Refinement-Based CFG Reconstruction from

Unstructured Programs

Sébastien Bardin, Philippe Herrmann, Franck Védrine

CEA LIST
(Paris, France)

Bardin, S., Herrmann, P., Védrine, F.

DA

1/ 19

Automatic analysis of executable files

m recent research field [Codesurfer/x86, SAGE, Jakstab, Osmose, etc]

m many promising applications (COTS, mobile code, malware, etc.)

A key issue : Control-Flow Graph (CFG) reconstruction

m prior to any other static analysis (SA)
m must be safe : otherwise, other SA unsafe

m must be precise : otherwise, other SA imprecise

This talk is about CFG reconstruction (from executable files)
m safe and precise technique

m based on abstraction-refinement

Bardin, S., Herrmann, P., Védrine, F. 2/ 19

Input
m an executable file, i.e. an array of bytes
m the address of the initial instruction

m a basic decoder : exec f. x address — instruction X size

145FEDBCADACBDADA59700346901
3456KAHA305G67H345BFFADECAD3
00113456735FFD451E13ABO80DAD
344252FFAADBDA457345FD780001
FFF22546ADDAE989776600000000

R1:= R1+4
A := @(R1)

Output : CFG of the program

Bardin, S., Herrmann, P., Védrine, F. 3/ 19

CFG reconstruction (2)

Successor addresses are often syntactically known
m addr :
m addr :

move a b — successor at addr+size
m addr :

goto 100 — successor at 100

ble 100 — successors at 100 and addr+size
But not always : successors of goto a?

Dynamic jump is the enemy !
Dynamic jumps are pervasive : introduced by compilers

m switch, function pointers, virtual methods, etc.

Bardin, S., Herrmann, P., Védrine, F.

DA

4/ 19

Need to mix value analysis and standard CFG analysis
B [Balakrishnan-Reps 04, Kinder-Zuleger-Veith 09]

Very difficult to get precise

1. A very sensitive analysis : imprecision on jump expressions — extra
propagation on false targets — more imprecision on value analysis —
possibly more imprecision on jump expressions — ...

m need to be very precise on jump targets

2. Sets of jump targets lack regularity (arbitrary values from compiler)

m standard domains imprecise on jump targets

Bardin, S., Herrmann, P., Védrine, F. 5/ 19

CodeSurfer/x86 [Balakrishnan-Reps 04]
m abstract domain : strided intervals (+ affine relationships)
m lots of features : local variable recovery, type recovery, etc.
e abstract domain not suited to sets of jump targets

Jakstab [Kinder-Veith 08]
m abstract domain : sets of bounded cardinality (k-sets)
m precise when the bound K is well-tuned

e not robust to the parameter K : possibly inefficient if K too
large, but very imprecise if K not large enough

Bardin, S., Herrmann, P., Védrine, F. 6/ 19

Key observations

m k-sets are the only domain well-suited to precise CFG
reconstruction

m for most programs, only a few facts need to be tracked
precisely to resolve dynamic jumps

m good candidate for abstraction-refinement

Contribution
m A refinement-based approach to safe CFG reconstruction
m An implementation and a few experiments

m The technique is safe, precise, robust and reasonably efficient

Bardin, S., Herrmann, P., Védrine, F. 7/ 19

Rest of the talk

Formalisation

unstructured programs and the VAPR problem
The Propagate-and-Refine procedure for VAPR
Experiments

Bardin, S., Herrmann, P., Védrine, F.

DA

8/ 19

Unstructured Programs : P = (L, V, A, T, lp) where
m L C N finite set of code addresses
V finite set of program variables, A finite set of arrays
T maps code addresses to instructions
I initial code address

instructions : assignments v :=e and ale;] :=ep, static jumps
goto /, branching instructions ite(cond,l,k), dynamic jumps
cgoto(v)

Bardin, S., Herrmann, P., Védrine, F. 9/ 19

Value Analysis with Precision Requirements (VAPR)

m input : a program P and a set of precision requirements C

m problem : compute an over-approximation M of the collecting
semantics of P such that M |=C

Precision Requirement : a (memory) location (/,v), written o(/, v)

m MEp(lv)it M(I,v) # T

CFG reconstruction can be achieved through VAPR

m add a requirement (/, v) for each (/, cgoto v) in P

m rather weak constraint, but sufficient in practise (see after)

Bardin, S., Herrmann, P., Védrine, F. 10/ 19

The Propagate-and-Refine procedure (PaR) for VAPR

Input : (P,C)
Parameter : Kmax

Output : an over-approximation M of the collecting semantics of P such
that M = C, or FAIL

Two interleaved-steps : propagation and refinement
Propagation based on k-sets
Each location has its own cardinality bound (< Kmax)

Refinement : done by increasing some cardinality bounds

u]
|
1l
n
it
S
ye)
?

