
Motivation

SE

Heuristics

Experiments

Conclusion

Pruning the Search Space in Path-based Test
Generation

Sébastien Bardin
sebastien.bardin@cea.fr

CEA-LIST, Software Security Labs

(joint work with Philippe Herrmann)

Sébastien Bardin, Philippe Herrmann 1/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Context

Automatic test data generation from source code (STDG)

The test suite must achieve a global structural coverage objective

all instructions, all branches, etc.

Do not consider the oracle generation issue : assume an external
automatic oracle

perfect oracle (back-to-back testing)

partial oracle (assertions / contracts)

Sébastien Bardin, Philippe Herrmann 2/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Symbolic Execution

Symbolic Execution (SE) is a very fruitful approach for STDG

efficiency

robustness

SE in a nutshell

Constraint-based reasoning : translate a part of the program into a
logical formula ϕ, such that a solution of ϕ is a relevant TD

Path-based approach : focus on a single path at once + enumerate
(bounded) paths

simple formulas, only conjunctions (no quantifier / fixpoint)

Concolic paradigm : combination of symbolic and dynamic execution

robustness to “difficult-to-model” programming features

Sébastien Bardin, Philippe Herrmann 3/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

A few prototypes

PathCrawler (CEA) 2004

Dart (Bell Labs), Cute (Uni. of Illinois / Berkeley) 2005

Exe (Stanford) 2006

Jpf (NASA) 2007

Osmose (CEA), Sage (Microsoft), Pex (Microsoft) 2008

Sébastien Bardin, Philippe Herrmann 4/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Main Limitations

Two major bottlenecks for Symbolic Execution

1. constraint solving (along a single path)

2. # paths

Path explosion phenomenon

nesting loops and conditional instructions

inlining of function calls

Moreover : SE require a user-defined path-bound k

things get worse if k is over-estimated

sometimes, very long paths to exhibit specific behaviours

Our goal : lower the path explosion in SE

Sébastien Bardin, Philippe Herrmann 5/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Not all Paths are Relevant for STDG

Irrelevant paths

In practice, SE enumerates all k-paths

But the true goal is to cover “items” (instr., branches)

Some paths are very unlikely to improve the current coverage

Idea : detect a priori irrelevant paths to discard them and lower the
path explosion

Our results

1. three complementary heuristics to prune likely redundant paths

2. implementation in the Osmose tool and experiments

Sébastien Bardin, Philippe Herrmann 6/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Outline

Context

Symbolic Execution

Heuristics

Experiments

Conclusion

Sébastien Bardin, Philippe Herrmann 7/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Path Predicate

π a finite path of the program P

D the input space of P

V ∈ D an input vector

Path predicate

A path predicate for π is a formula ϕπ interpreted on D s.t. if
V |= ϕπ then the execution of P on V exercices π at runtime.

More formally : let π =
t1−→

t2−→ . . .
tn−→

the greatest path predicate

ϕ̄π = wpre(t1, wpre(t2, . . . wpre(tn,⊤)))

a path predicate

ϕπ such that ϕπ ⇒ ϕ̄π

A path predicate is typically computed via strongest postcondition

Sébastien Bardin, Philippe Herrmann 8/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Framework of Symbolic Execution

Path-based test data generation

1 choose an uncovered (k-bounded) path π

2 compute one of its path predicates ϕπ

3 solve ϕπ : solution = TD exercising path π

4 update coverage, if still something to cover then goto 1

Parameter 1 - Logical theory : not relevant here

Parameter 2 - Path enumeration strategy : here, standard DFS

Extension - Concolic execution

Sébastien Bardin, Philippe Herrmann 9/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Symbolic Execution, Basic Procedure (BP)

choose path
compute path predicate, solve it, update cover
choose the next path by DFS backtracking, and so on

Sébastien Bardin, Philippe Herrmann 10/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Symbolic Execution, Basic Procedure (BP)

choose path
compute path predicate, solve it, update cover
choose the next path by DFS backtracking, and so on

Sébastien Bardin, Philippe Herrmann 10/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Symbolic Execution, Basic Procedure (BP)

choose path
compute path predicate, solve it, update cover
choose the next path by DFS backtracking, and so on

Sébastien Bardin, Philippe Herrmann 10/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Symbolic Execution, Basic Procedure (BP)

choose path
compute path predicate, solve it, update cover
choose the next path by DFS backtracking, and so on

Sébastien Bardin, Philippe Herrmann 10/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Symbolic Execution, Basic Procedure (BP)

choose path
compute path predicate, solve it, update cover
choose the next path by DFS backtracking, and so on

