
Refinement-Based CFG Reconstruction from

Unstructured Programs

Sébastien Bardin, Philippe Herrmann, Franck Védrine

CEA LIST
(Paris, France)

Bardin, S., Herrmann, P., Védrine, F. 1/ 21

Overview

Automatic analysis of executable files

recent research field [Codesurfer/x86, SAGE, Jakstab, Osmose, etc.]

many promising applications (COTS, mobile code, malware, etc.)

A key issue : Control-Flow Graph (CFG) reconstruction

prior to any other static analysis (SA)

must be safe : otherwise, other SA unsafe

must be precise : otherwise, other SA imprecise

This talk is about CFG reconstruction (from executable files)

safe and precise technique

based on abstraction-refinement

Bardin, S., Herrmann, P., Védrine, F. 2/ 21

Binary code analysis

Bardin, S., Herrmann, P., Védrine, F. 3/ 21

Binary code analysis is useful !

Always available

commercial off-the-shelf software

mobile code (including malware)

third-party certification

Faithful

optimising compilers and security

optimising compilers and safety

What You See Is Not What You eXecute [Reps 04,05]

Very precise

worst case execution time, memory consumption, etc.

Bardin, S., Herrmann, P., Védrine, F. 4/ 21

BUT binary code analysis is difficult ...

. . . i.e. more difficult than usual source-code analysis

Low-level semantic of data

machine arithmetic, bitvector operations

systematic usage of untyped memory (stack)

Low-level semantic of control

no clear distinction between data and control

no clean encapsulation of procedure calls

dynamic jumps (goto R0)

No easy (syntactic) recovery of the Control Flow Graph (CFG)

Diversity of architectures and instruction sets

each ISA contains dozen of instructions

lots of engineering work

Bardin, S., Herrmann, P., Védrine, F. 5/ 21

BUT binary code analysis is difficult ...

. . . i.e. more difficult than usual source-code analysis

Low-level semantic of data

machine arithmetic, bitvector operations

systematic usage of untyped memory (stack)

Low-level semantic of control

no clear distinction between data and control

no clean encapsulation of procedure calls

dynamic jumps (goto R0)

No easy (syntactic) recovery of the Control Flow Graph (CFG)

Diversity of architectures and instruction sets

each ISA contains dozen of instructions

lots of engineering work

Bardin, S., Herrmann, P., Védrine, F. 5/ 21

CFG reconstruction

Input

an executable file, i.e. an array of bytes

the address of the initial instruction

a basic decoder : exec f. × address 7→ instruction × size

Output : CFG of the program

Bardin, S., Herrmann, P., Védrine, F. 6/ 21

CFG reconstruction (2)

Successor addresses are often syntactically known

〈 addr : move a b 〉 →

〈 addr : goto 100 〉 →

〈 addr : ble 100 〉 →

Bardin, S., Herrmann, P., Védrine, F. 7/ 21

CFG reconstruction (2)

Successor addresses are often syntactically known

〈 addr : move a b 〉 → successor at addr+size

〈 addr : goto 100 〉 → successor at 100

〈 addr : ble 100 〉 → successors at 100 and addr+size

Bardin, S., Herrmann, P., Védrine, F. 7/ 21

CFG reconstruction (2)

Successor addresses are often syntactically known

〈 addr : move a b 〉 → successor at addr+size

〈 addr : goto 100 〉 → successor at 100

〈 addr : ble 100 〉 → successors at 100 and addr+size

But not always : successors of 〈addr : goto a 〉 ?

Bardin, S., Herrmann, P., Védrine, F. 7/ 21

CFG reconstruction (2)

Successor addresses are often syntactically known

〈 addr : move a b 〉 → successor at addr+size

〈 addr : goto 100 〉 → successor at 100

〈 addr : ble 100 〉 → successors at 100 and addr+size

But not always : successors of 〈addr : goto a 〉 ?

Dynamic jump is the enemy !

Dynamic jumps are pervasive : introduced by compilers

switch, function pointers, virtual methods, etc.

Bardin, S., Herrmann, P., Védrine, F. 7/ 21

Unsafe approaches to CFG recovery

... current industrial practise ...

