Refinement-Based CFG Reconstruction from
Unstructured Programs

Sébastien Bardin, Philippe Herrmann, Franck Védrine

CEA LIST
(Paris, France)

Bardin, S., Herrmann, P., Védrine, F. 1/ 49

Model

x>0/x:= x-1

Assembly

Source code

int foo(int x, inty) {
int k= x;
int c=y;
while (c>0) do {
k++;
G5l
return k;

}

_start:
load A 100
add B A
cmp B O
jle label

label:
move @100 B

Executable

Bardin, S., Herrmann, P., Védrine, F.

ABFFF780BD70696CA101001BDE45
145634789234ABFFE678ABDCF456
5A2B4C6D009F5F5D1E0835715697
145FEDBCADACBDAD459700346901
3456KAHA305G67H345BFFADECAD3
00113456735FFD451E13AB080DAD
344252FFAADBDA457345FD780001
FFF22546ADDAE989776600000000

2/ 49

Recent renew interest
[Codesurfer/x86, SAGE, Jakstab, Osmose, TraceAnalyzer, McVeto, Vine, BAP]

Many promising applications
m off-the-shelf components (including libraries)
m mobile code (including malware)
m third-party certification

Advantages over source-code analysis
m always available
m no “compilation gap”
m allows precise quantitative analysis (ex : wcet)

Very challenging
m conceptual challenges
m practical issues

Bardin, S., Herrmann, P., Védrine, F. 3/ 49

e A gentle introduction to binary-level program analysis
e Focus : refinement-based CFG reconstruction

e Conclusion and perspectives

Bardin, S., Herrmann, P., Védrine, F. 4/ 49

Main challenges of binary code analysis

Low-level semantic of data
Low-level semantic of control [see technical focus]

Practical issues

Bardin, S., Herrmann, P., Védrine, F. 5/ 49

PB1 : Low-level semantic of data

machine (integer) arithmetic

m overflows, flags

bit-vector operations

m bitwise logical operations, shifts, rotate, etc.

systematic usage of memory (stack)

m only very few variables and one single very large array

up-to-date formal techniques do not adress well these issues

Bardin, S., Herrmann, P., Védrine, F. 6/ 49

Example 1 : value analysis with machine arithmetic (8 bit)
m [250..255] + 5 = [0..4] U [255]
m with any convex-domain : [250..255] +7 5 = [0..255]

Example 2 : decision procedures with machine arithmetic

m a popular theory on integers is difference logic \; xi — yi < k;

m reasonably expressive and in P

m but difference logic over modular arithmetic is NP-hard

Example 3 : reified comparisons + move from memory to registers

B R := @100; Flag := cmp(R,0); assert(Flag == 1);
m perfect deduction after assert :
Flag=1ANR=0A0100=0
m standard forward deduction after assert :
Flag =1

Bardin, S., Herrmann, P., Védrine, F.

7/ 49

PB2 : Low-level semantic of control

No clear distinction between data and control
No clean encapsulation of procedure calls
Dynamic jumps (goto RO) [the enemy!]

And others : instruction overlapping, self-modifying code

Recovering the Control Flow Graph (CFG) is already non-trivial

Bardin, S., Herrmann, P., Védrine, F. 8/ 49

Engineering issue : many different (large) ISAs

m supporting a new ISA : time-consuming, error-prone, tedious

m consequence : each tool support only a few ISAs (often one!)