Sébastien Bardin, Philippe Herrmann 10/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Outline

Context

Symbolic Execution

Heuristics

Experiments

Conclusion

Sébastien Bardin, Philippe Herrmann 11/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Heuristic 1 : Look-Ahead (LA)

Procedure BP tries to cover a new path
at each iteration

BUT this new path does not necessarily
cover new items

the resolution time is wasted

more useless paths will be
explored from this prefix

True

False

main

On the example, full coverage requires at most 3 TD, while there are
≈ 2k+1 paths of length ≤ k

Sébastien Bardin, Philippe Herrmann 12/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Idea

Check if uncovered items may be reached from the current
instruction. If not, solve the current prefix but do not expand it

Optimistic check based on the CFG abstraction of the program

The Look-Ahead heuristic enjoys nice properties

soundness : discard only redundant paths

relative completeness : BP+LA achieves always the same
coverage than BP

path reduction : BP+LA explores always less path than BP

Difficulty : efficient computation of the (CFG) reachability set

Sébastien Bardin, Philippe Herrmann 13/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Reachability Set Computation

Procedure ReachSet : node → Set(node)

Standard worklist algorithm has the following problems in our context

all reachability sets are computed at the same time, even if BP
will not use all of them

not designed for interprocedural or context-sensitive analysis

Sébastien Bardin, Philippe Herrmann 14/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Reachability Set Computation (2)

Efficient interprocedural analysis

Efficient computation

lazy computation

computation cache

Interprocedural analysis

compact representation of sets of nodes : manipulate CFG nodes
and Call Graph (CG) nodes

function summaries : propagate reachable CG nodes (from CG)

lazy computation and computation cache extend to CG

Sébastien Bardin, Philippe Herrmann 15/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Reachability Set Computation (3)

Context-sensitive analysis

the current stack is passed as an argument, if the current node can
reach a ret instruction, then the procedure is recursively launched on
the top of the stack (return site)

ReachSet-context(node,stack, rset) :

c := ReachSet(node) ; r := c ∪ rset

if (stack.empty or ret 6∈ c) then return r ;

else return ReachSet-context(stack.top,stack.tail, r)

Remark : the computation cache is still a map from node to set,
rather than a map from (node, stack) to set

Sébastien Bardin, Philippe Herrmann 16/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Heuristic 2 : Max-CallDepth (MCD)

Nested function calls are often the major source of path explosion

BP explores all the paths in cal-
lees

But in unit testing, need to co-
ver only paths of the top-level
function

function f

Return
b =?= 0

b := 1 b := 0

True False

c =?= 0

call f

main

Example : only two TD to cover the main function, but ≈ 2k+1 paths

Sébastien Bardin, Philippe Herrmann 17/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Idea

(claim) top-level paths rarely depend only on specific behaviours in
deep function calls

MCD heuristic : prevent backtracking in deep nested function calls

Implementation : a user-defined mcd parameter, a counter depth
updated by call and ret, performs branching only if depth ≤ mcd

Theoretically : take care, the MCD heuristic is not sound

Empirically : experimental results show a very large pruning and no
loss in coverage (see after)

Sébastien Bardin, Philippe Herrmann 18/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Heuristic 3 : Solve-First (SF)

DFS has two main drawbacks in our context

if # TD is limited, DFS focuses only on a deep narrow portion
of the program (slow coverage speed)

longer (and more complex ?) prefixes are solved first

Example : assume #node = 2n+1, all
paths are feasible,
goal = instruction coverage

only two TD are necessary

BP+LA : n+1 TD

true

true

true

true

true

Sébastien Bardin, Philippe Herrmann 19/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Idea

Slight modification of the concolic DFS procedure

on a choice point, choose which branch B1 will be followed
(symbolically) first

immediately solve the other branch B2 (TD2), execute TD2 and
update coverage info, store TD2

execute symbolically the procedure through branch B1 (as usual)

when backtracking through B2, TD2 can be retrieved if needed

Mostly the DFS symbolic execution, except than along a given prefix,
every alternative branch has been concretely expanded once

minimal overhead

along a path, shorter prefixes are solved first

some distant portion of the program (in a DFS ordering) are
exercised very early

Sébastien Bardin, Philippe Herrmann 20/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Idea (2)

Sébastien Bardin, Philippe Herrmann 21/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Idea (2)

Sébastien Bardin, Philippe Herrmann 21/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Idea (2)

Sébastien Bardin, Philippe Herrmann 21/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Idea (2)

