
An Alternative to SAT-based Approaches for

Bit-Vectors

Sébastien Bardin, Philippe Herrmann, Florian Perroud

CEA-LIST, Software Safety Labs
(Paris, France)

Bardin, S., Herrmann, P., Perroud, F. 1/ 21



Motivation

Theory of bit-vectors (BV)

variables interpreted over fixed-size arrays of bits

standard low-level operators

BV increasingly popular in software verification

bounded model checking [Clarke-Kroening-Lerda, TACAS 2004]

symbolic execution [Cadar-Ganesh-Dill+, CCS 2006]

extended static checking [Babic-Hu, ICSE 2008]

Why ?

very precise modelling of low-level constructs

allows multiplication between variables

Bardin, S., Herrmann, P., Perroud, F. 2/ 21



The theory of bit-vectors

Variables range over arrays of bits

a BV variable A has a given size size(A)

A = a1 . . . an where ai ∈ {0, 1}

unsigned integer semantics (size n) : JAKu =
∑n

i=1 ai · 2
i−1

signed integer semantics

Common operations

bitwise : ∼,&, |, xor

arithmetic : ⊕,⊖,⊗,⊘u,⊘s ,%u,%s

relations : =, 6=,≤u, <u,≤s , <s

shifts : ≪,≫u,≫s

extensions : extu(A, k), exts(A, k)

concatenation : A :: B

extraction : A[i ..j]

Bardin, S., Herrmann, P., Perroud, F. 3/ 21



Bit-blasting

Bit-blasting : standard way to solve problems over BV

encode BV formula into an equisatisfiable boolean formula

each BV A is encoded into a set of boolean variables
a1, . . . , an

each BV operator is encoded into a logical circuit

Bardin, S., Herrmann, P., Perroud, F. 4/ 21



Bit-blasting : pros and cons

Very main advantage : rely on the efficiency of SAT solvers

small effort for good performance

integration into SMT solvers [Stp,Boolector,MathSat,etc.]

Shortcomings

formula explosion : too large boolean formulas on some
“arithmetic-oriented” BV-formulas

no more information about the BV-formula structure : may
miss high-level simplifications

Bardin, S., Herrmann, P., Perroud, F. 5/ 21



Our approach : word-level CLP-based BV solving

Goal : outperform SAT on arithmetic-oriented BV formulas

Strategy : word-level approach

reason on bit-vectors rather than on their separate bits

BV variables are encoded into bounded integer variables

BV operators are seen as integer arithmetic operators

Technology : CLP(FD)

Constraint Logic Programming over Finite Domains

handle all common arithmetic operators

Restriction : only conjunctive formulas (useful : symbolic execution)

Bardin, S., Herrmann, P., Perroud, F. 6/ 21



CLP(FD)

Natural extension of DPLL

each variable ranges over a finite domain

Smart exploration of the tree of partial valuations of the variables

two steps are interleaved

propagation : reduce the domain of each variable by removing
some inconsistent values

search : standard “label & backtrack” procedure

Example : constraint x ≤ y with Dx = [50..100] and Dy = [30..70]

(propagation) reduce both Dx and Dy to [50..70]

(search) no more propagation, x is arbitrary labelled to 62

(propagation) Dy is reduced to [62..70]

(search) y is labelled to 68, the procedure returns SAT

Bardin, S., Herrmann, P., Perroud, F. 7/ 21



Contribution

Difficulty

word-level CLP-based approaches already tried
[Diaz-Codognet 01, Ferrandi-Rendine-Sciuto 02]

performance very far from SAT-based approaches
[Sülflow-Kühne+ 07]

Existing works rely on standard CLP(FD)

for small domains and/or linear integer arithmetic

does not fit the needs of word-level BV solving

Our results

a new CLP(BV) framework dedicated to BV solving

fill the gap with the best SAT approaches

better scaling than SAT approaches w.r.t. BV sizes

Bardin, S., Herrmann, P., Perroud, F. 8/ 21



Rest of the talk

Why CLP(FD) and direct encoding do not work

Basic ingredients of the CLP(BV) framework

Some experiments

Bardin, S., Herrmann, P., Perroud, F. 9/ 21



Direct word-level encoding : examples

Each bit-vector A is encoded by its unsigned integer value JAKu

Bit-vectors operators are encoded by common integer operators

• (expensive) exts(A,k) = R

become R = ite((JAKu < 2N−1)? JAKu : JAKu + 2k − 2size(A))

introduce case-split

• (very expensive) A & B = R

perform bit-blasting

introduce Ais, Bis and Ri s in {0, 1}

R1 = min(A1,B1) ∧ . . . ∧ Rn = min(An,Bn)
∧

∑
Ai ·2

i−1 = JAKu ∧
∑

Bi ·2
i−1 = JBKu∧

∑
Ri ·2

i−1 = JRKu

Bardin, S., Herrmann, P., Perroud, F. 10/ 21



CLP(FD) and BV : why it does not work

1- Domain size : finite but huge domains

CLP(FD) solvers with concrete domains do not scale

2- Inefficient translation

large scale CLP(FD) solvers tuned for linear arithmetic

do not perform well on non-linear operations, case-splits,
boolean values, etc.