Semantic issue : each tool comes with its own formal(?) model
m exact semantics seldom available

m modelling hypothesises often unclear

Consequences

m lots of redundant engineering work between analysers
m difficult to achieve empiric comparisons

m difficult to combine / reuse tools

Bardin, S., Herrmann, P., Védrine, F. 9/ 49

A renew of interest since 2000's

m CFG reconstruction [Reps et al.] [Kinder et al.] [Brauer et al.] [BHV]
m variables and types recovery [Reps et al]

m test data generation [Godefroid et al.] [BH]

m malware analysis and other security analyses [Song et al]

B semantics [Reps et al.] [Bardin et al.] [Brumley et al]

dedicated Dagstuhl seminar in 2012

Bardin, S., Herrmann, P., Védrine, F. 10/ 49

Analysis of low-level C programs
m many low-level constructs : *f, longjump, stack overflow, etc.
m BUT

» ANSI-C forbids most of the nasty behaviours
» most analyzers consider a very nice subset of C

Analysis of Java bytecode
m Java byte-code is very high level
> strong static typing for primitive types
» clean functional abstraction
> very restricted dynamic jumps

Analysis of assembly languages
m should be the same than binary code
m but often rely on very optimistic assumptions

» no hidden instruction, sets of dynamic jumps known in
advance, call/return policy

Bardin, S., Herrmann, P., Védrine, F. 11/ 49

Osmose [ICST-08,1CST-09,STVR-11]

m automatic test data generation (dynamic symbolic execution)
m bitvector reasoning [TACAS-10]
m front-ends : PPC, M6800, Intel c509

TraceAnalyzer [VMCAI-11] [see technical focus]

m safe CFG reconstruction (refinement-based static analysis)
m front-end : PPC

Dynamic Bitvector Automata [CAV-11]

m concise formal model for binary code analysis
m basic tool support : OCaml type, XML DTD
m safe DBA reduction

Bardin, S., Herrmann, P., Védrine, F.

12/ 49

e A gentle introduction to binary-level program analysis
e Focus : Refinement-based CFG reconstruction

e Conclusion and perspectives

Bardin, S., Herrmann, P., Védrine, F. 13/ 49

A key issue for binary-level program analysis

m prior to any other static analysis (SA)
m must be safe : otherwise, other SA unsafe

m must be precise : otherwise, other SA imprecise

Our approach [VMCAI-11]
m safe, precise, efficient and robust technique

m based on abstraction-refinement

Bardin, S., Herrmann, P., Védrine, F.

14/ 49

Input
m an executable file, i.e. an array of bytes
m the address of the initial instruction

m a basic decoder : exec f. x address — instruction X size

145FEDBCADACBDADA59700346901
3456KAHA305G67H345BFFADECAD3
00113456735FFD451E13ABO80DAD
344252FFAADBDA457345FD780001
FFF22546ADDAE989776600000000

R1:= R1+4
A := @(R1)

Output : CFG of the program

Bardin, S., Herrmann, P., Védrine, F. 15/ 49

CFG reconstruction (2)

Successor addresses are often syntactically known
m (addr: move a b) —
m (addr: goto 100) —
m (addr: ble 100) —

Bardin, S., Herrmann, P., Védrine, F. 16/ 49

CFG reconstruction (2)

Successor addresses are often syntactically known
(addr: move a b) — successor at addr+size

(addr: goto 100) — successor at 100

u
u
m (addr: ble 100) — successors at 100 and addr+size

16/ 49

Bardin, S., Herrmann, P., Védrine, F.

CFG reconstruction (2)

Successor addresses are often syntactically known
(addr: move a b) — successor at addr+size

(addr: goto 100) — successor at 100

u
u
m (addr: ble 100) — successors at 100 and addr+size

But not always : successors of (addr: goto a)?

16/ 49

Bardin, S., Herrmann, P., Védrine, F.

CFG reconstruction (2)

Successor addresses are often syntactically known
(addr: move a b) — successor at addr+size

(addr: goto 100) — successor at 100

u
u
m (addr: ble 100) — successors at 100 and addr+size

But not always : successors of (addr: goto a)?

Dynamic jump is the enemy !

Bardin, S., Herrmann, P., Védrine, F.

16/ 49

Dynamic jumps are pervasive [introduced by compilers]

m switch, function pointers, virtual methods, etc.

