
Sound and Quasi-Complete Detection of
Infeasible Test Requirements

Sébastien Bardin

CEA LIST, Software Safety Lab
(Paris-Saclay, France)

joint work with:
Mickaël Delahaye, Robin David, Nikolai Kosmatov,
Mike Papadakis, Yves Le Traon, Jean-Yves Marion

Bardin et al. ICST 2015 1/ 27

Context : white-box testing

Testing process

Generate a test input
Run it and check for errors
Estimate coverage : if enough stop, else loop

Coverage criteria [decision, mcdc, mutants, etc.] play a major role

generate tests, decide when to stop, assess quality of testing
definition : systematic way of deriving test requirements

Bardin et al. ICST 2015 2/ 27

Context : white-box testing

Testing process

Generate a test input
Run it and check for errors
Estimate coverage : if enough stop, else loop

Coverage criteria [decision, mcdc, mutants, etc.] play a major role

generate tests, decide when to stop, assess quality of testing
definition : systematic way of deriving test requirements

The enemy : Infeasible test requirements

waste generation effort, imprecise coverage ratios
cause : structural coverage criteria are ... structural
detecting infeasible test requirements is undecidable

Recognized as a hard and important issue in testing

no practical solution, not so much work [compared to test gen.]

real pain [ex : aeronautics, mutation testing]

Bardin et al. ICST 2015 2/ 27

Our goals and results

Focus on white-box (structural) coverage criteria

Goals : automatic detection of infeasible test requirements

sound method [thus, incomplete]

applicable to a large class of coverage criteria

strong detection power, reasonable detection speed

rely as much as possible on existing verification methods

Bardin et al. ICST 2015 3/ 27

Our goals and results

Focus on white-box (structural) coverage criteria

Goals : automatic detection of infeasible test requirements

sound method [thus, incomplete]

applicable to a large class of coverage criteria

strong detection power, reasonable detection speed

rely as much as possible on existing verification methods

Results

automatic, sound and generic method X

new combination of existing verification technologies X

experimental results : strong detection power [95%], reasonable
detection speed [≤ 1s/obj.], improve test generation X

Bardin et al. ICST 2015 3/ 27

Our goals and results

Focus on white-box (structural) coverage criteria

Goals : automatic detection of infeasible test requirements

sound method [thus, incomplete]

applicable to a large class of coverage criteria

strong detection power, reasonable detection speed

rely as much as possible on existing verification methods

Results

automatic, sound and generic method X

new combination of existing verification technologies X

experimental results : strong detection power [95%], reasonable
detection speed [≤ 1s/obj.], improve test generation X

yet to be proved : scalability on large programs ?

[promising, not yet end of the story]

Bardin et al. ICST 2015 3/ 27

Outline

Introduction

Background : labels

Overview of the approach

Focus : checking assertion validity

Implementation

Experiments

Conclusion

Bardin et al. ICST 2015 4/ 27

Focus : Labels [ICST 2014]

Annotate programs with labels
◮ predicate attached to a specific program instruction

Label (loc , ϕ) is covered if a test execution
◮ reaches the instruction at loc
◮ satisfies the predicate ϕ

Good for us

◮ can easily encode a large class of coverage criteria [see after]
◮ in the scope of standard program analysis techniques

Bardin et al. ICST 2015 5/ 27

Focus : Labels [ICST 2014]

Annotate programs with labels
◮ predicate attached to a specific program instruction

Label (loc , ϕ) is covered if a test execution
◮ reaches the instruction at loc
◮ satisfies the predicate ϕ

Good for us

◮ can easily encode a large class of coverage criteria [see after]
◮ in the scope of standard program analysis techniques
◮ infeasible label (loc , ϕ) ⇔ valid assertion (loc , assert¬ϕ)

Bardin et al. ICST 2015 5/ 27

Infeasible labels, valid assertions

int g(int x, int a) {

int res;

if(x+a >= x)

res = 1;

else

res = 0;

//l1: res == 0 // infeasible

}

Bardin et al. ICST 2015 6/ 27

Infeasible labels, valid assertions

int g(int x, int a) {

int res;

if(x+a >= x)

res = 1;

else

res = 0;

//@assert res != 0 // valid

}

Bardin et al. ICST 2015 6/ 27

Simulation of standard coverage criteria

statement_1 ;

if (x==y && a<b)

{...};

statement_3 ;

−−−−−→

statement_1 ;

// l1: x==y && a<b

// l2: !(x==y && a<b)

if (x==y && a<b)

{...};

statement_3 ;

Decision Coverage (DC)

