An Alternative to SAT-based Approaches for Bit-Vectors

Sébastien Bardin, Philippe Herrmann, Florian Perroud
CEA-LIST, Software Safety Labs
(Paris, France)

Theory of bit-vectors (BV)
■ variables interpreted over fixed-size arrays of bits
■ standard low-level operators

BV increasingly popular in software verification

■ bounded model checking

- symbolic execution

■ extended static checking
[Clarke-Kroening-Lerda, TACAS 2004]
[Cadar-Ganesh-Dill+, CCS 2006]
[Babic-Hu, ICSE 2008]

Why?
■ very precise modelling of low-level constructs

- allows multiplication between variables

Variables range over arrays of bits
■ a BV variable A has a given size $\operatorname{size}(A)$
■ $A=a_{1} \ldots a_{n}$ where $a_{i} \in\{0,1\}$
■ unsigned integer semantics (size n) : $\llbracket A \rrbracket_{u}=\sum_{i=1}^{n} a_{i} \cdot 2^{i-1}$

- signed integer semantics

Common operations
■ bitwise: $\sim, \&, \mid$, xor

- arithmetic : $\oplus, \ominus, \otimes, \oslash_{u}, \oslash_{s}, \%_{u}, \%_{s}$

■ relations : $=, \neq, \leq_{u},<_{u}, \leq_{s},<_{s}$
■ shifts : $\ll,>_{u},>_{s}$
■ extensions : $\operatorname{ext}_{u}(A, k), \operatorname{ext}_{s}(A, k)$
■ concatenation : A :: B
■ extraction : $A[i . . j]$

Bit-blasting : standard way to solve problems over BV
■ encode BV formula into an equisatisfiable boolean formula
■ each BV A is encoded into a set of boolean variables a_{1}, \ldots, a_{n}
■ each BV operator is encoded into a logical circuit

Very main advantage : rely on the efficiency of SAT solvers
■ small effort for good performance
■ integration into SMT solvers [Stp,Boolector,MathSat,etc.]

Shortcomings
■ formula explosion : too large boolean formulas on some "arithmetic-oriented" BV-formulas
■ no more information about the BV-formula structure : may miss high-level simplifications

Goal : outperform SAT on arithmetic-oriented BV formulas
Strategy: word-level approach

- reason on bit-vectors rather than on their separate bits

■ BV variables are encoded into bounded integer variables
■ BV operators are seen as integer arithmetic operators

Technology: CLP(FD)
■ Constraint Logic Programming over Finite Domains
■ handle all common arithmetic operators

Restriction: only conjunctive formulas (useful : symbolic execution)

Natural extension of DPLL
■ each variable ranges over a finite domain

Smart exploration of the tree of partial valuations of the variables
■ two steps are interleaved
■ propagation : reduce the domain of each variable by removing some inconsistent values
■ search : standard "label \& backtrack" procedure

Example : constraint $x \leq y$ with $D_{x}=[50 . .100]$ and $D_{y}=[30 . .70]$
■ (propagation) reduce both D_{x} and D_{y} to [50..70]
■ (search) no more propagation, x is arbitrary labelled to 62
■ (propagation) D_{y} is reduced to [62..70]
■ (search) y is labelled to 68 , the procedure returns SAT

Difficulty

■ word-level CLP-based approaches already tried
[Diaz-Codognet 01, Ferrandi-Rendine-Sciuto 02]
■ performance very far from SAT-based approaches
[Sülflow-Kühne+ 07]
Existing works rely on standard CLP(FD)

- for small domains and/or linear integer arithmetic
- does not fit the needs of word-level BV solving

Our results

- a new $\operatorname{CLP}(B V)$ framework dedicated to $B V$ solving

■ fill the gap with the best SAT approaches
■ better scaling than SAT approaches w.r.t. BV sizes

Why CLP(FD) and direct encoding do not work
Basic ingredients of the $\operatorname{CLP}(\mathrm{BV})$ framework
Some experiments

Each bit-vector A is encoded by its unsigned integer value $\llbracket A \rrbracket_{u}$ Bit-vectors operators are encoded by common integer operators

- (expensive) $e x t_{s}(\mathrm{~A}, \mathrm{k})=\mathrm{R}$

■ become $R=\operatorname{ite}\left(\left(\llbracket A \rrbracket_{u}<2^{N-1}\right) ? \llbracket A \rrbracket_{u}: \llbracket A \rrbracket_{u}+2^{k}-2^{\operatorname{size}(A)}\right)$

- introduce case-split
- (very expensive) A \& $B=R$

■ perform bit-blasting

- introduce $A_{i} \mathrm{~s}, B_{i} \mathrm{~s}$ and $R_{i} \mathrm{~s}$ in $\{0,1\}$

■ $R_{1}=\min \left(A_{1}, B_{1}\right) \wedge \ldots \wedge R_{n}=\min \left(A_{n}, B_{n}\right)$

$$
\wedge \sum A_{i} \cdot 2^{i-1}=\llbracket A \rrbracket_{u} \wedge \sum B_{i} \cdot 2^{i-1}=\llbracket B \rrbracket_{u} \wedge \sum R_{i} \cdot 2^{i-1}=\llbracket R \rrbracket_{u}
$$

