusion

BINSEC team RMLL 2016: The Security Track 38/ 44

Achievements

Finding use-after-free vulnerabilities

A pragmatic two-step approach implemented within the BINSEC plateform :

not complete, but scalable and correct in some cases

GUEB : scalable lightweight static analysis (not sound, not complete)
→ produces a set of CFGs slices containing potential UaF

BINSEC/SE : guided symbolic execution
→ confirm the UaF by finding concrete program inputs

BINSEC team RMLL 2016: The Security Track 39/ 44

Achievements

Help to find the needle in the heap

BINSEC team RMLL 2016: The Security Track 40/ 44

Achievements

Help to find the needle in the heap

BINSEC team RMLL 2016: The Security Track 40/ 44

Achievements

Results

Combination of techniques is fruitful !

Several new vulnerabilities found

GUEB + manual analysis [j. comp. virology 14]

◮ tiff2pdf : CVE-2013-4232
◮ openjpeg : CVE-2015-8871
◮ gifcolor : CVE-2016-3177
◮ accel-ppp

GUEB + BINSE/SE [sefm16]

◮ Jasper JPEG-2000 : CVE-2015-5221

Gueb [Josselin Feist]

MIT licence

Ocaml, 5kloc

https ://github.com/montyly/gueb

BINSEC team RMLL 2016: The Security Track 41/ 44

Achievements

Malware deobfuscation

BINSEC team RMLL 2016: The Security Track 42/ 44

Achievements

Malware deobfuscation

BINSEC team RMLL 2016: The Security Track 42/ 44

BINSEC/SE [saner16, sub. ccs16]

malware exploration (vxheaven)

detection of opaque predicates (o-llvm)

detection of stack tampering (tigress)

experiments on commercial packers

static analysis : not safe, complete, not robust to obfuscation

dynamic analysis : safe, not complete, robust to obfuscation

symbolic execution : best of both world

+ fruitful combination dynamic, static, symbolic

Conclusion

Outline

Preambule

Benefits of binary-level analysis

Challenges of binary-level analysis

Semantic approaches

BINSEC platform

Achievements

At last

BINSEC team RMLL 2016: The Security Track 43/ 44

Conclusion

Conclusion

Binary-level security analysis

many applications, many challenges

syntactic and dynamic are not enough

Semantic approaches can help !

semantic exploration, semantic disassembly

yet, still hard to design

The BINSEC Platform [CEA & Uni. Grenoble Alpes]

open source, dual goal

◮ help design new binary-level analyzers (basic building blocks)
◮ provide innovative analyzers [already a few ones]

current : multi-architecture support, semantic exploration & semantic
disassembly, poc on vulnerability detection and deobfuscation

still young : beta-version just released [http ://binsec.gforge.inria.fr/]

BINSEC team RMLL 2016: The Security Track 44/ 44

Conclusion

Conclusion

Binary-level security analysis

many applications, many challenges

syntactic and dynamic are not enough

Semantic approaches can help !

semantic exploration, semantic disassembly

yet, still hard to design

The BINSEC Platform [CEA & Uni. Grenoble Alpes]

open source, dual goal

◮ help design new binary-level analyzers (basic building blocks)
◮ provide innovative analyzers [already a few ones]

current : multi-architecture support, semantic exploration & semantic
disassembly, poc on vulnerability detection and deobfuscation

still young : beta-version just released [http ://binsec.gforge.inria.fr/]

BINSEC team RMLL 2016: The Security Track 44/ 44

In progress

tutorials, doc

code cleaning

ARM and PowerPC

Conclusion

Conclusion

Binary-level security analysis

many applications, many challenges

syntactic and dynamic are not enough

Semantic approaches can help !

semantic exploration, semantic disassembly

yet, still hard to design

The BINSEC Platform [CEA & Uni. Grenoble Alpes]

open source, dual goal

◮ help design new binary-level analyzers (basic building blocks)
◮ provide innovative analyzers [already a few ones]

current : multi-architecture support, semantic exploration & semantic
disassembly, poc on vulnerability detection and deobfuscation

still young : beta-version just released [http ://binsec.gforge.inria.fr/]

BINSEC team RMLL 2016: The Security Track 44/ 44

In progress

tutorials, doc

code cleaning

ARM and PowerPC

Formal methods for software analysis

lots of effort in proprietary industry

open source community needs to keep
up the pace

	Benefits of binary-level analysis
	Challenges of binary-level analysis
	Binary-level semantic approaches
	Platform
	Achievements
	Conclusion

