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Binary code analysis

Bardin, S., Herrmann, P., Védrine, F. 2/ 49



Binary code analysis at a glimpse

Recent renew interest
[Codesurfer/x86, SAGE, Jakstab, Osmose, TraceAnalyzer, McVeto, Vine, BAP]

Many promising applications

off-the-shelf components (including libraries)

mobile code (including malware)

third-party certification

Advantages over source-code analysis

always available

no “compilation gap”

allows precise quantitative analysis (ex : wcet)

Very challenging

conceptual challenges

practical issues
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Outline

• A gentle introduction to binary-level program analysis

• Focus : refinement-based CFG reconstruction

• Conclusion and perspectives
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Main challenges of binary code analysis

Low-level semantic of data

Low-level semantic of control [see technical focus]

Practical issues

Bardin, S., Herrmann, P., Védrine, F. 5/ 49



PB1 : Low-level semantic of data

machine (integer) arithmetic

overflows, flags

bit-vector operations

bitwise logical operations, shifts, rotate, etc.

systematic usage of memory (stack)

only very few variables and one single very large array

up-to-date formal techniques do not adress well these issues
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PB1 : Low-level semantic of data (2)

Example 1 : value analysis with machine arithmetic (8 bit)

[250..255] + 5 = [0..4] ∪ [255]

with any convex-domain : [250..255] +# 5 = [0..255]

Example 2 : decision procedures with machine arithmetic

a popular theory on integers is difference logic
∧

i xi − yi ≤ ki
reasonably expressive and in P

but difference logic over modular arithmetic is NP-hard

Example 3 : reified comparisons + move from memory to registers

R := @100; Flag := cmp(R,0); assert(Flag == 1);

perfect deduction after assert :
Flag = 1 ∧ R = 0 ∧ @100 = 0

standard forward deduction after assert :
Flag = 1
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PB2 : Low-level semantic of control

No clear distinction between data and control

No clean encapsulation of procedure calls

Dynamic jumps (goto R0) [the enemy !]

And others : instruction overlapping, self-modifying code

Recovering the Control Flow Graph (CFG) is already non-trivial
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PB3 : Practical issues

Engineering issue : many different (large) ISAs

supporting a new ISA : time-consuming, error-prone, tedious

consequence : each tool support only a few ISAs (often one !)

Semantic issue : each tool comes with its own formal( ?) model

exact semantics seldom available

modelling hypothesises often unclear

Consequences

lots of redundant engineering work between analysers

difficult to achieve empiric comparisons

difficult to combine / reuse tools
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A renew of interest since 2000’s

CFG reconstruction [Reps et al.] [Kinder et al.] [Brauer et al.] [BHV]

variables and types recovery [Reps et al.]

test data generation [Godefroid et al.] [BH]

malware analysis and other security analyses [Song et al.]

semantics [Reps et al.] [Bardin et al.] [Brumley et al.]

dedicated Dagstuhl seminar in 2012
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More or less related topics

Analysis of low-level C programs

many low-level constructs : *f, longjump, stack overflow, etc.

BUT

◮ ANSI-C forbids most of the nasty behaviours
◮ most analyzers consider a very nice subset of C

Analysis of Java bytecode
Java byte-code is very high level

◮ strong static typing for primitive types
◮ clean functional abstraction
◮ very restricted dynamic jumps

Analysis of assembly languages

should be the same than binary code
but often rely on very optimistic assumptions

◮ no hidden instruction, sets of dynamic jumps known in
advance, call/return policy
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Binary-level program analysis at CEA

Osmose [ICST-08,ICST-09,STVR-11]

automatic test data generation (dynamic symbolic execution)

bitvector reasoning [TACAS-10]

front-ends : PPC, M6800, Intel c509

TraceAnalyzer [VMCAI-11] [see technical focus]

safe CFG reconstruction (refinement-based static analysis)

front-end : PPC

Dynamic Bitvector Automata [CAV-11]

concise formal model for binary code analysis

basic tool support : OCaml type, XML DTD

safe DBA reduction
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Outline

• A gentle introduction to binary-level program analysis

• Focus : Refinement-based CFG reconstruction

• Conclusion and perspectives
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CFG recovery

