
Refinement-Based CFG Reconstruction from

Unstructured Programs

Sébastien Bardin, Philippe Herrmann, Franck Védrine

CEA LIST
(Paris, France)

Bardin, S., Herrmann, P., Védrine, F. 1/ 19



Overview

Automatic analysis of executable files

recent research field [Codesurfer/x86, SAGE, Jakstab, Osmose, etc.]

many promising applications (COTS, mobile code, malware, etc.)

A key issue : Control-Flow Graph (CFG) reconstruction

prior to any other static analysis (SA)

must be safe : otherwise, other SA unsafe

must be precise : otherwise, other SA imprecise

This talk is about CFG reconstruction (from executable files)

safe and precise technique

based on abstraction-refinement

Bardin, S., Herrmann, P., Védrine, F. 2/ 19



CFG reconstruction

Input

an executable file, i.e. an array of bytes

the address of the initial instruction

a basic decoder : exec f. × address 7→ instruction × size

Output : CFG of the program

Bardin, S., Herrmann, P., Védrine, F. 3/ 19



CFG reconstruction (2)

Successor addresses are often syntactically known

addr : move a b → successor at addr+size

addr : goto 100 → successor at 100

addr : ble 100 → successors at 100 and addr+size

But not always : successors of goto a ?

Dynamic jump is the enemy !

Dynamic jumps are pervasive : introduced by compilers

switch, function pointers, virtual methods, etc.

Bardin, S., Herrmann, P., Védrine, F. 4/ 19



Safe CFG reconstruction

Need to mix value analysis and standard CFG analysis

[Balakrishnan-Reps 04, Kinder-Zuleger-Veith 09 ]

Very difficult to get precise

1. A very sensitive analysis : imprecision on jump expressions → extra

propagation on false targets → more imprecision on value analysis →

possibly more imprecision on jump expressions → . . .

need to be very precise on jump targets

2. Sets of jump targets lack regularity (arbitrary values from compiler)

standard domains imprecise on jump targets

Bardin, S., Herrmann, P., Védrine, F. 5/ 19



Related work

CodeSurfer/x86 [Balakrishnan-Reps 04]

abstract domain : strided intervals (+ affine relationships)

lots of features : local variable recovery, type recovery, etc.

• abstract domain not suited to sets of jump targets

Jakstab [Kinder-Veith 08]

abstract domain : sets of bounded cardinality (k-sets)

precise when the bound K is well-tuned

• not robust to the parameter K : possibly inefficient if K too
large, but very imprecise if K not large enough

Bardin, S., Herrmann, P., Védrine, F. 6/ 19



Contribution

Key observations

k-sets are the only domain well-suited to precise CFG
reconstruction

for most programs, only a few facts need to be tracked
precisely to resolve dynamic jumps

good candidate for abstraction-refinement

Contribution

A refinement-based approach to safe CFG reconstruction

An implementation and a few experiments

The technique is safe, precise, robust and reasonably efficient

Bardin, S., Herrmann, P., Védrine, F. 7/ 19



Rest of the talk

Formalisation : unstructured programs and the VAPR problem

The Propagate-and-Refine procedure for VAPR

Experiments

Bardin, S., Herrmann, P., Védrine, F. 8/ 19



Unstructured programs

Unstructured Programs : P = (L,V ,A,T , l0) where

L ⊆ N finite set of code addresses

V finite set of program variables, A finite set of arrays

T maps code addresses to instructions

l0 initial code address

instructions : assignments v :=e and a[e1] :=e2, static jumps
goto l , branching instructions ite(cond ,l1,l2), dynamic jumps
cgoto(v)

Bardin, S., Herrmann, P., Védrine, F. 9/ 19



Value Analysis with Precision Requirements

Value Analysis with Precision Requirements (VAPR)

input : a program P and a set of precision requirements C

problem : compute an over-approximation M of the collecting
semantics of P such that M |= C

Precision Requirement : a (memory) location (l , v), written ϕ〈l , v〉

M |= ϕ〈l , v〉 if M(l , v) 6= ⊤

CFG reconstruction can be achieved through VAPR

add a requirement ϕ〈l , v〉 for each (l , cgoto v) in P

rather weak constraint, but sufficient in practise (see after)