the direct word-level encoding falls in the worst category

3- Inadequate symbolic domains

large scale CLP(FD) solvers based on (single) intervals

does not propagate anything for BV (see after)

Bardin, S., Herrmann, P., Perroud, F. 11/ 21



CLP(FD) and BV : why it does not work (2)

Unions of intervals are mandatory for BV because of overflows

a ⊕ 3 = b with N = 8, Da = [251..255] and Db = [0..255]

with Is : Db can be reduced to D ′

b = [0..2] ∪ [254..255]

with I : no propagation, D ′

b = [0..255]

Bardin, S., Herrmann, P., Perroud, F. 12/ 21



A dedicated CLP(BV) framework

Dedicated propagators for Is/C domain

no introduction of additional variables

no introduction of “modulo” operation everywhere

signed operations handled without any case-split

The new domain BL (bitlist) and its propagators

no bit-blasting on bitwise operators

efficient propagation on most “linear bitwise” operations

Framework

each CLP variable has a Is/C domain and a BL domain

each BV-constraint has propagators for Is/C and for BL

propagators to share information between BL and Is/C

Implemented on top of COLIBRI [Marre-Blanc 05]

Bardin, S., Herrmann, P., Perroud, F. 13/ 21



Dedicated Is/C propagators

Is propagators

forward and backward propagation of Is

interleaved until a fixpoint is reached

Signed operators : perform a case-split inside the propagator

For bit-wise operations : very approximated propagation

A & B = R : propagated like A ≥ R ∧ B ≥ R

we rely on BL-propagators for these constraints

Other

congruence propagation

simplification rules

(preciseness : see the discussion about arc-consistency in the paper)

Bardin, S., Herrmann, P., Perroud, F. 14/ 21



BL domain

BL (bitlist) : abstract domain designed to be combined with Is/C

The bitlist of A records the known bits of A

fixed size arrays of values in {⊥, 0, 1, ⋆} (called ⋆-bits)

blA[k] = 0 implies that A[k] = 0

blA[k] = 1 implies that A[k] = 1

blA[k] = ⋆ does not imply anything

blA[k] = ⊥ indicates a contradiction

Bardin, S., Herrmann, P., Perroud, F. 15/ 21



BL propagators

Propagators : forward and backward propagation of ⋆-bits

Propagators for non-arithmetic operators

precise and efficient propagation

Propagators for arithmetic operators

limited form of bit-blasting inside the propagator

very restricted propagation

we rely on Is/C propagators for these constraints

Bardin, S., Herrmann, P., Perroud, F. 16/ 21



Communication between Is/C and BL

Consistency propagators : designed to enforce consistency between
the different domains of a same variable

From BL to Is/C

if blX = ⋆1 ⋆ 101 then X ∈ [21..61]

if blX = ⋆1 ⋆ 101 then X ≡ 5 mod 8

From Is/C to BL

(N=6) if Dx = [0..15] then blX = 00 ⋆ ⋆ ⋆ ⋆

(N=6) if X ≡ 5 mod 8 then blX = ⋆ ⋆ ⋆101

Bardin, S., Herrmann, P., Perroud, F. 17/ 21



Experiments

Implementation : CLP(BV) implemented on top of COLIBRI

Goal : comparison of CLP(BV), CLP(FD) and SAT

Test bench

164 problems from the SMTLIB or generated by Osmose

Mostly 32-bit, up to 1,700 variables and 17,000 operators

Bardin, S., Herrmann, P., Perroud, F. 18/ 21



Experiment 1 : CLP(BV) vs CLP(FD) vs SAT

Tool Category Time # success

Eclipse/IC CLP(FD) 1750 79/164

COLIBRI CLP(FD) 2436 43/164

COL-D CLP(BV) 893 125 /164

COL-D-BL CLP(BV) 712 138/164

MathSat SAT 794 128/164

STP SAT 618 144/164

Boolector SAT 291 157/164

Time out = 20s

Bardin, S., Herrmann, P., Perroud, F. 19/ 21



CLP(BV) vs CLP(FD) vs SAT : results

CLP(BV) vs CLP(FD)

CLP(BV) outperforms largely CLP(FD) for bit-vectors

each feature induces a new increase in performance

results are stable w.r.t. the search heuristics (see the paper)

CLP(BV) vs SAT

CLP(BV) performs roughly like SAT approaches

however, still behind the very best approaches

CLP(BV) is better on NLA (see the paper)

CLP(BV) scales better w.r.t. bit-width (see the paper)

Bardin, S., Herrmann, P., Perroud, F. 20/ 21



Conclusion

Word-level CLP-based approach for BV solving

Results

a new CLP(BV) framework dedicated to BV solving

largely increase performance compared to direct CLP(FD)

fill (most of) the gap with the best SAT approaches

better scaling than SAT approaches w.r.t. BV sizes

Future work

still room for improvement (search, global constraints)

handle arbitrary logical connectors

handle array operations

Bardin, S., Herrmann, P., Perroud, F. 21/ 21


	Motivation
	Outline
	Direct word-level CLP(FD) approach
	A dedicated CLP(BV) framework
	Experiments
	Conclusion