A key issue for binary-level program analysis

prior to any other static analysis (SA)

must be safe : otherwise, other SA unsafe

must be precise : otherwise, other SA imprecise

Our approach [VMCAI-11]

safe, precise, efficient and robust technique

based on abstraction-refinement
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CFG reconstruction

Input

an executable file, i.e. an array of bytes

the address of the initial instruction

a basic decoder : exec f. × address 7→ instruction × size

Output : CFG of the program
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CFG reconstruction (2)

Successor addresses are often syntactically known

〈 addr: move a b 〉 →

〈 addr: goto 100 〉 →

〈 addr: ble 100 〉 →
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CFG reconstruction (2)

Successor addresses are often syntactically known

〈 addr: move a b 〉 → successor at addr+size

〈 addr: goto 100 〉 → successor at 100

〈 addr: ble 100 〉 → successors at 100 and addr+size

Bardin, S., Herrmann, P., Védrine, F. 16/ 49
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CFG reconstruction (2)

Successor addresses are often syntactically known

〈 addr: move a b 〉 → successor at addr+size

〈 addr: goto 100 〉 → successor at 100

〈 addr: ble 100 〉 → successors at 100 and addr+size

But not always : successors of 〈addr: goto a 〉 ?

Dynamic jump is the enemy !
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Know your enemy

Dynamic jumps are pervasive [introduced by compilers]

switch, function pointers, virtual methods, etc.

Sets of jump targets lack regularity [arbitrary values from compiler]

convex sets plus congruence information are not well-suited

False jump targets cannot be easily detected

almost any address in an exec. file correspond to a legal
instruction

no pragmatic trick like “detect pb - warn user - correct value”
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Unsafe approaches to CFG recovery

... current industrial practise ...

Linear sweep decoding [brute force]

decode instructions at each code address

• miss every “dynamic” edge of the CFG

• may still miss instructions [too optimistic hypothesises]

Recursive traversal

decode recursively from entry point, stop on dynamic jump

• miss large parts of CFG
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Safe CFG recovery

VA and CFG reconstruction must be interleaved

Very difficult to get precise : imprecision on jumps in VA →

imprecision on CFG → more propagation / imprecision on VA → . . .
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Existing safe approaches

CodeSurfer/x86 [Balakrishnan-Reps 04,05,07,...]

abstract domain : strided intervals (+ affine relationships)

• imprecise : abstract domain not suited to sets of jump targets
(arbitrary values from compiler)

• in practise many false targets

Jakstab [Kinder-Veith 08,09,10]

abstract domain : sets of bounded cardinality (k-sets)

precise when the bound k is well-tuned

• not robust to the parameter k : possibly inefficient if k too
large, very imprecise if k not large enough
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Our work

Key observations

k-sets are the only domain well-suited to precise CFG
reconstruction

for most programs, only a few facts need to be tracked
precisely to resolve dynamic jumps

good candidate for abstraction-refinement

Contribution [VMCAI 2011]

A refinement-based approach dedicated to CFG reconstruction

An implementation and a few experiments

The technique is safe, precise, robust and efficient
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Formalisation

Unstructured Programs : P = (L,V ,A,T , l0)

L ⊆ N finite set of code addresses

V finite set of program variables

A finite set of arrays

T maps code addresses to instructions

l0 initial code address

Instructions

assignments v:=e and a[e1]:=e2

static jumps goto l

branching instructions ite(cond ,l1,l2)

dynamic jumps cgoto(v)
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Formalisation (2)

Our problem

input : an unstructured program P

output : compute an invariant of P such that no dynamic
target expression evaluates to ⊤, or fail

Informal requirements

do not fail “too often”

do not add “too many” false targets
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Sketch of the procedure

