Refinement-Based CFG Reconstruction from
Unstructured Programs

Sébastien Bardin, Philippe Herrmann, Franck Védrine

CEA LIST
(Paris, France)

Bardin, S., Herrmann, P., Védrine, F. 1/ 21

Automatic analysis of executable files

m recent research field [Codesurfer/x86, SAGE, Jakstab, Osmose, etc]

m many promising applications (COTS, mobile code, malware, etc.)

A key issue : Control-Flow Graph (CFG) reconstruction

m prior to any other static analysis (SA)
m must be safe : otherwise, other SA unsafe

m must be precise : otherwise, other SA imprecise

This talk is about CFG reconstruction (from executable files)
m safe and precise technique

m based on abstraction-refinement

Bardin, S., Herrmann, P., Védrine, F. 2/ 21

Model

x>0/x:= x-1

Assembly

Source code

int foo(int x, inty) {
int k= x;
int c=y;
while (c>0) do {
k++;
G5l
return k;

}

_start:
load A 100
add B A
cmp B O
jle label

label:
move @100 B

Executable

Bardin, S., Herrmann, P., Védrine, F.

ABFFF780BD70696CA101001BDE45
145634789234ABFFE678ABDCF456
5A2B4C6D009F5F5D1E0835715697
145FEDBCADACBDAD459700346901
3456KAHA305G67H345BFFADECAD3
00113456735FFD451E13AB080DAD
344252FFAADBDA457345FD780001
FFF22546ADDAE989776600000000

3/ 21

Always available

m commercial off-the-shelf software
m mobile code (including malware)

m third-party certification

Faithful

m optimising compilers and security
m optimising compilers and safety
m What You See Is Not What You eXecute [Reps 04,05]

Very precise

m worst case execution time, memory consumption, etc.

Bardin, S., Herrmann, P., Védrine, F. 4/ 21

. i.e. more difficult than usual source-code analysis

Low-level semantic of data
m machine arithmetic, bitvector operations
m systematic usage of untyped memory (stack)

Low-level semantic of control
m no clear distinction between data and control
m no clean encapsulation of procedure calls
m dynamic jumps (goto RO)

No easy (syntactic) recovery of the Control Flow Graph (CFG)

Diversity of architectures and instruction sets
m each ISA contains dozen of instructions
m lots of engineering work

Bardin, S., Herrmann, P., Védrine, F. 5/ 21

BUT binary code analysis is difficult ...

. i.e. more difficult than usual source-code analysis

Low-level semantic of control
m no clear distinction between data and control
m no clean encapsulation of procedure calls
m dynamic jumps (goto RO)

No easy (syntactic) recovery of the Control Flow Graph (CFG)

Bardin, S., Herrmann, P., Védrine, F. 5/ 21

Input
m an executable file, i.e. an array of bytes
m the address of the initial instruction

m a basic decoder : exec f. x address — instruction X size

145FEDBCADACBDADA59700346901
3456KAHA305G67H345BFFADECAD3
00113456735FFD451E13ABO80DAD
344252FFAADBDA457345FD780001
FFF22546ADDAE989776600000000

R1:= R1+4
A := @(R1)

Output : CFG of the program

Bardin, S., Herrmann, P., Védrine, F. 6/ 21

CFG reconstruction (2)

Successor addresses are often syntactically known
m (addr : move a b) —
m (addr : goto 100) —
m (addr : ble 100) —

Bardin, S., Herrmann, P., Védrine, F. 7/ 21

CFG reconstruction (2)

Successor addresses are often syntactically known

m (addr : move a b) — successor at addr+size
m (addr : goto 100) — successor at 100
m (addr : ble 100) — successors at 100 and addr+size

Bardin, S., Herrmann, P., Védrine, F. 7/ 21

CFG reconstruction (2)

Successor addresses are often syntactically known

m (addr : move a b) — successor at addr+size
m (addr : goto 100) — successor at 100
m (addr : ble 100) — successors at 100 and addr+size

But not always : successors of (addr : goto a)?

Bardin, S., Herrmann, P., Védrine, F. 7/ 21

CFG reconstruction (2)

Successor addresses are often syntactically known

m (addr : move a b) — successor at addr+size
m (addr : goto 100) — successor at 100
m (addr : ble 100) — successors at 100 and addr+size

But not always : successors of (addr : goto a)?

Dynamic jump is the enemy !

Dynamic jumps are pervasive : introduced by compilers

m switch, function pointers, virtual methods, etc.

