
Fast: Theory and practice of acceleration

Sébastien Bardin

LSV - CNRS & ÉNS de Cachan

24 avril 2006

Séminaire LIAFA- 1/ 51

Verification of reactive systems

Reactive systems

Software and/or
hardware

Autonomous

Critical

Introduction- Motivations 2/ 51

The TTP protocol

Processors embedded in cars

The TTP protocol

fault tolerance

ensure no fault will
propagate

TTP is supported by Audi, PSA, Renault, ...

Introduction- Motivations 3/ 51

A model of the TTP [Bouajjani-Merceron 2002]

N : number of processors

Cp : round number

d : number of processors
having broadcast so far

If d<N Do
d:=d+1;Cp:=Cp+1

End Do

Introduction- Motivations 4/ 51

A model of the TTP [Bouajjani-Merceron 2002]

/ CF=0,CW=N,Cp=0
d=0,dF=0

/ C1>=0, C0>=0,
C1+C0=CW, d1=1,d0=0,

dF=0,Cp=1

later

round1normalinit

d=0,dF=0

Cp=N /
CW=C1+C0,Cp=0,

Cp=0,d=0,dF=0
Cp=N /

dF<CF /
dF++, Cp++

d1<C1 & C1+C0−2d0>0 /
d1++, Cp++

C1−−,dF++,CF++,Cp++
d1<C1 & C1+C0−2d0<=0/

d0<C0 & C1+C0−2d1>0 /
d0++, Cp++

d0<C0 & C1+C0−2d1<=0 /
C0−−,dF++,CF++,Cp++

dF<CF /
dF++,Cp++

d1++,Cp++
d1<C1 & C1>C0 /

d1<C1 & C1<=C0 /
C1−−,CF++,dF++,Cp++

d0<C0 & C0>C1 /
d0++,Cp++

d0<C0 & C0<=C1 /
C0−−, CF++, dF++,Cp++

Cp=N & !(C1=0) & !(C0=0) /
d1=0,d0=0,dF=0,Cp=0

d<CW / d++,Cp++

dF<CF / dF++,Cp++

Cp=N / d1=0,d0=0,dF=0,Cp=0

Introduction- Motivations 4/ 51

A model of the TTP [Bouajjani-Merceron 2002]

Question

In the red location , does
Cp = N ⇒ (C0 = 0 ∨ C1 = 0)?

Objective

Automatic verification for any value of N

Introduction- Motivations 4/ 51

Our problem: counter system verification

Counter systems

we study mathematical models of concrete systems

automata extended with unbounded integer variables

Properties to check

Reachability properties = properties of reachable configurations.

useful: mutual exclusion, deadlock freedom, ...

easy to check from the reachability set.

Introduction- Motivations 5/ 51

Our problem: counter system verification

Problems

Undecidable for two counters with (+1,−1,
?
= 0)

One of the issues: infinite reachability set

Introduction- Motivations 5/ 51

Back to the finite case

Unsafe

Initial

Introduction- Back to the finite case ... 6/ 51

Back to the finite case

Unsafe

Initial

Introduction- Back to the finite case ... 6/ 51

Back to the finite case

Unsafe

Initial

Introduction- Back to the finite case ... 6/ 51

Back to the finite case

Unsafe

Initial

Introduction- Back to the finite case ... 6/ 51

Back to the finite case

Unsafe

Initial

?

Introduction- Back to the finite case ... 6/ 51

Extend verification to infinite systems

Enumerative methods do not work any more

Algorithms for decidable subclasses

Petri nets,

timed automata, ...

or Semi-algorithms to compute the reachability set

more expressive/realistic systems

no guarantee of termination, we hope practical termination

Extend iterative computation for infinite sets

(symbolic model-checking)

Introduction- Infinite systems 7/ 51

Extend verification to infinite systems

Enumerative methods do not work any more

Algorithms for decidable subclasses

Petri nets,

timed automata, ...

or Semi-algorithms to compute the reachability set

more expressive/realistic systems

no guarantee of termination, we hope practical termination

Extend iterative computation for infinite sets

(symbolic model-checking)

Introduction- Infinite systems 7/ 51

Extend verification to infinite systems

Enumerative methods do not work any more

Algorithms for decidable subclasses

Petri nets,

timed automata, ...

or Semi-algorithms to compute the reachability set

more expressive/realistic systems

no guarantee of termination, we hope practical termination

Extend iterative computation for infinite sets

(symbolic model-checking)

Introduction- Infinite systems 7/ 51

Symbolic model-checking framework

Issue 1: infinite set of reachable configurations.

Idea = manipulate infinite sets of configurations

sets are represented symbolically.

need basic symbolic operations post, ⊔, ⊑.