Sébastien Bardin, Philippe Herrmann 21/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Idea (2)

Sébastien Bardin, Philippe Herrmann 21/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Idea (2)

Sébastien Bardin, Philippe Herrmann 21/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Idea (2)

Sébastien Bardin, Philippe Herrmann 21/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Idea (2)

Sébastien Bardin, Philippe Herrmann 21/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Idea (2)

Sébastien Bardin, Philippe Herrmann 21/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Idea (2)

Sébastien Bardin, Philippe Herrmann 21/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Summary

relative # path implementation
completeness reduction in BP

Look-Ahead yes always efficient reach. test
Max-CallDepth no not sure easy

Solve-First yes not sure easy (concolic setting)

Sébastien Bardin, Philippe Herrmann 22/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Outline

Context

Symbolic Execution

Heuristics

Experiments

Conclusion

Sébastien Bardin, Philippe Herrmann 23/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

About experiments

Heuristics implemented in the Osmose tool (SE for executable files)
Small C programs cross-compiled to C509 and PPC architectures
Configuration : Intel Pentium M 2Ghz, RAM 1.2 GBytes, Linux

program #I #Br #F CD # T

check-pressure 59 10 3 1 4
square 3x3 272 46 1 0 43
square 4x4 274 46 1 0 123
hysteresis 91 16 2 1 35
merge 56 24 3 1 70
triangle 102 38 5 3 15

ppc-square 4x4 226 30 1 0 125
ppc-hysteresis 76 16 2 1 251
ppc-merge 188 16 3 2 2
ppc-triangle 40 18 3 2 19

#I : n. of instructions #Br : n. of branches
#F : n. of functions CD : maximal call depth
#T : n. of tests (full Br cover)

Sébastien Bardin, Philippe Herrmann 24/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Results

Notations : BP (Basic Procedure), UT (Unit Testing)

Comparisons

BP+LA vs BP

BP+UT+MCD vs BP+UT

BP+SF vs BP

average benefit win-loss max benefit max loss
(time | #path) W/D/L

LA -57% | -57% 7/2/1 | 8/2/0 -80% | -85% +4% |

MCD -85% | -72% 5/1/0 | 5/1/0 -97% | -80% |

SF+LA -61% | -80% 4/0/5 | 5/0/4 -86% | -98% +120% | +50%

Sébastien Bardin, Philippe Herrmann 25/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Summary (2)

theoretical empirical

relative # path relative # path
completeness reduction completeness reduction

LA yes always yes -57%

MCD no not sure yes -72%

SF+LA yes not sure yes -80%

Sébastien Bardin, Philippe Herrmann 26/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Other experiments

LA overhead : reachability set is computed, but test inclusion always
answers yes

overhead mean variability
RS computed on backtrack only +0% +0% - +1%
RS computed at each branch +2.4% +0% - +7%

Sébastien Bardin, Philippe Herrmann 27/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Outline

Context

Symbolic Execution

Heuristics

Experiments

Conclusion

Sébastien Bardin, Philippe Herrmann 28/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Related work (1)

Path enumeration strategy for better coverage speed

best-first search (Exe, Sage, Pex) : active prefixes are ranked,
and the best one is expanded

hybrid search (Cute) : DFS + random

Redundant paths

discard a path prefix if similar to an already expanded path prefix

rwset (Exe), state caching / state abstraction (Jpf)

discard a path prefix when it cannot reach an interesting state

yogi and the Synergy approach

Concurrent systems and interleaving

dynamic partial orders (Cute)

Sébastien Bardin, Philippe Herrmann 29/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Related work (2)

Functon calls

Techniques similar to MCD

when the maximal depth is reached, a call returns ⊤ (Jpf)

function concretisation (Cute) can also be used for path
pruning

Other techniques

lazy handling of function calls via uninterpreted symbols (Sage)

incremental construction of a summary function (Dart)

user-defined function specification (PathCrawler)

Sébastien Bardin, Philippe Herrmann 30/ 31

Motivation

SE

Heuristics

Experiments

Conclusion

Conclusion

We propose three heuristics to perform path pruning in Symbolic
Execution

easy to implement, whatever the path enumeration strategy is

all the three techniques are complementary

Very encouraging results for Look-Ahead and Max-CallDepth on
limited benchmarks

Solve-First shows a positive global gain, but much more variability

Future work

experiments on larger programs and with other path search
methods

application to search-based testing ?

Sébastien Bardin, Philippe Herrmann 31/ 31

	Motivation
	Symbolic Execution
	Heuristics
	Experiments
	Conclusion