1- Domain size : finite but huge domains
■ CLP(FD) solvers with concrete domains do not scale
2- Inefficient translation
■ large scale CLP(FD) solvers tuned for linear arithmetic
■ do not perform well on non-linear operations, case-splits, boolean values, etc.
■ the direct word-level encoding falls in the worst category

3- Inadequate symbolic domains

- large scale CLP(FD) solvers based on (single) intervals
- does not propagate anything for BV (see after)

CLP(FD) and BV : why it does not work (2)

Unions of intervals are mandatory for BV because of overflows
■ $a \oplus 3=b$ with $N=8, D_{a}=[251.255]$ and $D_{b}=[0 . .255]$
■ with Is : D_{b} can be reduced to $D_{b}^{\prime}=[0 . .2] \cup[254 . .255]$
■ with I : no propagation, $D_{b}^{\prime}=[0 . .255]$

A dedicated CLP(BV) framework

Dedicated propagators for Is/C domain
■ no introduction of additional variables
■ no introduction of "modulo" operation everywhere
■ signed operations handled without any case-split
The new domain BL (bitlist) and its propagators
■ no bit-blasting on bitwise operators
■ efficient propagation on most "linear bitwise" operations

Framework

■ each CLP variable has a Is/C domain and a BL domain
■ each BV-constraint has propagators for Is/C and for BL

- propagators to share information between BL and Is/C

Implemented on top of COLIBRI [Marre-Blanc 05]

Dedicated Is/C propagators

Is propagators

- forward and backward propagation of Is
- interleaved until a fixpoint is reached

Signed operators : perform a case-split inside the propagator
For bit-wise operations : very approximated propagation
■ A \& $\mathrm{B}=\mathrm{R}$: propagated like $A \geq R \wedge B \geq R$
■ we rely on BL-propagators for these constraints
Other

- congruence propagation

■ simplification rules
(preciseness : see the discussion about arc-consistency in the paper)

BL domain

BL (bitlist) : abstract domain designed to be combined with Is/C
The bitlist of A records the known bits of A
■ fixed size arrays of values in $\{\perp, 0,1, \star\}$ (called \star-bits)
■ $b_{A}[k]=0$ implies that $A[k]=0$

- $b l_{A}[k]=1$ implies that $A[k]=1$

■ $b l_{A}[k]=\star$ does not imply anything

- $b l_{A}[k]=\perp$ indicates a contradiction

Propagators : forward and backward propagation of \star-bits
Propagators for non-arithmetic operators

- precise and efficient propagation

Propagators for arithmetic operators
■ limited form of bit-blasting inside the propagator
■ very restricted propagation
■ we rely on Is/C propagators for these constraints

Consistency propagators : designed to enforce consistency between the different domains of a same variable

From BL to Is/C
■ if $\left.b\right|_{X}=\star 1 \star 101$ then $X \in[21 . .61]$
■ if $b l_{X}=\star 1 \star 101$ then $X \equiv 5 \bmod 8$

From Is/C to BL
■ $(\mathrm{N}=6)$ if $D_{x}=[0 . .15]$ then $b l_{X}=00 \star \star \star \star$
■ $(\mathrm{N}=6)$ if $X \equiv 5 \bmod 8$ then $b l_{X}=\star \star \star 101$

Implementation : CLP(BV) implemented on top of COLIBRI
Goal : comparison of $\operatorname{CLP}(\mathrm{BV}), \operatorname{CLP}(\mathrm{FD})$ and SAT
Test bench
■ 164 problems from the SMTLIB or generated by Osmose
■ Mostly 32 -bit, up to 1,700 variables and 17,000 operators

Tool	Category	Time	\# success
Eclipse/IC	CLP(FD)	1750	$79 / 164$
COLIBRI	CLP(FD)	2436	$43 / 164$
COL-D	CLP(BV)	893	$125 / 164$
COL-D-BL	CLP(BV)	712	$138 / 164$
MathSat	SAT	794	$128 / 164$
STP	SAT	618	$144 / 164$
Boolector	SAT	291	$157 / 164$

Time out $=20$ s

CLP (BV) vs CLP(FD)

- CLP(BV) outperforms largely CLP(FD) for bit-vectors

■ each feature induces a new increase in performance
■ results are stable w.r.t. the search heuristics (see the paper)

CLP(BV) vs SAT
■ CLP(BV) performs roughly like SAT approaches
■ however, still behind the very best approaches
■ CLP(BV) is better on NLA (see the paper)
■ CLP(BV) scales better w.r.t. bit-width (see the paper)

Word-level CLP-based approach for BV solving
Results

- a new $\operatorname{CLP}(\mathrm{BV})$ framework dedicated to BV solving

■ largely increase performance compared to direct CLP(FD)
■ fill (most of) the gap with the best SAT approaches
■ better scaling than SAT approaches w.r.t. BV sizes

Future work
■ still room for improvement (search, global constraints)
■ handle arbitrary logical connectors
■ handle array operations