Example: intervals of integers

Formula φX : {x > 5} means that x ranges over all integers
greater than 5

After transition
y:=x+1
−−−−→, the possible values of y are exactly

represented by φY = {y > 6}

Introduction- Symbolic model-checking framework 8/ 51

Symbolic model-checking framework

Issue 1: infinite set of reachable configurations.

Idea = manipulate infinite sets of configurations

sets are represented symbolically.

need basic symbolic operations post, ⊔, ⊑.

Example: intervals of integers

Formula φX : {x > 5} means that x ranges over all integers
greater than 5

After transition
y:=x+1
−−−−→, the possible values of y are exactly

represented by φY = {y > 6}

Introduction- Symbolic model-checking framework 8/ 51

First (and basic) symbolic procedure

Iterative computation of post∗S(X0)

1 X ← X0

2 If post(X) ⊑ X Goto 5

3 X ← post(X) ⊔ X

4 Goto 2

5 Return X

Issue 2: termination is scarce

because of circuits in the control graph ...

If x ≥ 0 Do x ← x + 2

If X0 = {0} then

Introduction- Symbolic model-checking framework 9/ 51

First (and basic) symbolic procedure

Iterative computation of post∗S(X0)

1 X ← X0

2 If post(X) ⊑ X Goto 5

3 X ← post(X) ⊔ X

4 Goto 2

5 Return X

Issue 2: termination is scarce

because of circuits in the control graph ...

If x ≥ 0 Do x ← x + 2

If X0 = {0} then X = {0}

Introduction- Symbolic model-checking framework 9/ 51

First (and basic) symbolic procedure

Iterative computation of post∗S(X0)

1 X ← X0

2 If post(X) ⊑ X Goto 5

3 X ← post(X) ⊔ X

4 Goto 2

5 Return X

Issue 2: termination is scarce

because of circuits in the control graph ...

If x ≥ 0 Do x ← x + 2

If X0 = {0} then X = {0, 2}

Introduction- Symbolic model-checking framework 9/ 51

First (and basic) symbolic procedure

Iterative computation of post∗S(X0)

1 X ← X0

2 If post(X) ⊑ X Goto 5

3 X ← post(X) ⊔ X

4 Goto 2

5 Return X

Issue 2: termination is scarce

because of circuits in the control graph ...

If x ≥ 0 Do x ← x + 2

If X0 = {0} then X = {0, 2, . . . , 2k}

Introduction- Symbolic model-checking framework 9/ 51

Principle of circuit acceleration

Circuit acceleration

Enhance the convergence of the iterative symbolic procedure by
computing in one step the iteration of a sequence of transitions
(circuit).

If x ≥ 0 Do x ← x + 2

If X0 = {0} then

Introduction- Principles of circuit acceleration 10/ 51

Principle of circuit acceleration

Circuit acceleration

Enhance the convergence of the iterative symbolic procedure by
computing in one step the iteration of a sequence of transitions
(circuit).

If x ≥ 0 Do x ← x + 2

If X0 = {0} then post∗(X0) = 2.N, in one step.

Introduction- Principles of circuit acceleration 10/ 51

About acceleration of counter systems

State-of-the-art in 2002

(Karp-Miller 1969)

(Fribourg 1990)

[Boigelot-Wolper 1994],

[Boigelot-Wolper 1998],

[Annichini-Asarin-Bouajjani 2000], (+ temps)

[Finkel-Leroux 2002],

Remarks

1 very different techniques, no unifying view (comparison?)

2 still a gap between acceleration algorithm and fixpoint
computation (how to select circuits?)

Introduction- Principles of circuit acceleration 11/ 51

About acceleration of counter systems

State-of-the-art in 2002

(Karp-Miller 1969)

(Fribourg 1990)

[Boigelot-Wolper 1994],

[Boigelot-Wolper 1998],

[Annichini-Asarin-Bouajjani 2000], (+ temps)

[Finkel-Leroux 2002],

Remarks

1 very different techniques, no unifying view (comparison?)

2 still a gap between acceleration algorithm and fixpoint
computation (how to select circuits?)

Introduction- Principles of circuit acceleration 11/ 51

Symbolic computation in counter systems, 2002

A symbolic representation: automata

DFA [Boudet-Comon 1996],
NDD [Wolper-Boigelot 2000]).

Various circuit acceleration algorithms

f (x) = M.x + v , with finite monoid and convex guard
[Boigelot 1998]
f (x) = M.x + v with finite monoid and Presburger guard
[Finkel-Leroux 2002]
functions “à la” timed automata [Annichini-Asarin-Bouajjani
2000]

Circuit selection no argued heuristic

Tools

Alv (no acceleration) [Bultan]
Lash (acceleration but no circuit selection) [Wolper]
TReX (acceleration and circuit selection, but no argument)
[Bouajjani]

Introduction- Principles of circuit acceleration 12/ 51

Symbolic computation in counter systems, 2002

A symbolic representation: automata

DFA [Boudet-Comon 1996],
NDD [Wolper-Boigelot 2000]).