Linear sweep decoding [brute force]

decode instructions at each code address

• miss every “dynamic” edge of the CFG

• may still miss instructions [too optimistic hypothesises]

Recursive traversal

decode recursively from entry point, stop on dynamic jump

• miss large parts of CFG

Bardin, S., Herrmann, P., Védrine, F. 8/ 21

Safe CFG recovery

VA and CFG reconstruction must be interleaved

Very difficult to get precise : imprecision on jumps → extra

propagation on false targets → more imprecision on value analysis →

possibly more imprecision on jumps → . . .

Bardin, S., Herrmann, P., Védrine, F. 9/ 21

Existing safe approaches

CodeSurfer/x86 [Balakrishnan-Reps 04,05,07,...]

abstract domain : strided intervals (+ affine relationships)

• imprecise : abstract domain not suited to sets of jump targets
(arbitrary values from compiler)

• in practicse many false targets

Jakstab [Kinder-Veith 08,09,10]

abstract domain : sets of bounded cardinality (k-sets)

precise when the bound k is well-tuned

• not robust to the parameter k : possibly inefficient if k too
large, very imprecise if k not large enough

Bardin, S., Herrmann, P., Védrine, F. 10/ 21

Contribution

Key observations

k-sets are the only domain well-suited to precise CFG
reconstruction

for most programs, only a few facts need to be tracked
precisely to resolve dynamic jumps

good candidate for abstraction-refinement

Contribution [VMCAI 2011]

A refinement-based approach to safe CFG reconstruction

An implementation and a few experiments

The technique is safe, precise, robust and reasonably efficient

Bardin, S., Herrmann, P., Védrine, F. 11/ 21

The problem

Unstructured Programs : P = (L,V ,A,T , l0) where

L ⊆ N finite set of code addresses

V finite set of program variables, A finite set of arrays

T maps code addresses to instructions

l0 initial code address

instructions : assignments v :=e and a[e1] :=e2, static jumps
goto l , branching instructions ite(cond ,l1,l2), dynamic jumps
cgoto(v)

Problem : compute an invariant of P such that no dynamic target
evaluates to ⊤, or fail

do not fail “too often”

do not add “too many” false targets

Bardin, S., Herrmann, P., Védrine, F. 12/ 21

Sketch of the procedure

abstract domain = k-sets

k-set cardinality bounds are local to each location

gain efficiency through loss of precision

still a global bound Kmax over local bounds

procedure : propagate forward until a dynamic target expression
evaluates to ⊤, then try to refine the domain to avoid this ⊤ value

domain refinement = increase some k-set cardinality bounds

if no domain update then fail, else restart propagation with
new domains

Bardin, S., Herrmann, P., Védrine, F. 13/ 21

Refinement

For each target evaluating to ⊤

follows backward data dependencies

only interested in ⊤-values (other locations are safe until now)

only interested in correcting initial causes of precision loss

Finding the initial causes of precision loss

add tags to ⊤-values, recording origin : ⊤,⊤init ,⊤〈c1,...,cn〉

initial causes of precision loss are of the form ⊤init ,⊤〈c1,...,cn〉

How to correct

⊤init cannot be avoided

⊤〈c1,...,cn〉 may be avoided if n ≤ Kmax (set local bound to n)

Bardin, S., Herrmann, P., Védrine, F. 14/ 21

Example

Bardin, S., Herrmann, P., Védrine, F. 15/ 21

Example

Bardin, S., Herrmann, P., Védrine, F. 15/ 21

Example

Bardin, S., Herrmann, P., Védrine, F. 15/ 21

Example

Bardin, S., Herrmann, P., Védrine, F. 15/ 21

Example

Bardin, S., Herrmann, P., Védrine, F. 15/ 21

Example

Bardin, S., Herrmann, P., Védrine, F. 15/ 21

Example

Bardin, S., Herrmann, P., Védrine, F. 15/ 21

Example

Bardin, S., Herrmann, P., Védrine, F. 15/ 21

Example

Bardin, S., Herrmann, P., Védrine, F. 15/ 21

Some details

Too much refinement = inefficiency

A journal of the forward propagation

record observed feasible branches / alias / dynamic targets

prune backward data dependencies accordingly

Two possible failure policies during refinement

optimistic : fails only when no local domain is corrected

pessimistic : fails as soon as one “cause of precision loss”
cannot be corrected

Bardin, S., Herrmann, P., Védrine, F. 16/ 21

Basic theoretical properties

Soundness : returns either FAIL or an invariant such that no jump
target evaluates to ⊤

Complexity : polynomial number of refinements

Precision : perfect relative precision for a non trivial subclass of
programs (see next)

Bardin, S., Herrmann, P., Védrine, F. 17/ 21

What about precision ?