Bardin, S., Herrmann, P., Védrine, F. 11/ 19

Cardinality bounds : abstract values downcast to destination bound

m role : lose information, increase efficiency

T-labels to track initial precision losses (ipl)

m T : input T-values, T(q,...,cq> : T-abstraction of {c1,...,cq}

m dedicated propagation rules : Tnir and T, “stay in place”

m role : pinpoint ipl, give clue for correction

Transitions involving faulty locations are not fired

m role : avoid noise propagation

Update a journal of the computation

m records alias values, jump values and branches that have been
fired during propagation

m role : prune irrelevant backward data dependencies

Bardin, S., Herrmann, P., Védrine, F. 12/ 19

For each faulty location, find a set of possible ipl

m follows backward data dependencies, guided by T-labels
m stop on ipl : T+ and T<

C1,...,Cq>

m data dependencies pruned wrt the journal (cgoto, alias)

Try to “correct” every ipl

m [;,+ cannot be avoided

B T, May be avoided if ¢ < Kmax (set local bound to q)

If no domain update then fail, else restart propagation with new
domains

Bardin, S., Herrmann, P., Védrine, F. 13/ 19

| COMPUTATION PAST | 1 CURRENT STATE |

X:i=X X=X
L3) |Dx=0
source o\ . ._,.1 T<1,2
rec. los
Da=
L.
T
b:=a
=
violatior
STEP 1 _— STEP 2 STEP 3
— temporal reasoning» spatial reasoning

Bardin, S., Herrmann, P., Védrine, F. 14/ 19

Soundness and termination : PaR(P, C) terminates and is sound,
i.e. it returns either FAIL or a safe approximation M of the
collecting semantics of P such that M |=C

Complexity : PaR(P, C) runs in polynomial-time

Relative completeness : PaR is relatively complete if PaR(P,C)
with parameter Kmax returns successfully when the forward k-set
propagation with parameter Kmax does.

m no relative completeness in the general case
[mainly because of control dependencies]

m relative completeness for a non trivial subclass [see the paper]

Bardin, S., Herrmann, P., Védrine, F. 15/ 19

Implementation : CFG reconstruction from 32-bit PowerPC (PPC)
Only a preliminary implementation

Test bench

m T1 : 12 small hand-written C programs compiled with gcc. From
60 to 1000 PPC instructions

m T2 : real-life embedded program (aeronautic) : 32,000 instructions,
51 dynamic jumps, up to 16 targets for one jump

Bardin, S., Herrmann, P., Védrine, F. 16/ 19

Precision
m no target evaluates to T

m on T1 only 7% of false targets
(k-set 7%, perfect | : 4300%, perfect 14-C : 400%)

m on T2, only 7% of false targets
(k-set : 1.5%)

Robustness : results independent of Kmax (if large enough)

Efficiency : between 1x and 3x faster than adequate k-set propag
m lots of redundant work from one refinement step to the other

m can probably be improved

Bardin, S., Herrmann, P., Védrine, F. 17/ 19

Locality
B max-k always very close to max # targets

m average-k always low : between 1.08 and 1.18

Scalability : PaR needs 18 minutes for T2 (32 kl)
m ok for a preliminary implementation
m already sufficient for some industrial application

m however (as expected) procedure inlining is an issue

Bardin, S., Herrmann, P., Védrine, F. 18/ 19

We investigate safe CFG reconstruction from executable files

Results
m a refinement-based procedure to solve VAPR problems

m leads to a safe, precise, robust and reasonably efficient CFG
reconstruction

m both theoretical and empirical evidence

Future work
m better implementation and more experiments [dynamic alloc]
m extensions to other abstract domains, optimisations

m investigate other applications of VAPR

Bardin, S., Herrmann, P., Védrine, F. 19/ 19

	Introduction
	The PaR Procedure
	Experiments
	Conclusion