Various circuit acceleration algorithms

f (x) = M.x + v , with finite monoid and convex guard
[Boigelot 1998]
f (x) = M.x + v with finite monoid and Presburger guard
[Finkel-Leroux 2002]
functions “à la” timed automata [Annichini-Asarin-Bouajjani
2000]

Circuit selection no argued heuristic

Tools

Alv (no acceleration) [Bultan]
Lash (acceleration but no circuit selection) [Wolper]
TReX (acceleration and circuit selection, but no argument)
[Bouajjani]

Introduction- Principles of circuit acceleration 12/ 51

Symbolic computation in counter systems, 2002

A symbolic representation: automata

DFA [Boudet-Comon 1996],
NDD [Wolper-Boigelot 2000]).

Various circuit acceleration algorithms

f (x) = M.x + v , with finite monoid and convex guard
[Boigelot 1998]
f (x) = M.x + v with finite monoid and Presburger guard
[Finkel-Leroux 2002]
functions “à la” timed automata [Annichini-Asarin-Bouajjani
2000]

Circuit selection no argued heuristic

Tools

Alv (no acceleration) [Bultan]
Lash (acceleration but no circuit selection) [Wolper]
TReX (acceleration and circuit selection, but no argument)
[Bouajjani]

Introduction- Principles of circuit acceleration 12/ 51

Symbolic computation in counter systems, 2002

A symbolic representation: automata

DFA [Boudet-Comon 1996],
NDD [Wolper-Boigelot 2000]).

Various circuit acceleration algorithms

f (x) = M.x + v , with finite monoid and convex guard
[Boigelot 1998]
f (x) = M.x + v with finite monoid and Presburger guard
[Finkel-Leroux 2002]
functions “à la” timed automata [Annichini-Asarin-Bouajjani
2000]

Circuit selection no argued heuristic

Tools

Alv (no acceleration) [Bultan]
Lash (acceleration but no circuit selection) [Wolper]
TReX (acceleration and circuit selection, but no argument)
[Bouajjani]

Introduction- Principles of circuit acceleration 12/ 51

Symbolic computation in counter systems, 2002

A symbolic representation: automata

DFA [Boudet-Comon 1996],
NDD [Wolper-Boigelot 2000]).

Various circuit acceleration algorithms

f (x) = M.x + v , with finite monoid and convex guard
[Boigelot 1998]
f (x) = M.x + v with finite monoid and Presburger guard
[Finkel-Leroux 2002]
functions “à la” timed automata [Annichini-Asarin-Bouajjani
2000]

Circuit selection no argued heuristic

Tools

Alv (no acceleration) [Bultan]
Lash (acceleration but no circuit selection) [Wolper]
TReX (acceleration and circuit selection, but no argument)
[Bouajjani]

Introduction- Principles of circuit acceleration 12/ 51

Issues / Results

Issue : Various acceleration techniques

Results : Unifying framework encompassing most of acceleration
theorems [ATVA’05]

Issue : How to select circuits?

Results : Maximal heuristic, efficient in practice [CAV’03,ATVA’05]

Issue : Improve practical efficiency of acceleration

Results : “Convex acceleration” algorithm [TACAS’04]

Issue : Experimentations

Results : implementation of Fast [CAV’03],
Verification of various protocols: TTP [TACAS’04] , CES

and others.

These works have been partially supported by ACI Persée.

Introduction- Results 13/ 51

Issues / Results

Issue : Various acceleration techniques

Results : Unifying framework encompassing most of acceleration
theorems [ATVA’05]

Issue : How to select circuits?

Results : Maximal heuristic, efficient in practice [CAV’03,ATVA’05]

Issue : Improve practical efficiency of acceleration

Results : “Convex acceleration” algorithm [TACAS’04]

Issue : Experimentations

Results : implementation of Fast [CAV’03],
Verification of various protocols: TTP [TACAS’04] , CES

and others.

These works have been partially supported by ACI Persée.

Introduction- Results 13/ 51

Issues / Results

Issue : Various acceleration techniques

Results : Unifying framework encompassing most of acceleration
theorems [ATVA’05]

Issue : How to select circuits?

Results : Maximal heuristic, efficient in practice [CAV’03,ATVA’05]

Issue : Improve practical efficiency of acceleration

Results : “Convex acceleration” algorithm [TACAS’04]

Issue : Experimentations

Results : implementation of Fast [CAV’03],
Verification of various protocols: TTP [TACAS’04] , CES

and others.