Abstract domain : k-sets with local cardinality bounds

gain efficiency through loss of precision

still a global bound Kmax over local bounds

domain refinement = increase some k-set cardinality bounds

Ingredient 1 : (slightly) modified forward propagation

propagation takes local bounds into account

add tags to ⊤-values to record origin : ⊤,⊤init ,⊤〈c1,...,cn〉

◮ dedicated propagation rules : ⊤init and ⊤〈...〉 stay in place
◮ pinpoint “initial sources of precision loss” (ispl)
◮ give clues for refinement (where and how much)

Ingredient 2 : refinement mechanism

decide which local bound must be updated, to which value

helped by ⊤-tags
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The procedure

Procedure PaR : (P ,Kmax) 7→?Invariant(P)

1. Dom := {(loc , v) 7→ 0}

2. forward propagate until a dynamic target exp. evaluates to ⊤

3. if no target exp. evaluates to ⊤, return the fixpoint (OK !)

else, try to refine the domain to avoid fault

◮ if no refinement then fail (KO !)
◮ else restart with refined domain (goto 2)
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Refinement

For each target evaluating to ⊤

follows backward data dependencies

only interested in ⊤-values (other locations are safe until now)

only interested in correcting initial causes of precision loss

Finding the initial causes of precision loss

initial causes of precision loss are of the form ⊤init ,⊤〈c1,...,cn〉

How to correct

⊤init cannot be avoided

⊤〈c1,...,cn〉 may be avoided if n ≤ Kmax (set local bound to n)
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Example
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Example

Bardin, S., Herrmann, P., Védrine, F. 27/ 49
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Technical detail I : failure policy

Two possible failure policies during refinement

optimistic : fails only when no ispl is corrected

pessimistic : fails as soon as one ispl cannot be corrected

Optimistic policy succeeds more, but more refinements

Pessimistic policy fails earlier, but may unduly fail

ispl computation under-approx exact over-approx

pessimistic x RC x
optimistic x RC RC (perf --)

RC : relative completeness [see after]
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Technical detail II : journal

Problem during ispl search

syntactic computation of (data) predecessors (for assignments
with alias and dynamic jumps) is either unsafe or imprecise
[cf failure policy]
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Technical detail II : journal

Problem during ispl search

syntactic computation of (data) predecessors (for assignments
with alias and dynamic jumps) is either unsafe or imprecise
[cf failure policy]

Solution : a journal of the propagation

record observed feasible branches / alias / dynamic targets
prune backward data dependencies accordingly
updated during propagation, used during ispl search
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Basic theoretical properties

Soundness : PaR(P,Kmax) returns either an invariant such that no
jump target evaluates to ⊤, or FAIL

Complexity : polynomial number of refinements

Completeness : perfect relative completeness for a non trivial
subclass of programs (see next)
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What about the quality of the refinement ?

Relative completeness (RC) : PaR is relatively complete if
PaR(P ,Kmax) returns successfully when the forward k-set
propagation with parameter Kmax does

Bad news : no RC in the general case

mainly because of control dependencies

Good news : RC for a non trivial subclass of programs

Bardin, S., Herrmann, P., Védrine, F. 31/ 49



RC : why it does not work

let us suppose Kmax = 1
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RC on a subclass

RC holds for a subclass of unstructured programs
[even with “pessimistic failure”]

� Non-deterministic branching [new : all branches feasible]

� only ⊤-propagating operators (+,−,×k ok, but not ×)

� guarded aliases

skip proof
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RC on a subclass : sketch of proof

Reason over traces of the forward propagation procedure

From faulty trace in PaR, build faulty trace in →∗
Dmax

⋆ Assume

M0
π
−→D Mn, Mn(ln, vn) = ⊤ // failure

refinement fails on Mn and (ln, vn)

⋆ Prove that M0
π

−→Dmax M ′
n, M

′
n(ln, vn) = ⊤

Proof steps

prove for restricted2 subclass : no jump / alias

generalisation : guarded jumps and guarded aliases
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sketch of proof (2)