Relative completeness (RC) : PaR is relatively complete if
PaR(P ,Kmax) returns successfully when the forward k-set
propagation with parameter Kmax does

Bad news : no RC in the general case

mainly because of control dependencies

Good news : RC for a non trivial subclass of programs

non deterministic branches [new : only feasible branches]

guarded aliases

restricted class of operators : +,−,×k ok, but not ×

RC even for the procedure with “pessimistic failure”

Bardin, S., Herrmann, P., Védrine, F. 18/ 21

Experiments

Implementation : CFG reconstruction from 32-bit PowerPC (PPC)

Bench : Safety critical program from Sagem

32 kloc, 51 dynamic jumps, up to 16 targets a jump

Results

precision : resolve every jump, only 7% of false targets

(standard program analysis cannot recover better than between

400% and 4000% of false targets)

robustness : results independent of Kmax (if large enough)

locality : tight value of max-k, low value of mean-k

Bardin, S., Herrmann, P., Védrine, F. 19/ 21

About efficiency

Terminates in 18 min [≤ 5 min now]

ok for a preliminary implementation

already sufficient for some industrial application

however (as expected) procedure inlining is an issue

1x - 3x faster than adequate k-set propag
3x - 5x faster than iterated k-set propag

we expected more gap

lots of redundant work from one refinement step to the other

can probably be improved

Bardin, S., Herrmann, P., Védrine, F. 20/ 21

Conclusion

We investigate safe CFG reconstruction from executable files

Results

an original refinement-based procedure

safe, precise, robust and reasonably efficient

both theoretical and empirical evidence

Future work

improve efficiency [inlining, redundant work]

experiments on non-critical programs [dynamic alloc]

ultimate goal : executables coming from large C++ programs

Bardin, S., Herrmann, P., Védrine, F. 21/ 21

Backup 1

Relative completeness : why it does not work (general case)

let us suppose Kmax = 1

1. x :=1, goto 2

2. if x==1 then goto 3 else goto 4

3. t :=100, goto 5

4. t :=200, goto 5 // dead code

5. jump t

Bardin, S., Herrmann, P., Védrine, F. 21/ 21

Backup 1

Relative completeness : why it does not work (general case)

let us suppose Kmax = 1

1. x :=1, goto 2 // x=⊤

2. if x==1 then goto 3 else goto 4 // x={1}

3. t :=100, goto 5 // x={1}

4. t :=200, goto 5 // x=⊥ // dead code

5. jump t // t={100}

Forward propagation with Kmax = 1 succeeds.

Bardin, S., Herrmann, P., Védrine, F. 21/ 21

Backup 1

Relative completeness : why it does not work (general case)

let us suppose Kmax = 1

1. x :=1, goto 2 // x=⊤

2. if x==1 then goto 3 else goto 4 // x=⊤

3. t :=100, goto 5 // x=⊤

4. t :=200, goto 5 // x=⊤ // dead code

5. jump t // t=⊤〈100,200〉

Forward propagation with Kmax = 1 succeeds.

Our procedure fails :

believes that (5, t) can take at least values {100, 200}

do not notice that else branch infeasible

Bardin, S., Herrmann, P., Védrine, F. 21/ 21

Backup 2

Relative completeness : why it works (restricted class)

KSET(k) is as precise as KSET(Kmax), as long as there is no
⊤-cast

loss of relative precision happens only because of ⊤-cast

⇒ on the restricted subclass, as long as no alias / jump evaluates
to ⊤, KSET(k) and KSET(Kmax) computes the same proper
k-sets

⇒ same aliases and same dynamic targets (if proper k-sets)

Actually, more powerful than RC ...

Bardin, S., Herrmann, P., Védrine, F. 21/ 21

	Introduction
	The PaR Procedure
	Experiments
	Conclusion
	Annexe