Sets of jump targets lack regularity [arbitrary values from compiler]

m convex sets plus congruence information are not well-suited

False jump targets cannot be easily detected

m almost any address in an exec. file correspond to a legal
instruction

m no pragmatic trick like “detect pb - warn user - correct value”

Bardin, S., Herrmann, P., Védrine, F. 17/ 49

Unsafe approaches to CFG recovery

... current industrial practise ...

Linear sweep decoding [brute force]
m decode instructions at each code address

e miss every “dynamic” edge of the CFG

e may still miss instructions [too optimistic hypothesises]

Recursive traversal

m decode recursively from entry point, stop on dynamic jump

e miss large parts of CFG

Bardin, S., Herrmann, P., Védrine, F. 18/ 49

VA and CFG reconstruction must be interleaved

ABFFF780BD70696CA101001BDE4S CFG recovery
145634789234ABFFE678ABDCF456
5A2B4CED009FSFSD1E0B35715697
145FEDBCADACBDAD459700346901

T(x)--Z f(x,6)c=
DECAD3 > _J) 3070k
00113456735FFDA51E13AB080DAD A » g
344252FFAADBDAAS7345FD780001

FFF22546ADDAE989776600000000

(2 o 10}
frien{ wlnlt‘.u)\ flohs-

r{a) %)

Very difficult to get precise : imprecision on jumps in VA —
imprecision on CFG — more propagation / imprecision on VA — ...

Bardin, S., Herrmann, P., Védrine, F. 19/ 49

CodeSurfer/x86 [Balakrishnan-Reps 04,05,07,...]
m abstract domain : strided intervals (+ affine relationships)
e imprecise : abstract domain not suited to sets of jump targets
(arbitrary values from compiler)

e in practise many false targets

Jakstab [Kinder-Veith 08,09,10]
m abstract domain : sets of bounded cardinality (k-sets)

m precise when the bound k is well-tuned

e not robust to the parameter k : possibly inefficient if k too
large, very imprecise if k not large enough

Bardin, S., Herrmann, P., Védrine, F. 20/ 49

Key observations

m k-sets are the only domain well-suited to precise CFG
reconstruction

m for most programs, only a few facts need to be tracked
precisely to resolve dynamic jumps

m good candidate for abstraction-refinement

Contribution [VMCAI 2011]
m A refinement-based approach dedicated to CFG reconstruction
m An implementation and a few experiments

m The technique is safe, precise, robust and efficient

Bardin, S., Herrmann, P., Védrine, F. 21/ 49

Unstructured Programs : P = (L, V, A, T,)
m L C N finite set of code addresses
m V finite set of program variables
m A finite set of arrays
m 7 maps code addresses to instructions
m /p initial code address

Instructions
m assignments v:=e and ale;]:=e
m static jumps goto /
m branching instructions ite(cond,/i,h)

m dynamic jumps cgoto(v)

Bardin, S., Herrmann, P., Védrine, F. 22/ 49

Formalisation (2)

Our problem

m input : an unstructured program P

m output : compute an invariant of P such that no dynamic
target expression evaluates to T, or fail

Informal requirements
m do not fail "too often”

m do not add “too many” false targets

Bardin, S., Herrmann, P., Védrine, F. 23/ 49

Abstract domain : k-sets with local cardinality bounds
m gain efficiency through loss of precision
m still a global bound Kmax over local bounds

m domain refinement = increase some k-set cardinality bounds

Ingredient 1 : (slightly) modified forward propagation
m propagation takes local bounds into account
m add tags to T-values to record origin : T, Tinit, Tc,.....co)

» dedicated propagation rules : T,z and T, stay in place
» pinpoint “initial sources of precision loss” (ispl)
» give clues for refinement (where and how much)