Fragment with < NDBranching - no alias - no dynamic jump >

Find a non correctable ispl of (ln, vn) such that

π = π1 · π2
M0

π1−→D Mk
π2−→D Mn

and (lk , vk) ispl of (ln, vn)
and

k = 0,Mk(lk , vk) = ⊤init

or
Mk(lk , vk) = ⊤〈c1...cq〉, q > Kmax and Mk−1(lk , vk) 6= ⊤

We want to prove that

Goal1 ispl (lk , vk) still evaluates to ⊤ in Dmax after π1
M0

π1−→Dmax M ′
k and M ′

k(lk , vk) = ⊤

Goal2 value of (lk , vk) still propagate to (ln, vn) in Dmax after π2
M ′

k

π2−→Dmax M ′
n and M ′

n(ln, vn) = ⊤
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sketch of proof (2’)
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sketch of proof (3)

Two fundamental lemmas

Lemma 1 :
σ

−→D and
σ

−→Dmax computes the same proper k-sets

hint : the only cause of precision loss is early ⊤-cast
. does not create bigger proper k-sets, but ⊤
. we can know if a set is (relatively) approximated or not

note : very specific to k-sets, false when unfeasible branches

Lemma 2 :
σ

−→D and
σ

−→Dmax define the same data dependencies

easy here, all data dep. are static

[the two proofs are interleaved]
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sketch of proof (4) : goal 1, case 1

Goal1 : ispl (lk , vk) still evaluates to ⊤ in Dmax after π1
M0

π1−→Dmax M ′
k and M ′

k(lk , vk) = ⊤

Case 1 : Mk(lk , vk) = ⊤init

⊤init created in initial state

(lk , vk) will also take value ⊤ in M ′
k
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sketch of proof (5) : goal 1, case 2

Goal1 : ispl (lk , vk) still evaluates to ⊤ in Dmax after π1
M0

π1−→Dmax M ′
k and M ′

k(lk , vk) = ⊤

Case 2 : Mk(lk , vk) = ⊤〈c1...cq〉 and q > Kmax

(⋆) predecessors of (k , lk , vk) for
π1−→D are all proper k-sets

// rest. op : otherwise Mk(lk , vk) = ⊤

lemma 2 + (⋆) + lemma 3 : predecessors of (k , lk , vk) for
π1−→Dmax are the same locations than for

π1−→D , and evaluate to
the same proper k-sets

hence, M ′
k(lk , vk) = αKmax

({c1 . . . cq}) = ⊤ // q > Kmax
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sketch of proof (5’) : goal 1, case 2
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sketch of proof (6)

Goal2 : value of (lk , vk) still propagate to (ln, vn) in Dmax after π2
M ′

k

π2−→Dmax M ′
n and M ′

n(ln, vn) = ⊤

ok because of lemma 2 and restricted operators (⊤-must
propagate)

Full Proof of RC : goal1 + goal2
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sketch of proof (7) : generalisation

More general case : guarded alias and guarded dynamic jumps

Basically same technique, handle alias and jumps with care

Key : guarded jumps enforce proper ksets on jump exp, or fail

lemma 1 still holds (until failure state)

lemma 2 still holds (until failure state)

note for both lemma : need the journal to track back only
“feasible” ispl

Same trick for guarded aliases
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Relative Precision (not in VMCAI 2011)

Relative precision (RP) : PaR is relatively precise if when
PaR(P ,Kmax) returns successfully, it returns the same set of
targets than the forward k-set propagation with parameter Kmax
does

RP holds for the subclass of unstructured programs

Summary : RC+RP (on the restricted subclass)

PaR(P ,Kmax) terminates iff forward k-set propagation with
parameter Kmax does

in case of success, they compute the same set of targets
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Experiments

Implementation

input : PPC executable + entrypoint

output : cfg, callgraph, sets of targets, assembly code

details : procedure inlining, efficient data-structures

limitation : no dynamic memory allocation

29 kloc of C++

Test bench 1 : 12 small hand-written C programs compiled with
gcc. From 60 to 1000 PPC instructions

Test bench 2 : Safety-critical program from Sagem

32 kloc, 51 dynamic jumps, up to 16 targets a jump
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Experiments (2)