Bardin et al. ICST 2015 7/ 27

Simulation of standard coverage criteria

statement_1 ;

if (x==y && a<b)

{...};

statement_3 ;

−−−−−→

statement_1 ;

// l1: x==y

// l2: !(x==y)

// l3: a<b

// l4: !(a<b)

if (x==y && a<b)

{...};

statement_3 ;

Condition Coverage (CC)

Bardin et al. ICST 2015 7/ 27

Simulation of standard coverage criteria

statement_1 ;

if (x==y && a<b)

{...};

statement_3 ;

−−−−−→

statement_1 ;

// l1: x==y && a<b

// l2: x==y && a>=b

// l3: x!=y && a<b

// l4: x!=y && a>=b

if (x==y && a<b)

{...};

statement_3 ;

Multiple-Condition Coverage (MCC)

Bardin et al. ICST 2015 7/ 27

Simulation of standard coverage criteria

Bardin et al. ICST 2015 7/ 27

X IC, DC, FC

X CC, DCC, MCC, GACC

X large part of Weak Mutations

X : perfect simulation [ICST 14]

Simulation of standard coverage criteria

Bardin et al. ICST 2015 7/ 27

X IC, DC, FC

X CC, DCC, MCC, GACC

X large part of Weak Mutations

≈ Strong Mutations

≈ MCDC

X : perfect simulation [ICST 14]

≈ : approx. simulation

Outline

Introduction

Background : labels

Overview of the approach

Focus : checking assertion validity

Implementation

Experiments

Conclusion

Bardin et al. ICST 2015 8/ 27

Overview of the approach

Bardin et al. ICST 2015 9/ 27

labels as a unifying criteria

label infeasibility ⇔ assertion validity

s-o-t-a verification for assertion checking

only soundness is required (verif)

◮ label encoding not required to be perfect

Outline

Introduction

Background : labels

Overview of the approach

Focus : checking assertion validity

Implementation

Experiments

Conclusion

Bardin et al. ICST 2015 10/ 27

Focus : checking assertion validity

Two broad categories of sound assertion checkers

State-approximation computation [forward abstract interp., cegar]

◮ compute an invariant of the program
◮ then, analyze all assertions (labels) in one go

Goal-oriented checking [pre≤k , weakest precond., cegar]

◮ perform a dedicated check for each assertion
◮ a single check usually easier, but many of them

Bardin et al. ICST 2015 11/ 27

Focus : checking assertion validity

Two broad categories of sound assertion checkers

State-approximation computation [forward abstract interp., cegar]

◮ compute an invariant of the program
◮ then, analyze all assertions (labels) in one go

Goal-oriented checking [pre≤k , weakest precond., cegar]

◮ perform a dedicated check for each assertion
◮ a single check usually easier, but many of them

Focus on Value-analysis (VA) and Weakest Precondition (WP)

correspond to our implementation

well-established approaches

[the paper is more generic]

Bardin et al. ICST 2015 11/ 27

Focus : checking assertion validity (2)

VA WP

sound for assert validity X X

blackbox reuse X X

local precision × X

calling context X ×

calls / loop effects X ×
global precision × ×

scalability wrt. #labels X X

scalability wrt. code size × X

hypothesis : VA is interprocedural

Bardin et al. ICST 2015 12/ 27

VA and WP may fail

int main() {

int a = nondet(0 .. 20);

int x = nondet(0 .. 1000);

return g(x,a);

}

int g(int x, int a) {

int res;

if(x+a >= x)

res = 1;

else

res = 0;

//l1: res == 0

}

Bardin et al. ICST 2015 13/ 27

VA and WP may fail

int main() {

int a = nondet(0 .. 20);

int x = nondet(0 .. 1000);

return g(x,a);

}

int g(int x, int a) {

int res;

if(x+a >= x)

res = 1;

else

res = 0;

//@assert res != 0

}

Bardin et al. ICST 2015 13/ 27

VA and WP may fail

int main() {

int a = nondet(0 .. 20);

int x = nondet(0 .. 1000);

return g(x,a);

}

int g(int x, int a) {

int res;

if(x+a >= x)

res = 1;

else

res = 0;

//@assert res != 0 // both VA and WP fail

}

Bardin et al. ICST 2015 13/ 27

Proposal : VA ⊕ WP (1)

Goal = get the best of the two worlds

idea : VA passes to WP the global info. it lacks

Which information, and how to transfer it ?

VA computes (internally) some form of invariants

WP naturally takes into account assumptions //@ assume

solution VA exports its invariants on the form of WP-assumptions

Bardin et al. ICST 2015 14/ 27

Proposal : VA ⊕ WP (1)

Goal = get the best of the two worlds

idea : VA passes to WP the global info. it lacks

Which information, and how to transfer it ?