Ingredient 2 : refinement mechanism
m decide which local bound must be updated, to which value

m helped by T-tags

Bardin, S., Herrmann, P., Védrine, F. 24/ 49

Procedure PaR : (P, Kmax) —?Invariant(P)
1. Dom := {(loc,v) — 0}
2. forward propagate until a dynamic target exp. evaluates to T
3. if no target exp. evaluates to T, return the fixpoint (OK!)
else, try to refine the domain to avoid fault

» if no refinement then fail (KO!)
> else restart with refined domain (goto 2)

Bardin, S., Herrmann, P., Védrine, F. 25/ 49

For each target evaluating to T
m follows backward data dependencies
m only interested in T-values (other locations are safe until now)

m only interested in correcting initial causes of precision loss

Finding the initial causes of precision loss

m initial causes of precision loss are of the form Tinit, T (¢, .)

How to correct
m [, cannot be avoided

® T,) May be avoided if n < Kmax (set local bound to n)

Bardin, S., Herrmann, P., Védrine, F.

26/ 49

jump x

{2}

Bardin, S., Herrmann, P., Védrine, F.

27/ 49

jump x

source of
prec. loss

Bardin, S., Herrmann, P., Védrine, F.

27/ 49

jump x

source of
prec. loss

Bardin, S., Herrmann, P., Védrine, F.

27/ 49

jump

source of
prec. loss

Bardin, S., Herrmann, P., Védrine, F.

27/ 49

source of
prec. loss

domain @ 2Pl
update T

Dx := 2

jump

Bardin, S., Herrmann, P., Védrine, F. 27/ 49

jump x

{2}

Bardin, S., Herrmann, P., Védrine, F.

27/ 49

source of
prec. loss

domain T
update

jump

Bardin, S., Herrmann, P., Védrine, F. 27/ 49

jump x

{2}

Bardin, S., Herrmann, P., Védrine, F.

27/ 49

jump

{2}

Bardin, S., Herrmann, P., Védrine, F.

27/ 49

Two possible failure policies during refinement

m optimistic : fails only when no ispl is corrected

m pessimistic : fails as soon as one ispl cannot be corrected

Optimistic policy succeeds more, but more refinements

Pessimistic policy fails earlier, but may unduly fail

ispl computation | under-approx | exact | over-approx
pessimistic X RC X
optimistic X RC | RC (perf --)

RC : relative completeness [see after]

Bardin, S., Herrmann, P., Védrine, F.

Problem during ispl search

m syntactic computation of (data) predecessors (for assignments
with alias and dynamic jumps) is either unsafe or imprecise
[cf failure policy]

jump b
L1 @— Predecessors of (L,x)?

L2

L3

Bardin, S., Herrmann, P., Védrine, F. 29/ 49

Problem during ispl search

m syntactic computation of (data) predecessors (for assignments
with alias and dynamic jumps) is either unsafe or imprecise
[cf failure policy]

L1 @— Predecessors of (L,x)?

Bardin, S., Herrmann, P., Védrine, F. 29/ 49

Problem during ispl search

m syntactic computation of (data) predecessors (for assignments
with alias and dynamic jumps) is either unsafe or imprecise
[cf failure policy]

Predecessors of (L,x)?

Solution : a journal of the propagation

m record observed feasible branches / alias / dynamic targets
m prune backward data dependencies accordingly
m updated during propagation, used during ispl search

Bardin, S., Herrmann, P., Védrine, F. 29/ 49

Basic theoretical properties

Soundness : PaR(P,Kmax) returns either an invariant such that no
jump target evaluates to T, or FAIL

Complexity : polynomial number of refinements

Completeness : perfect relative completeness for a non trivial
subclass of programs (see next)

Bardin, S., Herrmann, P., Védrine, F. 30/ 49

Relative completeness (RC) : PaR is relatively complete if
PaR(P, Kmax) returns successfully when the forward k-set
propagation with parameter Kmax does

Bad news : no RC in the general case

m mainly because of control dependencies

Good news : RC for a non trivial subclass of programs

Bardin, S., Herrmann, P., Védrine, F. 31/ 49

let us suppose Kmax =1

jump t

Bardin, S., Herrmann, P., Védrine, F. 32/ 49

RC : why it does not work

let us suppose Kmax =1

Bardin, S., Herrmann, P., Védrine, F. 32/ 49

let us suppose Kmax =1

Bardin, S., Herrmann, P., Védrine, F. 32/ 49

let us suppose Kmax =1

{x=T}

|(t=100}|

[{t=T<100,200>} |

jump t

Bardin, S., Herrmann, P., Védrine, F.