Bardin, S., Herrmann, P., Védrine, F. 7/ 21

Unsafe approaches to CFG recovery

... current industrial practise ...

Linear sweep decoding [brute force]
m decode instructions at each code address

e miss every “dynamic” edge of the CFG

e may still miss instructions [too optimistic hypothesises]

Recursive traversal

m decode recursively from entry point, stop on dynamic jump

e miss large parts of CFG

Bardin, S., Herrmann, P., Védrine, F. 8/ 21

VA and CFG reconstruction must be interleaved

ABFFF780BD70696CA101001BDE45 CFG recovery
145634789234ABFFE678ABDCF456
5A2B4CED009FSFSD1E0B35715697
145FEDBCADACBDAD459700346901

DECAD3 >
00113456735FFD451E13AB0BODAD A »
344252FFAADBDAA57345FD780001

(2 oy [
FFF22546ADDAE989776600000000 (_”.,,,(‘_u)\ 0¥ I

=)

Very difficult to get precise : imprecision on jumps — extra
propagation on false targets — more imprecision on value analysis —
possibly more imprecision on jumps — ...

Bardin, S., Herrmann, P., Védrine, F. 9/ 21

CodeSurfer/x86 [Balakrishnan-Reps 04,05,07,...]
m abstract domain : strided intervals (+ affine relationships)
e imprecise : abstract domain not suited to sets of jump targets
(arbitrary values from compiler)

e in practicse many false targets

Jakstab [Kinder-Veith 08,09,10]
m abstract domain : sets of bounded cardinality (k-sets)

m precise when the bound k is well-tuned

e not robust to the parameter k : possibly inefficient if k too
large, very imprecise if k not large enough

Bardin, S., Herrmann, P., Védrine, F.

10/ 21

Key observations

m k-sets are the only domain well-suited to precise CFG
reconstruction

m for most programs, only a few facts need to be tracked
precisely to resolve dynamic jumps

m good candidate for abstraction-refinement

Contribution [VMCAI 2011]
m A refinement-based approach to safe CFG reconstruction
m An implementation and a few experiments

m The technique is safe, precise, robust and reasonably efficient

Bardin, S., Herrmann, P., Védrine, F. 11/ 21

Unstructured Programs : P = (L, V, A, T, ly) where
m L C N finite set of code addresses
V finite set of program variables, A finite set of arrays

|
m 7 maps code addresses to instructions
m /p initial code address

[

instructions : assignments v :=e and ale;] :=ey, static jumps
goto /, branching instructions ite(cond,h,h), dynamic jumps
cgoto(v)

Problem : compute an invariant of P such that no dynamic target
evaluates to T, or fail

m do not fail “too often”

m do not add "too many” false targets

Bardin, S., Herrmann, P., Védrine, F. 12/ 21

abstract domain = k-sets

k-set cardinality bounds are local to each location

m gain efficiency through loss of precision

m still a global bound Kmax over local bounds

procedure : propagate forward until a dynamic target expression
evaluates to T, then try to refine the domain to avoid this T value

m domain refinement = increase some k-set cardinality bounds

m if no domain update then fail, else restart propagation with
new domains

Bardin, S., Herrmann, P., Védrine, F. 13/ 21

For each target evaluating to T
m follows backward data dependencies
m only interested in T-values (other locations are safe until now)

m only interested in correcting initial causes of precision loss

Finding the initial causes of precision loss

m add tags to T-values, recording origin : T, Tinit, T (o ¢,

m initial causes of precision loss are of the form Tinit, T (¢,)

How to correct
m [;,+ cannot be avoided

® T(...c,) May be avoided if n < Kmax (set local bound to n)

Bardin, S., Herrmann, P., Védrine, F. 14/ 21

jump x

{2}

Bardin, S., Herrmann, P., Védrine, F.

15/ 21

jump x

source of
prec. loss

Bardin, S., Herrmann, P., Védrine, F.

15/ 21

jump x

source of
prec. loss

Bardin, S., Herrmann, P., Védrine, F.

15/ 21

jump

source of
prec. loss

Bardin, S., Herrmann, P., Védrine, F.

15/ 21

source of
prec. loss

domain @ 2Pl
update T

Dx := 2

jump

Bardin, S., Herrmann, P., Védrine, F. 15/ 21

jump x

{2}

Bardin, S., Herrmann, P., Védrine, F.

15/ 21

source of
prec. loss

domain T
update

jump

Bardin, S., Herrmann, P., Védrine, F. 15/ 21

jump x

{2}

Bardin, S., Herrmann, P., Védrine, F.