VA computes (internally) some form of invariants

WP naturally takes into account assumptions //@ assume

solution VA exports its invariants on the form of WP-assumptions

Should work for any VA and WP engine

Bardin et al. ICST 2015 14/ 27

VA⊕WP succeeds !

int main() {

int a = nondet(0 .. 20);

int x = nondet(0 .. 1000);

return g(x,a);

}

int g(int x, int a) {

int res;

if(x+a >= x)

res = 1;

else

res = 0;

//l1: res == 0

}

Bardin et al. ICST 2015 15/ 27

VA⊕WP succeeds !

int main() {

int a = nondet(0 .. 20);

int x = nondet(0 .. 1000);

return g(x,a);

}

int g(int x, int a) {

//@assume 0 <= a <= 20

//@assume 0 <= x <= 1000

int res;

if(x+a >= x)

res = 1;

else

res = 0;

//@assert res != 0

}

Bardin et al. ICST 2015 15/ 27

VA⊕WP succeeds !

int main() {

int a = nondet(0 .. 20);

int x = nondet(0 .. 1000);

return g(x,a);

}

int g(int x, int a) {

//@assume 0 <= a <= 20

//@assume 0 <= x <= 1000

int res;

if(x+a >= x)

res = 1;

else

res = 0;

//@assert res != 0 // VA ⊕ WP succeeds

}

Bardin et al. ICST 2015 15/ 27

Proposal : VA ⊕ WP (2)

Exported invariants

numerical constraints (sets, intervals, congruence)

only names appearing in the program (params, lhs, vars)

in practice : exhaustive export has very low overhead

Soundness ok as long as VA is sound

Exhaustivity of “export” only affect deductive power

Bardin et al. ICST 2015 16/ 27

Summary

VA WP VA ⊕ WP

sound for assert validity X X X

blackbox reuse X X X

local precision × X X

calling context X × X

calls / loop effects X × X

global precision × × ×

scalability wrt. #labels X X X

scalability wrt. code size × X ?

Bardin et al. ICST 2015 17/ 27

Outline

Introduction

Background : labels

Overview of the approach

Focus : checking assertion validity

Implementation

Experiments

Conclusion

Bardin et al. ICST 2015 18/ 27

Implementation inside LTest [TAP 14]

Bardin et al. ICST 2015 19/ 27

Implementation

plugin of the Frama-C analyser for C programs

◮ open-source
◮ sound, industrial strength
◮ among other : VA, WP, specification language

LTest itself is open-source except test generation

◮ based on PathCrawler for test generation

Implementation inside LTest [TAP 14]

Bardin et al. ICST 2015 19/ 27

Supported criteria

DC, CC, MCC

FC, IDC, WM

Encoded with labels [ICST 2014]

managed in a unified way

rather easy to add new ones

Implementation inside LTest [TAP 14]

Bardin et al. ICST 2015 19/ 27

DSE⋆ procedure [ICST 2014]

DSE with native support for labels

extension of PathCrawler

Implementation inside LTest [TAP 14]

Bardin et al. ICST 2015 19/ 27

Reuse static analyzers from Frama-C

sound detection !

several modes : VA, WP, VA ⊕ WP

Implementation inside LTest [TAP 14]

Bardin et al. ICST 2015 19/ 27

Service cooperation

share label statuses

Covered, Infeasible,?

Reuse static analyzers from Frama-C

sound detection !

several modes : VA, WP, VA ⊕ WP

Outline

Introduction

Background : labels

Overview of the approach

Focus : checking assertion validity

Implementation

Experiments

Conclusion

Bardin et al. ICST 2015 20/ 27

Experiments

RQ1 : How effective are the static analyzers in detecting infeasible
test requirements ?

RQ2 : How efficient are the static analyzers in detecting infeasible
test requirements ?

RQ3 : To what extent can we improve test generation by detecting
infeasible test requirements ?