32/ 49

RC on a subclass

RC holds for a subclass of unstructured programs

[even with “pessimistic failure”]

B Non-deterministic branching [new : all branches feasible]
M only T-propagating operators (+, —, Xk ok, but not x)

B guarded aliases

» skip proof

Bardin, S., Herrmann, P., Védrine, F. 33/ 49

Reason over traces of the forward propagation procedure

From faulty trace in PaR, build faulty trace in —pmax

* Assume
m My l>D M, Mn(/na Vn) =T // failure

m refinement fails on M, and (/n, vs)

* Prove that Mg = pmax M., M (I, va) = T

Proof steps
m prove for restricted® subclass : no jump / alias

m generalisation : guarded jumps and guarded aliases

Bardin, S., Herrmann, P., Védrine, F. 34/ 49

Fragment with < NDBranching - no alias - no dynamic jump >

Find a non correctable ispl of (/,, v,) such that
BT =T1"T2
| MO £>D Mk E}p Mn
and (/x, vk) ispl of (In, vs)
and
k =0, Mi(lk, vii) = Tinit
or
Mic(l; vie) = Tiey.cq)> G > Kimax and M1 (le, vie) # T

We want to prove that
Goall ispl (I, vk) still evaluates to T in D™ after m;
Mo = pmax M and M (I, vi) = T
Goal2 value of (Ix, vk) still propagate to (/n, vs) in D™ after
™

M;(—)Dmax M;‘l and M;,(lna Vn) =T

Bardin, S., Herrmann, P., Védrine, F. 35/ 49

sketch of proof (2')

ASSUME

Mo Mk Mn

Bardin, S., Herrmann, P., Védrine, F. 36/ 49

Two fundamental lemmas

Lemma 1: 5 p and 5 pmex computes the same proper k-sets

m hint : the only cause of precision loss is early T-cast
. does not create bigger proper k-sets, but T
. we can know if a set is (relatively) approximated or not

m note : very specific to k-sets, false when unfeasible branches

Lemma 2 : 5p and 2 pma define the same data dependencies

m easy here, all data dep. are static

[the two proofs are interleaved)]

Bardin, S., Herrmann, P., Védrine, F.

37/ 49

Goall : ispl (/k, vk) still evaluates to T in D™ after my
Mo = pmax M and M) (I, vi) = T

Case 1: Mk(/k; Vk) = T,',,,'t
m [, created in initial state

m (/k, vk) will also take value T in M,

Bardin, S., Herrmann, P., Védrine, F. 38/ 49

Goall : ispl (/k, vk) still evaluates to T in D™ after my
Mo = pmax M and M) (I, vi) = T

Case 2 1 Mi(lk, vik) = Tp..cpy and g > Kipax

m () predecessors of (k, I, vi) for = p are all proper k-sets
// rest. op : otherwise My (I, vi) =T

m lemma 2 + (%) + lemma 3 : predecessors of (k, li, vk) for
1, pmax are the same locations than for =%, and evaluate to
the same proper k-sets

m hence, M (I, vi) = ax,.,.,({c1...cq}) =T // g > Kmax

Bardin, S., Herrmann, P., Védrine, F. 39/ 49

(Ik,vk)=T<R1,...,Rq>

A\ 4

Y

Dmg

Bardin, S., Herrmann, P., Védrine, F. 40/ 49

Lemma 1l " Lemma 1l

Bardin, S., Herrmann, P., Védrine, F. 40/ 49

(Ik,vk)=T<R1,...,Rq>

N
>

Bardin, S., Herrmann, P., Védrine, F. 40/ 49

(Ik,vk)=T<R1,...,Rq>

(Ik,vk)=¢{R1,...,Rq}

Kmax

Bardin, S., Herrmann, P., Védrine, F.