These works have been partially supported by ACI Persée.

Introduction- Results 13/ 51

Issues / Results

Issue : Various acceleration techniques

Results : Unifying framework encompassing most of acceleration
theorems [ATVA’05]

Issue : How to select circuits?

Results : Maximal heuristic, efficient in practice [CAV’03,ATVA’05]

Issue : Improve practical efficiency of acceleration

Results : “Convex acceleration” algorithm [TACAS’04]

Issue : Experimentations

Results : implementation of Fast [CAV’03],
Verification of various protocols: TTP [TACAS’04] , CES

and others.

These works have been partially supported by ACI Persée.

Introduction- Results 13/ 51

Issues / Results

Issue : Various acceleration techniques

Results : Unifying framework encompassing most of acceleration
theorems [ATVA’05]

Issue : How to select circuits?

Results : Maximal heuristic, efficient in practice [CAV’03,ATVA’05]

Issue : Improve practical efficiency of acceleration

Results : “Convex acceleration” algorithm [TACAS’04]

Issue : Experimentations

Results : implementation of Fast [CAV’03],
Verification of various protocols: TTP [TACAS’04] , CES

and others.

These works have been partially supported by ACI Persée.

Introduction- Results 13/ 51

Outline

1 Introduction

2 Counter systems
3 Circuit acceleration

4 Circuit selection

5 The tool Fast

6 Applications

7 Conclusion

Counter systems- 14/ 51

Reminder

Presburger arithmetics

First order arithmetics without ×-operator
φ ::= t ≤ t|¬φ|φ ∨ φ|∃k .φ|true
t ::= 0|1|y |t − t|t + t.

Presburger set = set of solutions of a Presburger formula.

Counter systems- Definitions 15/ 51

Counter systems

finite set of m variables x , y , z , . . .

over N

finite set of P-affine functions
f = (M, v , G)

G ⊆ N
m Presburger guard

M square matrix
v vector

−→var ′ = f (−→var) iff
−→var ∈ G
and −→var ′ = M.−→var + v

x ≥ 0? x ← x + 2

x ≥ y?

x ← x + 1
y ← y + 1

x ← x − y

Counter systems- Definitions 16/ 51

Symbolic representations: Automata

Automata to recognize sets of integer vectors

a non-negative integer in basis 2 is a word over {0, 1}

automata recognize sets of words

extensions

any integer: 2-complement encoding
vectors: tuples of letters, or variables entanglement

Presburger sets (and a little bit more) are recognized by automata.

Common operations on sets −→ standard operations on automata

Counter systems- Symbolic representations 17/ 51

Symbolic representations: Automata

(1,1,0)

(0,0,1)

(1,1,1)
(0,1,0) (0,0,0)

(1,0,1)
(1,1,0)
(0,1,1)

(0,0,1)
(1,0,0)

(0,1,0)(1,0,0)(0,1,1)(1,0,1)(0,0,0) (1,1,1)

CARRY

BAD

DFA [Boudet-Comon 1996],

NDD [Wolper-Boigelot 2000]).

Counter systems- Symbolic representations 17/ 51

Outline

1 Introduction

2 Counter systems

3 Circuit Acceleration
4 Circuit Selection

5 The tool Fast

6 Applications

7 Conclusion

Acceleration- 18/ 51

Standard Acceleration

Monoid of a function f = (M, v , G): {1, M, M2, . . . ,Mn, . . .}

Theorem [Finkel-Leroux 2002]

Let f = (M, v , G) a P-affine function with finite monoid. Then f ∗

is effectively defined by a Presburger formula

f ∗ = {(x , x ′)|x ∈ G∧∃k ≥ 0.x ′ = f̄ k(x)∧∀i .0 ≤ i < k , f̄ i (x) ∈ G}

Building the formula is 3-EXP in |A(G)|, |v |max , |M|max et m.

Acceleration- Standard Acceleration 19/ 51

Idea of the algorithm

f = (M, v ,G) with finite monoid < M >.

f̄ : Z
m → Z

m,∀x ∈ Z
m, f̄ (x) = M.x + v

< M > finite, then ∃(a, b) ∈ N× N such that Ma+b = Ma

We deduce that ∀n ∈ N,∀x ∈ Z
m, f̄ a+n.b = f̄ a(x) + n.Ma.f̄ b(0)

It comes that F̄ = {(i , x , x ′) ∈ N× Z
m × Z

m, x ′ = f̄ i (x)} ⇐⇒
∨a−1

r=0{(i , x , x ′)|x ′ = f̄ r (x) ∧ i = r}
∨b−1

r=0 {(i , x , x ′)|∃n ≥ 0(x ′ =
f̄ a+r (x) + n.Ma+r .f̄ b(0)) ∧ (i = a + r + n.b)}

f ∗ = {(x , x ′),∃i ≥ 0, x ′ = f i (x)} ⇐⇒
{(x , x ′),∃i ≥ 0[(i , x , x ′) ∈ F̄ ∧ (∀k(0 ≤ k < i),∃x ′′ ∈ G , (k, x , x ′′) ∈ F̄)]}

Acceleration- Standard Acceleration 20/ 51

Faster acceleration ...