Standard (test generation) benchmarks [Siemens, Verisec, Mediabench]

12 programs (50-300 loc), 3 criteria (CC, MCC, WM)

26 pairs (program, coverage criterion)

1,270 test requirements, 121 infeasible ones

Bardin et al. ICST 2015 21/ 27

RQ1 : detection power

#Lab #Inf VA WP VA ⊕ WP

#d %d #d %d #d %d

Total 1,270 121 84 69% 73 60% 118 98%

Min 0 0 0% 0 0% 2 67%

Max 29 29 100% 15 100% 29 100%
Mean 4.7 3.2 63% 2.8 82% 4.5 95%

#d : number of detected infeasible labels

%d : ratio of detected infeasible labels

Bardin et al. ICST 2015 22/ 27

RQ1 : detection power

#Lab #Inf VA WP VA ⊕ WP

#d %d #d %d #d %d

Total 1,270 121 84 69% 73 60% 118 98%

Min 0 0 0% 0 0% 2 67%

Max 29 29 100% 15 100% 29 100%
Mean 4.7 3.2 63% 2.8 82% 4.5 95%

#d : number of detected infeasible labels

%d : ratio of detected infeasible labels

clearly, VA ⊕ WP better than VA or WP alone

VA ⊕ WP achieves almost perfect detection

results from WP should scale

Bardin et al. ICST 2015 22/ 27

RQ2 : detection speed

Three usage scenarios

a priori : all labels [before testing]

a posteriori : those not covered by DSE⋆ [after thorough testing]

mixed : those not covered by RT [after cheap testing]

scenario #Lab VA WP
VA

⊕WP

a priori 1,270 21.5 994 1,272

mixed 480 20.8 416 548

a posteriori 121 13.4 90.5 29.4

Bardin et al. ICST 2015 23/ 27

RQ2 : detection speed

Three usage scenarios

a priori : all labels [before testing]

a posteriori : those not covered by DSE⋆ [after thorough testing]

mixed : those not covered by RT [after cheap testing]

scenario #Lab VA WP
VA

⊕WP

a priori 1,270 21.5 994 1,272

mixed 480 20.8 416 548

a posteriori 121 13.4 90.5 29.4

VA mostly indep. from #Lab, WP linear,
VA ⊕ WP in between

good news : ≤ 1s per label, cost decreased by cheap testing

Bardin et al. ICST 2015 23/ 27

RQ3 : Impact on test generation

Impact 1 : report more accurate coverage ratio

Coverage ratio reported by DSE⋆

Detection

method
None VA WP

VA

⊕WP
Perfect*

Total 90.5% 96.9% 95.9% 99.2% 100.0%

Min 61.54% 80.0% 67.1% 91.7% 100.0%
Max 100.00% 100.0% 100.0% 100.0% 100.0%

Mean 91.10% 96.6% 97.1% 99.2% 100.0%

* preliminary, manual detection of infeasible labels

Bardin et al. ICST 2015 24/ 27

RQ3 : Impact on test generation

Impact 2 : speedup test generation

VA WP VA ⊕ WP

Speedup Speedup Speedup

RT(1s)
+LUncov

+DSE⋆

Total 2.4x 2.2x 2.2x

Min 0.5x 0.1x 0.1x
Max 107.0x 74.1x 55.4x

Mean 7.5x 5.1x 3.8x

RT : random testing
Speedup wrt. DSE⋆ alone

Bardin et al. ICST 2015 24/ 27

RQ3 : Impact on test generation

improvement 1 : better coverage ratio
◮ avg. 91% min. 61% → avg. 99% min. 92%

improvement 2 : speed up test generation, in some cases
[beware !]

◮ avg. 3.8×, min. 0.1×, max. 55.4×

Bardin et al. ICST 2015 24/ 27

Outline

Introduction

Background : labels

Overview of the approach

Focus : checking assertion validity

Implementation

Experiments

Conclusion

Bardin et al. ICST 2015 25/ 27

Discussion

Related work

some work detect (branch) infeasibility as a by product
[Beyer et al. 07, Beckman et al. 10, Baluda et al. 11]

detection of (weakly) equivalent mutants [reach, infect] through
compiler optimizations or CSP [Offutt et al. 94, 97]

detection of (strongly) equivalent mutants [Papadakis et al. 2015]

◮ good on propagation (40%), not so good on reach/infect
◮ very complementary

Scalability [other threats : see article]

as scalable as the underlying technologies

especially, WP is scalable wrt. code size (currently, VA is not)

Bardin et al. ICST 2015 26/ 27

Conclusion

Challenge : detection of infeasible test requirements

Results

automatic, sound and generic method X

◮ rely on labels and a new combination VA ⊕ WP

promising experimental results X

◮ strong detection power [95%]
◮ reasonable detection speed [≤ 1s/obj.]
◮ improve test generation [better coverage ratios, speedup]

Future work : scalability on larger programs

confirm WP results on larger programs

explore trade-offs of VA ⊕ WP

Bardin et al. ICST 2015 27/ 27

	Introduction
	Background: labels
	Overview
	Checking assertion validity
	Implementation
	Experiments
	Conclusion