Y

Dmg

40/ 49

sketch of proof (6)

Goal2 : value of (/k, vk) still propagate to (/,, v,) in D™ after m,
s

M, 5 pse My and My(ln, va) = T

m ok because of lemma 2 and restricted operators (T-must
propagate)

Full Proof of RC : goall + goal2

Bardin, S., Herrmann, P., Védrine, F. 41/ 49

More general case : guarded alias and guarded dynamic jumps

Basically same technique, handle alias and jumps with care

Key : guarded jumps enforce proper ksets on jump exp, or fail
m lemma 1 still holds (until failure state)

m lemma 2 still holds (until failure state)

note for both lemma : need the journal to track back only
“feasible” ispl

Same trick for guarded aliases

Bardin, S., Herrmann, P., Védrine, F. 42/ 49

Relative precision (RP) : PaR is relatively precise if when

PaR(P, Kmax) returns successfully, it returns the same set of
targets than the forward k-set propagation with parameter Kmax
does

RP holds for the subclass of unstructured programs

Summary : RC+RP (on the restricted subclass)

m PaR(P, Kmax) terminates iff forward k-set propagation with
parameter Kmax does

m in case of success, they compute the same set of targets

Bardin, S., Herrmann, P., Védrine, F. 43/ 49

Implementation

input : PPC executable + entrypoint
output : cfg, callgraph, sets of targets, assembly code

[
|
m details : procedure inlining, efficient data-structures
m limitation : no dynamic memory allocation

|

29 kloc of C++

Test bench 1 : 12 small hand-written C programs compiled with
gcc. From 60 to 1000 PPC instructions

Test bench 2 : Safety-critical program from Sagem
m 32 kloc, 51 dynamic jumps, up to 16 targets a jump

Bardin, S., Herrmann, P., Védrine, F. 44/ 49

Experimental results for the aeronautic program
m precision : resolve every jump, only 7% of false targets

(standard program analysis cannot recover better than between
400% and 4000% of false targets)

m robustness : efficiency independent of Kmax (if large enough)
m locality : tight value of max-k, low value of mean-k

m efficiency : terminates in 5 min

» already sufficient for some (safety-critical) applications
» however procedure inlining may be an issue
» rooms for improvement

Bardin, S., Herrmann, P., Védrine, F.

45/ 49

e A gentle introduction to binary-level program analysis
e Focus : Refinement-based CFG reconstruction

e Conclusion and perspectives

Bardin, S., Herrmann, P., Védrine, F. 46/ 49

News from the front

Improved algorithm [efficiency, robustness]
m # refinements indep. of Kmax

m chaining of updates

Compositionality : product of domains KSET x D

m more precise than just KSET

Implementation
m domain = KSET x | x Formulas x{<,<,=,>,>}y
m Sagem : =~ 10 sec

Bardin, S., Herrmann, P., Védrine, F. 47/ 49

Conclusion on CFG reconstruction

Result : an original refinement-based procedure
m truly dedicated to CFG reconstruction [domains, refinement]
m safe, precise, robust and efficient

m both theoretical and empirical evidence

Future work
m experiments on non-critical programs [dynamic alloc]

m ultimate goal : executables coming from large C++ programs

Bardin, S., Herrmann, P., Védrine, F. 48/ 49

Binary code analysis shows both great promises and challenges

Many open problems
m which semantic for binary code ? common formal model ?
m which properties are worth to investigate ?

m is binary-code analysis so different than program analysis?