15/ 21

jump

{2}

Bardin, S., Herrmann, P., Védrine, F.

15/ 21

Too much refinement = inefficiency

A journal of the forward propagation

m record observed feasible branches / alias / dynamic targets

m prune backward data dependencies accordingly

Two possible failure policies during refinement

m optimistic : fails only when no local domain is corrected

m pessimistic : fails as soon as one “cause of precision loss”
cannot be corrected

Bardin, S., Herrmann, P., Védrine, F. 16/ 21

Basic theoretical properties

Soundness : returns either FAIL or an invariant such that no jump
target evaluates to T

Complexity : polynomial number of refinements

Precision : perfect relative precision for a non trivial subclass of
programs (see next)

Bardin, S., Herrmann, P., Védrine, F. 17/ 21

Relative completeness (RC) : PaR is relatively complete if
PaR(P, Kmax) returns successfully when the forward k-set
propagation with parameter Kmax does

Bad news : no RC in the general case

m mainly because of control dependencies

Good news : RC for a non trivial subclass of programs

m non deterministic branches [new : only feasible branches]
m guarded aliases
m restricted class of operators : +, —, xk ok, but not x

m RC even for the procedure with “pessimistic failure”

Bardin, S., Herrmann, P., Védrine, F.

18/ 21

Implementation : CFG reconstruction from 32-bit PowerPC (PPC)

Bench : Safety critical program from Sagem

m 32 kloc, 51 dynamic jumps, up to 16 targets a jump

Results
m precision : resolve every jump, only 7% of false targets

(standard program analysis cannot recover better than between
400% and 4000% of false targets)

m robustness : results independent of Kmax (if large enough)

m |ocality : tight value of max-k, low value of mean-k

Bardin, S., Herrmann, P., Védrine, F. 19/ 21

Terminates in 18 min [< 5 min now]
m ok for a preliminary implementation
m already sufficient for some industrial application

m however (as expected) procedure inlining is an issue

1x - 3x faster than adequate k-set propag
3x - bx faster than iterated k-set propag

m we expected more gap
m lots of redundant work from one refinement step to the other

m can probably be improved

Bardin, S., Herrmann, P., Védrine, F. 20/ 21

We investigate safe CFG reconstruction from executable files

Results
m an original refinement-based procedure
m safe, precise, robust and reasonably efficient

m both theoretical and empirical evidence

Future work
m improve efficiency [inlining, redundant work]
m experiments on non-critical programs [dynamic alloc]

m ultimate goal : executables coming from large C++ programs

Bardin, S., Herrmann, P., Védrine, F. 21/ 21

Backup 1

Relative completeness : why it does not work (general case)

let us suppose Kmax =1

1. x :=1, goto 2

2. if x==1 then goto 3 else goto 4

3. t :=100, goto 5

4. t:=200, goto 5 // dead code
5. jump t

Bardin, S., Herrmann, P., Védrine, F. 21/ 21

Backup 1

Relative completeness : why it does not work (general case)

let us suppose Kmax =1

1. x:=1,goto 2 // x=T

2. if x==1 then goto 3 else goto 4 // x={1}
3. t:=100, goto 5 // x={1}

t :=200, goto 5 // x=_1 // dead code
. jump t // t={100}

o

Forward propagation with Kmax = 1 succeeds.

Bardin, S., Herrmann, P., Védrine, F. 21/ 21

Relative completeness : why it does not work (general case)
let us suppose Kmax =1

1. x:=1,goto 2 // x=T

2. if x==1 then goto 3 else goto 4 // x=T

3. t:=100, goto 5 // x=T

4. t:=200, goto 5 // x=T // dead code

5. jumpt // t=T100200)

Forward propagation with Kmax = 1 succeeds.

Our procedure fails :

m believes that (5, t) can take at least values {100,200}

m do not notice that else branch infeasible

Bardin, S., Herrmann, P., Védrine, F.

21/ 21

Relative completeness : why it works (restricted class)
m KSET (k) is as precise as KSET(Kmax), as long as there is no
T-cast
m loss of relative precision happens only because of T-cast

= on the restricted subclass, as long as no alias / jump evaluates
to T, KSET(k) and KSET(Kmax) computes the same proper
k-sets

= same aliases and same dynamic targets (if proper k-sets)

Actually, more powerful than RC ...

Bardin, S., Herrmann, P., Védrine, F.

21/ 21

	Introduction
	The PaR Procedure
	Experiments
	Conclusion
	Annexe