Experimental results for the aeronautic program

precision : resolve every jump, only 7% of false targets

( standard program analysis cannot recover better than between

400% and 4000% of false targets )

robustness : efficiency independent of Kmax (if large enough)

locality : tight value of max-k , low value of mean-k

efficiency : terminates in 5 min
◮ already sufficient for some (safety-critical) applications
◮ however procedure inlining may be an issue
◮ rooms for improvement
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News from the front

Improved algorithm [efficiency, robustness]

# refinements indep. of Kmax

chaining of updates

Compositionality : product of domains KSET × D

more precise than just KSET

Implementation

domain = KSET × I × Formulas x{<,≤,=,≥, >}y

Sagem : ≈ 10 sec
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Conclusion on CFG reconstruction

Result : an original refinement-based procedure

truly dedicated to CFG reconstruction [domains, refinement]

safe, precise, robust and efficient

both theoretical and empirical evidence

Future work

experiments on non-critical programs [dynamic alloc]

ultimate goal : executables coming from large C++ programs
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A few last words

Binary code analysis shows both great promises and challenges

Many open problems

which semantic for binary code ? common formal model ?

which properties are worth to investigate ?

is binary-code analysis so different than program analysis ?

A few years ago, only a few scattered teams and works

Things are changing [CAV 11, VMCAI 11, EMSOFT 11, SSV 11]

time for more collaboration ?

benchmarks, meetings, workshops / conference, projects ?
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Backup slides

Dynamic bitvector automata (DBA)

Osmose
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Dynamic Bitvector Automata

Main design ideas

small set of instructions

concise and natural modelling of common ISAs

low-level enough to allow bit-precise modelling

Can model : instruction overlapping, return address smashing,
endianness, overlapping memory read/write

Limitations : (strong) no self-modifying code, (weak) no dynamic
memory allocation, no FPA
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Dynamic Bitvector Automata (2)

Extended automata-like formalism

bitvector variables and arrays of bytes

all bv sizes statically known, no side-effects

standard operations from BVA

Feature 1 : Dynamic transitions

for dynamic jumps

Feature 2 : Directed multiple-bytes read and write operations

for endianness and word load/store

Feature 3 : Memory zone properties

for (simple) environment
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Dynamic Bitvector Automata (2)

Feature 1 : Dynamic transitions

some nodes are labelled by an address

dynamic transitions have no predefined destination

destination computed dynamically via a target expression

Feature 2 : Directed multiple-bytes read and write operations

array[expr ; k#], where k ∈ N and # ∈ {←,→}

Feature 3 : Memory zone properties

specify special behaviour for some segments of memory

volatile, write-aborts, write-ignored, read-aborts
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Modelling with DBA

Procedure calls / returns : encoded as static / dynamic jumps

Memory zone properties, a few examples : ROM (write-ignored),
memory controlled by env (volatile), code section (write-aborts)
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DBA toolbox

Open-source Ocaml code for basic DBA manipulation

Features

a datatype for DBAs

basic “typing” (size checking) over DBAs

import (export) from (to) a XML format

DBA simplification (see next)

GPL license, based on xml-light, ≈ 3 kloc
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DBA toolbox - simplifications

Goal : simplify unduly complex DBAs typically obtained from
instruction-wise translation

useless flag computations / auxiliary variables / etc.

Inspired by standard compilation techniques [peephole, dead code, etc.]

beware of partial DBAs and dynamic jumps !

rethink these standard techniques in a partial CFG setting

Results : size reduction of −50% (all instrs), and between −30%
and −50% (non-goto instrs)
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Osmose : test data generation

Osmose (CEA) [ICST-08, STVR-11]

automatic test data generation (dynamic symbolic execution)

75 kloc of OCaml, front-ends : PPC, M6800, Intel c509

case-studies : programs from aeronautics and energy

Supported architectures : Motorola 6800, Intel 8051, Power PC 550
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Key technologies

Multiple-architecture support [BH-11]

Generic assembly language (GAL) [current move to DBAs]

Test data generation through Concolic Execution [BH-08,BH-11]

exploration of all (bounded) paths of the program

symbolic reasoning to discover new dynamic targets

path pruning optimisations [BH-09]

Bit-precise constraint solving [BHP-10]
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