Convex translations [TACAS’04]

f = (Im, v , G) where Im is the identity matrix and G convex

No need to test if the predecessors are in the guard.

The construction can be simplified.

Theorem [TACAS’04]

Convex acceleration is quadratic in |A(G)|.

Acceleration- Convex acceleration 21/ 51

Faster acceleration ... complexity

parameter magnitude standard algorithm convex algorithm

|A(G)| 100.000 3-EXP quadratic

m 5-50 3-EXP EXP

|v |max ≤ 10 3-EXP poly. in m

|M|max ≤ 10 3-EXP = 1

Acceleration- Convex acceleration 22/ 51

Faster acceleration ... practice

A(f ∗) = automaton representing f ∗ (transductor)

|A(f ∗)| Time (seconds) Memory (MB)
Standard/Convex Standard/Convex

16,766 10/7 31/13
26,409 5/2 17/18
41,950 18/10 52/30
190,986 (TTP2) 50/9 400/140
380,332 (TTP2) ↑↑↑/34 ↑↑↑/534
? ↑↑↑/ >900 ↑↑↑/ >500

Acceleration- Convex acceleration 23/ 51

Outline

1 Introduction

2 Counter systems

3 Circuit acceleration

4 Circuit selection
5 The tool Fast

6 Applications

7 Conclusion

Circuit Selection- 24/ 51

What is computable with circuit acceleration?

First answer

Flat system = at most 1 elementary circuit on each control node

t1: x ≥ 0? x ← x + 2

t2: x ← x + 1
y ← y + 1

t3: x ≥ y?

q1 q2

Circuit acceleration + flat S = computation of post∗S(X0)

Circuit Selection- Flat systems 25/ 51

Flattenings of non-flat systems

q1 q1

q2

t1

t3
q2

t4

t1

t2

q1q2

t3

t3 t4

t4

q1

q2

t3

t1

t4

t2

Système S Système S ′

S ′ is a flattening of S iff
S ′ is flat and S simulates S ′

Circuit Selection- Flattenings 26/ 51

Flattable Systems

(S , X0) is flattable iff ∃S ′ such that

S ′ is a flattening of S

S and S ′ are equivalent for reachability.

Theorem 1 [ATVA’05]

post∗(X0) is computable by circuit acceleration iff (S , X0) is
flattable.

Circuit Selection- Flattable Systems 27/ 51

Other characterization

A restricted linear regular expression (rlre) over T
ρ = w∗

1 w∗
2 . . .w∗

n , where wi ∈ T ∗.

post(ρ, X) = configurations reachable following transitions in ρ

Theorem 2 [ATVA’05]

post∗(X0) is computable by circuit acceleration iff ∃ a rlre ρ over
T such that post∗(X0) = post(ρ, X0).

Remark: post(ρ, X) is computable with circuit acceleration

Circuit Selection- Flattable Systems 28/ 51

Other characterization

A restricted linear regular expression (rlre) over T
ρ = w∗

1 w∗
2 . . .w∗

n , where wi ∈ T ∗.

post(ρ, X) = configurations reachable following transitions in ρ

Theorem 2 [ATVA’05]

post∗(X0) is computable by circuit acceleration iff ∃ a rlre ρ over
T such that post∗(X0) = post(ρ, X0).

Remark: post(ρ, X) is computable with circuit acceleration

Circuit Selection- Flattable Systems 28/ 51

Other characterization

A restricted linear regular expression (rlre) over T
ρ = w∗

1 w∗
2 . . .w∗

n , where wi ∈ T ∗.

post(ρ, X) = configurations reachable following transitions in ρ

Theorem 2 [ATVA’05]

post∗(X0) is computable by circuit acceleration iff ∃ a rlre ρ over
T such that post∗(X0) = post(ρ, X0).

