An Alternative to SAT-based Approaches for
Bit-Vectors

Sébastien Bardin, Philippe Herrmann, Florian Perroud

CEA-LIST, Software Safety Labs
(Paris, France)

Bardin, S., Herrmann, P., Perroud, F.

DA

1/ 21

Theory of bit-vectors (BV)
m variables interpreted over fixed-size arrays of bits

m standard low-level operators

BV increasingly popular in software verification

m bounded model checking [Clarke-Kroening-Lerda, TACAS 2004]

m symbolic execution [Cadar-Ganesh-Dill+, CCS 2006]

m extended static checking [Babic-Hu, ICSE 2008]
Why ?

m very precise modelling of low-level constructs

m allows multiplication between variables

Bardin, S., Herrmann, P., Perroud, F. 2/ 21

Variables range over arrays of bits
m a BV variable A has a given size size(A)
m A=23;...a, where a; € {0,1}
m unsigned integer semantics (size n) : [A], =37, a;-2'!

m signed integer semantics

Common operations

bitwise : ~, &, |, xor

arithmetic : @,6,®, Qy, @s, You, %s
relations : =, #, <,, <y, <s, <s
shifts : <, >, >

extensions : ext,(A, k), exts(A, k)

concatenation : A:: B

extraction : A[i..j]

Bardin, S., Herrmann, P., Perroud, F. 3/ 21

Bit-blasting

Bit-blasting : standard way to solve problems over BV

. yan

m encode BV formula into an equisatisfiable boolean formula
m each BV A is encoded into a set of boolean variables
ai, .

m each BV operator is encoded into a logical circuit

Bardin, S., Herrmann, P., Perroud, F.

DA

4/ 21

Very main advantage : rely on the efficiency of SAT solvers
m small effort for good performance

m integration into SMT solvers [Stp,Boolector,MathSat,etc.]

Shortcomings

m formula explosion : too large boolean formulas on some
“arithmetic-oriented” BV-formulas

m no more information about the BV-formula structure : may
miss high-level simplifications

Bardin, S., Herrmann, P., Perroud, F. 5/ 21

Goal : outperform SAT on arithmetic-oriented BV formulas

Strategy : word-level approach
m reason on bit-vectors rather than on their separate bits
m BV variables are encoded into bounded integer variables

m BV operators are seen as integer arithmetic operators

Technology : CLP(FD)
m Constraint Logic Programming over Finite Domains

m handle all common arithmetic operators

Restriction : only conjunctive formulas (useful : symbolic execution)

Bardin, S., Herrmann, P., Perroud, F. 6/ 21

Natural extension of DPLL

m each variable ranges over a finite domain

Smart exploration of the tree of partial valuations of the variables
m two steps are interleaved

m propagation : reduce the domain of each variable by removing
some inconsistent values

m search : standard “label & backtrack” procedure

Example : constraint x < y with D, = [50..100] and D, = [30..70]
m (propagation) reduce both D, and D, to [50..70]
m (search) no more propagation, x is arbitrary labelled to 62
m (propagation) D, is reduced to [62..70]
m (search) y is labelled to 68, the procedure returns SAT

Bardin, S., Herrmann, P., Perroud, F.

7/ 21

Difficulty

m word-level CLP-based approaches already tried
[Diaz-Codognet 01, Ferrandi-Rendine-Sciuto 02]

m performance very far from SAT-based approaches
[Siilflow-Kiihne+ 07]

Existing works rely on standard CLP(FD)
m for small domains and/or linear integer arithmetic

m does not fit the needs of word-level BV solving

Our results
m a new CLP(BV) framework dedicated to BV solving
m fill the gap with the best SAT approaches
m better scaling than SAT approaches w.r.t. BV sizes

Bardin, S., Herrmann, P., Perroud, F.

8/ 21

Rest of the talk

Why CLP(FD) and direct encoding do not work

Basic ingredients of the CLP(BV) framework
Some experiments

Bardin, S., Herrmann, P., Perroud, F.

DA

9/ 21

Each bit-vector A is encoded by its unsigned integer value [A],
Bit-vectors operators are encoded by common integer operators

e (expensive) exts(Ak) = R
m become R = ite(([A], < 2N-1)? [A], : [A], + ok _ 25ize(A))

m introduce case-split

e (very expensive) A & B =R
m perform bit-blasting
m introduce A;s, Bjs and R;s in {0,1}
m R = min(Al, Bi)A...A Ry = min(An, By)
AT A 21 =[A], /\ZB 27 = [B], A Ri-2i71 = [R],

Bardin, S., Herrmann, P., Perroud, F.