Bardin, S., Herrmann, P., Védrine, F. 10/ 19



The Propagate-and-Refine procedure (PaR) for VAPR

Input : (P , C)
Parameter : Kmax

Output : an over-approximation M of the collecting semantics of P such

that M |= C, or FAIL

Two interleaved-steps : propagation and refinement

Propagation based on k-sets

Each location has its own cardinality bound (≤ Kmax)

Refinement : done by increasing some cardinality bounds

Bardin, S., Herrmann, P., Védrine, F. 11/ 19



Propagation : original features

Cardinality bounds : abstract values downcast to destination bound

role : lose information, increase efficiency

⊤-labels to track initial precision losses (ipl)

⊤init : input ⊤-values, ⊤〈c1,...,cq〉 : ⊤-abstraction of {c1, . . . , cq}

dedicated propagation rules : ⊤init and ⊤〈...〉 “stay in place”

role : pinpoint ipl, give clue for correction

Transitions involving faulty locations are not fired

role : avoid noise propagation

Update a journal of the computation

records alias values, jump values and branches that have been
fired during propagation

role : prune irrelevant backward data dependencies

Bardin, S., Herrmann, P., Védrine, F. 12/ 19



Refinement

For each faulty location, find a set of possible ipl

follows backward data dependencies, guided by ⊤-labels

stop on ipl : ⊤init and ⊤〈c1,...,cq〉

data dependencies pruned wrt the journal (cgoto, alias)

Try to “correct” every ipl

⊤init cannot be avoided

⊤〈c1,...,cq〉 may be avoided if q ≤ Kmax (set local bound to q)

If no domain update then fail, else restart propagation with new
domains

Bardin, S., Herrmann, P., Védrine, F. 13/ 19



Intuition

Bardin, S., Herrmann, P., Védrine, F. 14/ 19



Properties of PaR

Soundness and termination : PaR(P, C) terminates and is sound,
i.e. it returns either FAIL or a safe approximation M of the
collecting semantics of P such that M |= C

Complexity : PaR(P, C) runs in polynomial-time

Relative completeness : PaR is relatively complete if PaR(P , C)
with parameter Kmax returns successfully when the forward k-set
propagation with parameter Kmax does.

no relative completeness in the general case
[mainly because of control dependencies]

relative completeness for a non trivial subclass [see the paper]

Bardin, S., Herrmann, P., Védrine, F. 15/ 19



Experiments

Implementation : CFG reconstruction from 32-bit PowerPC (PPC)
Only a preliminary implementation

Test bench

T1 : 12 small hand-written C programs compiled with gcc. From

60 to 1000 PPC instructions

T2 : real-life embedded program (aeronautic) : 32,000 instructions,

51 dynamic jumps, up to 16 targets for one jump

Bardin, S., Herrmann, P., Védrine, F. 16/ 19



Some results (1)

Precision

no target evaluates to ⊤

on T1 only 7% of false targets
(k-set 7%, perfect I : 4300%, perfect I+C : 400%)

on T2, only 7% of false targets
(k-set : 1.5%)

Robustness : results independent of Kmax (if large enough)

Efficiency : between 1x and 3x faster than adequate k-set propag

lots of redundant work from one refinement step to the other

can probably be improved

Bardin, S., Herrmann, P., Védrine, F. 17/ 19



Some results (2)

Locality

max-k always very close to max # targets

average-k always low : between 1.08 and 1.18

Scalability : PaR needs 18 minutes for T2 (32 kI)

ok for a preliminary implementation

already sufficient for some industrial application

however (as expected) procedure inlining is an issue

Bardin, S., Herrmann, P., Védrine, F. 18/ 19



Conclusion

We investigate safe CFG reconstruction from executable files

Results

a refinement-based procedure to solve VAPR problems

leads to a safe, precise, robust and reasonably efficient CFG
reconstruction

both theoretical and empirical evidence

Future work

better implementation and more experiments [dynamic alloc]

extensions to other abstract domains, optimisations

investigate other applications of VAPR

Bardin, S., Herrmann, P., Védrine, F. 19/ 19


	Introduction
	The PaR Procedure
	Experiments
	Conclusion