Remark: post(ρ, X) is computable with circuit acceleration

Circuit Selection- Flattable Systems 28/ 51

Selection Heuristic (I)

Input: (S , X0)

1 X ← X0; k ← 0
2 k ← k + 1
3 Lunch
4 If post(X) ⊆ X Goto 10
5 Enumerate the next ρ rlre over T
6 X ← post(ρ, X)
7 Goto 4
8 In parallel with
9 When Watchdog stops Goto 2
10 Return X

maximal procedure: terminates iff (S ,X0) is flattable

PB1(time) find quickly a good rlre

PB2(space) avoid as much as possible unnecessary expensive steps
of computations

Circuit Selection- Selection Heuristic 29/ 51

Selection Heuristic (I)

Input: (S , X0)

1 X ← X0; k ← 0
2 k ← k + 1
3 Lunch
4 If post(X) ⊆ X Goto 10
5 Choose fairly w ∈ T≤k

6 X ← post(w∗, X)
7 Goto 4
8 In parallel with
9 When Watchdog stops Goto 2
10 Return X

The procedure is still maximal

PB1(time) partitioning + Watchdog

PB2(space) Choose

Circuit Selection- Selection Heuristic 29/ 51

Selection Heuristic (II)

Results

The selection heuristic design is reduced to designing

Choose (a standard solution is given)

Watchdog (a standard solution is given)

The obtained procedure is then

maximal

efficient : good results on counter systems (cf. Fast)

Circuit Selection- Selection Heuristic 30/ 51

Reductions

|T |≤k may be exponential in k .

Idea = reduce |T |≤k by removing redundant functions.

Three reductions:

union-reduction [Finkel-Leroux 2002]

if f = (M, v ,G1) and g = (M, v ,G2),
let h = (M, v ,G1 ∨ G2)
then (f + g)∗ = h∗

commutation-reduction [CAV’03]

if f and g commute then f ∗g∗ = (f · g)∗ = (g · f)∗

conjugacy-reduction [ATVA’05]

(f2 · f3 · f1)
∗ = Id + f2 · f3 · (f1 · f2 · f3)

∗ · f1

Circuit Selection- Reductions 31/ 51

Reductions

|T |≤k may be exponential in k .

Idea = reduce |T |≤k by removing redundant functions.

Three reductions:

union-reduction [Finkel-Leroux 2002]

if f = (M, v ,G1) and g = (M, v ,G2),
let h = (M, v ,G1 ∨ G2)
then (f + g)∗ = h∗

commutation-reduction [CAV’03]

if f and g commute then f ∗g∗ = (f · g)∗ = (g · f)∗

conjugacy-reduction [ATVA’05]

(f2 · f3 · f1)
∗ = Id + f2 · f3 · (f1 · f2 · f3)

∗ · f1

Circuit Selection- Reductions 31/ 51

Reductions

|T |≤k may be exponential in k .

Idea = reduce |T |≤k by removing redundant functions.

Three reductions:

union-reduction [Finkel-Leroux 2002]

if f = (M, v ,G1) and g = (M, v ,G2),
let h = (M, v ,G1 ∨ G2)
then (f + g)∗ = h∗

commutation-reduction [CAV’03]

if f and g commute then f ∗g∗ = (f · g)∗ = (g · f)∗

conjugacy-reduction [ATVA’05]

(f2 · f3 · f1)
∗ = Id + f2 · f3 · (f1 · f2 · f3)

∗ · f1

Circuit Selection- Reductions 31/ 51

Reductions

|T |≤k may be exponential in k .

Idea = reduce |T |≤k by removing redundant functions.

Three reductions:

union-reduction [Finkel-Leroux 2002]

if f = (M, v ,G1) and g = (M, v ,G2),
let h = (M, v ,G1 ∨ G2)
then (f + g)∗ = h∗

commutation-reduction [CAV’03]

if f and g commute then f ∗g∗ = (f · g)∗ = (g · f)∗

conjugacy-reduction [ATVA’05]

(f2 · f3 · f1)
∗ = Id + f2 · f3 · (f1 · f2 · f3)

∗ · f1

Circuit Selection- Reductions 31/ 51

Practical results

system |T | k |C≤k | U Cm Cj U+Cm
csm 13 1 14 14 14 14 14

13 2 183 103 57 99 35
consistency 8 1 9 9 9 9 9

8 2 68 45 44 39 30
8 3 484 172 299 178 98

swimming 6 1 7 7 7 7 7
pool 6 2 43 21 24 25 16

6 3 259 56 114 97 28
6 4 1555 126 614 421 47
6 5 9331 252 3591 1977 86

U, Cm ,Cj : reductions (union, commutation, conjugacy)

Circuit Selection- Reductions 32/ 51

Outline

1 Introduction

2 Counter systems

3 Circuit acceleration

4 Circuit selection

5 The tool Fast

6 Applications

7 Conclusion

Fast- 33/ 51

Fast

The previous results are implemented in Fast

Fast works well in practice

successfully verify 80% of 40 infinite systems [CAV’03].