A few years ago, only a few scattered teams and works

Things are changing [CAV 11, VMCAI 11, EMSOFT 11, SSV 11]
m time for more collaboration ?

m benchmarks, meetings, workshops / conference, projects ?

Bardin, S., Herrmann, P., Védrine, F. 49/ 49

Backup slides

Dynamic bitvector automata (DBA)

Osmose

Bardin, S., Herrmann, P., Védrine, F. 49/ 49

Main design ideas

m small set of instructions
m concise and natural modelling of common ISAs

m low-level enough to allow bit-precise modelling

Can model : instruction overlapping, return address smashing,
endianness, overlapping memory read/write

Limitations : (strong) no self-modifying code, (weak) no dynamic
memory allocation, no FPA

Bardin, S., Herrmann, P., Védrine, F. 49/ 49

Extended automata-like formalism

m bitvector variables and arrays of bytes
m all bv sizes statically known, no side-effects

m standard operations from BVA

Feature 1 : Dynamic transitions

m for dynamic jumps

Feature 2 : Directed multiple-bytes read and write operations

m for endianness and word load/store

Feature 3 : Memory zone properties

m for (simple) environment

Bardin, S., Herrmann, P., Védrine, F. 49/ 49

Feature 1 : Dynamic transitions

m some nodes are labelled by an address
m dynamic transitions have no predefined destination

m destination computed dynamically via a target expression

Feature 2 : Directed multiple-bytes read and write operations

m array[expr; k7], where k € N and # € {<, —}

Feature 3 : Memory zone properties

m specify special behaviour for some segments of memory

m volatile, write-aborts, write-ignored, read-aborts

Bardin, S., Herrmann, P., Védrine, F.

49/ 49

0x5003 : move RO 5

[0x5003 : add a B |
[0x5003 : goto 0x1000 |
[0x5003 : goto A |

OO

0x5003 0x5007
Ax := A+B Fc := (Ax<A) A := Ax
O50—500
/
0x5003 0x5007
0x5003 0x1000
: Jump A

0x5003

Procedure calls / returns : encoded as static / dynamic jumps

Memory zone properties, a few examples : ROM (write-ignored),
memory controlled by env (volatile), code section (write-aborts)

Bardin, S., Herrmann, P., Védrine, F.

49/ 49

DBA toolbox

Open-source Ocaml code for basic DBA manipulation

Features
m a datatype for DBAs
m basic “typing” (size checking) over DBAs
m import (export) from (to) a XML format
m DBA simplification (see next)

GPL license, based on xml-light, ~ 3 kloc

Bardin, S., Herrmann, P., Védrine, F. 49/ 49

Goal : simplify unduly complex DBAs typically obtained from
instruction-wise translation

m useless flag computations / auxiliary variables / etc.

Inspired by standard compilation techniques [peephole, dead code, etc.]

m beware of partial DBAs and dynamic jumps!

m rethink these standard techniques in a partial CFG setting

Results : size reduction of —50% (all instrs), and between —30%
and —50% (non-goto instrs)

Bardin, S., Herrmann, P., Védrine, F. 49/ 49

Osmose (CEA) [ICST-08, STVR-11]

m automatic test data generation (dynamic symbolic execution)
m 75 kloc of OCaml, front-ends : PPC, M6800, Intel c509

m case-studies : programs from aeronautics and energy

Supported architectures : Motorola 6800, Intel 8051, Power PC 550

Bardin, S., Herrmann, P., Védrine, F. 49/ 49

Multiple-architecture support [BH-11]
m Generic assembly language (GAL) [current move to DBAS]

Test data generation through Concolic Execution [BH-08,BH-11]
m exploration of all (bounded) paths of the program
m symbolic reasoning to discover new dynamic targets

m path pruning optimisations [BH-09]

Bit-precise constraint solving [BHP-10]

Bardin, S., Herrmann, P., Védrine, F.

49/ 49

	Introduction
	The PaR Procedure
	Experiments
	Conclusion