10/ 21

1- Domain size : finite but huge domains
m CLP(FD) solvers with concrete domains do not scale

2- Inefficient translation
m large scale CLP(FD) solvers tuned for linear arithmetic

m do not perform well on non-linear operations, case-splits,
boolean values, etc.

m the direct word-level encoding falls in the worst category

3- Inadequate symbolic domains
m large scale CLP(FD) solvers based on (single) intervals

m does not propagate anything for BV (see after)

Bardin, S., Herrmann, P., Perroud, F.

11/ 21

CLP(FD) and BV : why it does not work (2)

Unions of intervals are mandatory for BV because of overflows
m a® 3= bwith N=38, D, =[251..255] and D, = [0..255]

m with Is : D can be reduced to D, = [0..2] U [254..255]
m with | : no propagation, D} = [0..255]

Bardin, S., Herrmann, P., Perroud, F.

DA

12/ 21

Dedicated propagators for Is/C domain
m no introduction of additional variables
m no introduction of “modulo” operation everywhere

m signed operations handled without any case-split

The new domain BL (bitlist) and its propagators
m no bit-blasting on bitwise operators
m efficient propagation on most “linear bitwise” operations

Framework
m each CLP variable has a Is/C domain and a BL domain
m each BV-constraint has propagators for Is/C and for BL

m propagators to share information between BL and Is/C

Implemented on top of COLIBRI [Marre-Blanc 05]

Bardin, S., Herrmann, P., Perroud, F.

13/ 21

Is propagators
m forward and backward propagation of Is
m interleaved until a fixpoint is reached
Signed operators : perform a case-split inside the propagator

For bit-wise operations : very approximated propagation
m A & B =R : propagated like A>RAB>R

m we rely on BL-propagators for these constraints

Other
m congruence propagation

m simplification rules

(preciseness : see the discussion about arc-consistency in the paper)

Bardin, S., Herrmann, P., Perroud, F. 14/ 21

BL (bitlist) : abstract domain designed to be combined with Is/C

The bitlist of A records the known bits of A
m fixed size arrays of values in {L,0,1,x} (called x-bits)
m bla[k] = 0 implies that A[k] =0
m bla[k] = 1 implies that A[k] =1
m blp[k] = % does not imply anything

m blp[k] = L indicates a contradiction

Bardin, S., Herrmann, P., Perroud, F.

15/ 21

Propagators : forward and backward propagation of x-bits

Propagators for non-arithmetic operators

m precise and efficient propagation

Propagators for arithmetic operators
m limited form of bit-blasting inside the propagator
m very restricted propagation

m we rely on Is/C propagators for these constraints

Bardin, S., Herrmann, P., Perroud, F.

16/ 21

Consistency propagators : designed to enforce consistency between
the different domains of a same variable

From BL to Is/C
m if blx = 1+ 101 then X € [21..61]
m if blx = x1 %101 then X =5 mod 8

From Is/C to BL
m (N=6) if Dy = [0..15] then blx = 00 % % x *
m (N=6) if X =5 mod 8 then blx = % % %101

Bardin, S., Herrmann, P., Perroud, F. 17/ 21

Implementation : CLP(BV) implemented on top of COLIBRI
Goal : comparison of CLP(BV), CLP(FD) and SAT

Test bench
m 164 problems from the SMTLIB or generated by Osmose
m Mostly 32-bit, up to 1,700 variables and 17,000 operators

Bardin, S., Herrmann, P., Perroud, F. 18/ 21

| Tool | Category ‘ Time | 7 success |
Eclipse/IC | CLP(FD) | 1750 79/164
COLIBRI CLP(FD) | 2436 43/164
COL-D CLP(BV) | 893 | 125 /164
COL-D-BL | CLP(BV) | 712 138/164
MathSat SAT 794 128/164
STP SAT 618 144/164
Boolector SAT 291 157/164

Time out = 20s

Bardin, S., Herrmann, P., Perroud, F.

19/ 21

CLP(BV) vs CLP(FD)
m CLP(BV) outperforms largely CLP(FD) for bit-vectors
m each feature induces a new increase in performance

m results are stable w.r.t. the search heuristics (see the paper)

CLP(BV) vs SAT
m CLP(BV) performs roughly like SAT approaches
m however, still behind the very best approaches
m CLP(BV) is better on NLA (see the paper)
m CLP(BV) scales better w.r.t. bit-width (see the paper)

Bardin, S., Herrmann, P., Perroud, F. 20/ 21

Word-level CLP-based approach for BV solving

Results
m a new CLP(BV) framework dedicated to BV solving
m largely increase performance compared to direct CLP(FD)
m fill (most of) the gap with the best SAT approaches
m better scaling than SAT approaches w.r.t. BV sizes

Future work
m still room for improvement (search, global constraints)
m handle arbitrary logical connectors

m handle array operations

Bardin, S., Herrmann, P., Perroud, F.

21/ 21

	Motivation
	Outline
	Direct word-level CLP(FD) approach
	A dedicated CLP(BV) framework
	Experiments
	Conclusion