first automatic verification of TTP [TACAS’04]

first automatic verification of CES

Fast- Presentation 34/ 51

Technological comparison

Alv Lash Fast TReX

system relational affine restricted

symb. rep automata arith. + pdbm

(undec. ⊑)

acceleration no circuits circuits

(partial.rec.)

circuit selection no yes yes, ≤ k

Fast- Comparison 35/ 51

Practical comparison

System Alv Lash Fast k TReX

RTP (bounded) T T T 1 T

Lamport (bounded) T T T 1 T

Dekker (bounded) T T T 1 T

ticket 2 T T T 1 T

kanban ↑ T T 1 T

multipoll ↑ T T 1 ↑
prod/cons (2) ↑ T T 1 -
ttp ↑ T T 1 -
prod/cons (N) ↑ ↑ T 2 -
lift control, N ↑ ↑ T 2 T

train ↑ ↑ T 2 T

csm, N ↑ ↑ T 2 ↑
consistency ↑ ↑ T 3 -
swimming pool ↑ ↑ T 4 ↑
pncsa ↑ ↑ ↑ ? ↑
incdec ↑ ↑ ↑ ? ↑
bigjava ↑ ↑ ↑ ? ↑

T: success within 20 minutes k: circuit length for Fast

↑: no success within 20 minutes -: not an input of TReX

Fast- Comparison 36/ 51

Outline

1 Introduction

2 Counter systems

3 Circuit acceleration

4 Circuit selection

5 The tool Fast

6 Applications
7 Conclusion

Applications- 37/ 51

Verification of TTP by Fast

/ CF=0,CW=N,Cp=0
d=0,dF=0

/ C1>=0, C0>=0,
C1+C0=CW, d1=1,d0=0,

dF=0,Cp=1

later

round1normalinit

d=0,dF=0

Cp=N /
CW=C1+C0,Cp=0,

Cp=0,d=0,dF=0
Cp=N /

dF<CF /
dF++, Cp++

d1<C1 & C1+C0−2d0>0 /
d1++, Cp++

C1−−,dF++,CF++,Cp++
d1<C1 & C1+C0−2d0<=0/

d0<C0 & C1+C0−2d1>0 /
d0++, Cp++

d0<C0 & C1+C0−2d1<=0 /
C0−−,dF++,CF++,Cp++

dF<CF /
dF++,Cp++

d1++,Cp++
d1<C1 & C1>C0 /

d1<C1 & C1<=C0 /
C1−−,CF++,dF++,Cp++

d0<C0 & C0>C1 /
d0++,Cp++

d0<C0 & C0<=C1 /
C0−−, CF++, dF++,Cp++

Cp=N & !(C1=0) & !(C0=0) /
d1=0,d0=0,dF=0,Cp=0

d<CW / d++,Cp++

dF<CF / dF++,Cp++

Cp=N / d1=0,d0=0,dF=0,Cp=0

Applications- The TTP protocol 38/ 51

Verification of TTP by Fast

1 error [TACAS’04]

16 transitions, 9 variables, complex guards

automatic verification

Pentium 4 2.4 GHz, 1 Gbyte RAM : 940 sec. and 73 Mbytes.

Other tools:

Alv does not terminate

Lash terminates when good circuits are provided

TTP does not fit TReX input model.

2 errors [TACAS’04]

20 transitions, 18 variables, even more complex guards

standard acceleration does not work

convex acceleration + overapproximation.

Applications- The TTP protocol 38/ 51

Verification of TTP by Fast

1 error [TACAS’04]

16 transitions, 9 variables, complex guards

automatic verification

Pentium 4 2.4 GHz, 1 Gbyte RAM : 940 sec. and 73 Mbytes.

Other tools:

Alv does not terminate

Lash terminates when good circuits are provided

TTP does not fit TReX input model.

2 errors [TACAS’04]

20 transitions, 18 variables, even more complex guards

standard acceleration does not work

convex acceleration + overapproximation.

Applications- The TTP protocol 38/ 51

The CES protocol - presentation

Supported by Philips

multimedia streaming

ensures reliable communications over lossy channels

Jonathan Billington and Lin Liu [Billington-Liu 2002]

Colored Petri net modeling of the CES,

infinite system, counters and queues of parameterized length

(complex) proofs of many properties of the CES (ex: size of
the reachability set w.r.t. the buffer lengths)

Applications- The Capability Exchange Signalling Protocol (CES) 39/ 51

The CES protocol - verification with Fast

Modeling issues

Fast does not handle queues.

queues simulated by counters,

correctness of the simulation is expressed as a reachability
property of the counter system, and it is checked by Fast

automatically.

Results

Properties proved in [Billington-Liu 2002] are checked easily.

Applications- The Capability Exchange Signalling Protocol (CES) 40/ 51

Verification of pointer systems (work in progress)

Manual management of memory ressources (language C)

memory heap = collection of memory cells

a cell contains: data or address

addresses ∈ {valid, invalid, NULL}

primitives: new, free, successor

Common errors

memory violation

memory leak

Work supported by EDF (2002-2004),
and by RNTL AVÉRILES (2005-2008)

Applications- Verification of pointer systems 41/ 51

Pointer systems

Programs:

only one successor (lists, no trees)

no data, only pointers

List reverse(List x) {
List y,t;

y =NULL;

while (x!=NULL) {
t=y;

y=x;

x=x->n;

y->n=t;

t=NULL;

}
return y;

}

y:=null

x ?= null

x:=x.s

t:=null

y:=x

x 6= null, t:=y

y.s:=t

Applications- Verification of pointer systems 42/ 51

Modeling the memory heap

Concrete configurations

Memory graphs

nodes = memory cells

edges = “pointed by”

labels = set of pointer
variables pointing the cell

⊥ = invalid addresses

x

t

NULL ⊥

erreur

y

Applications- Verification of pointer systems 43/ 51

Symbolic representation [AVIS’04]

memory graph (shape) + counters + constraint

canonical form of shapes

finite number of shapes

x

y

t

NULL ⊥

erreur

k

x

y

t

NULL ⊥

erreur

k

ϕ : k = 2

Applications- Verification of pointer systems 44/ 51

Fast and pointers

Verification of pointer systems [AVIS’06]

Encode infinite sets of memory graphs by Presburger sets

bisimulation between the pointer system and a counter system

verification by Fast

A prototype is in progress (with A. Sangnier and É. Lozes)

Works well for ≈ 10 small standard examples

Both qualitative and quantitative properties

Allows to check programs with counters + pointers

Applications- Verification of pointer systems 45/ 51

Outline

1 Introduction

2 Counter systems

3 Circuit acceleration

4 Circuit selection

5 the tool Fast

6 Applications

7 Conclusion

Conclusion- 46/ 51

Our methodology

System

Conclusion- Summary 47/ 51

Our methodology

System

Symb
Rep

Conclusion- Summary 47/ 51

Our methodology

Symb

System

Rep Acceleration

Conclusion- Summary 47/ 51

Our methodology

Symb
Rep Acceleration

Heuristic

System

Conclusion- Summary 47/ 51

Results

1. Generic methodology [ATVA’05]

unified acceleration framework

power and limits (flattable systems)

maximal circuit selection

generic optimizations (reductions)

2. Instantiation to counter systems

two acceleration algorithms

[Finkel-Leroux 2002]
[TACAS’04]

a reduction fit to counters [Finkel-Leroux 2002]

The tool Fast

Conclusion- Summary 48/ 51

Results

3. Many experimentations

Counter systems

40 infinite systems [CAV’03]
TTP [TACAS’04]

Counters + queues

CES (in my PhD thesis, work with Laure Petrucci)
Stop and Wait Protocol [Billington-Gallasch-Petrucci 2005]

Pointer systems

translation into counter systems [AVIS’06, AVIS’04]
prototype, works on 10 standard examples (work with Étienne
Lozes and Arnaud Sangnier)

Conclusion- Summary 48/ 51

Lessons and limits of the tool

Theoretical limitations (finite monoid, Presburger logic)

not the main issue for protocols

would be different for programs

Practical limitations:
1 Number of variables

main point = complexity of relationship among variables

Petri net with 50 variables is OK

TTP2 with 20 variables is not

no more than 100 variables

2 Number of transitions

difficulty to find large circuits
currently: circuits of length 4 with 20 variables

Conclusion- Limits of Fast 49/ 51

Lessons and limits of the tool

Theoretical limitations (finite monoid, Presburger logic)

not the main issue for protocols

would be different for programs

Practical limitations:
1 Number of variables

main point = complexity of relationship among variables

Petri net with 50 variables is OK

TTP2 with 20 variables is not

no more than 100 variables

2 Number of transitions

difficulty to find large circuits
currently: circuits of length 4 with 20 variables

Conclusion- Limits of Fast 49/ 51

Lessons and limits of the tool

Theoretical limitations (finite monoid, Presburger logic)

not the main issue for protocols

would be different for programs

Practical limitations:
1 Number of variables

main point = complexity of relationship among variables

Petri net with 50 variables is OK

TTP2 with 20 variables is not

no more than 100 variables

2 Number of transitions

difficulty to find large circuits
currently: circuits of length 4 with 20 variables

Conclusion- Limits of Fast 49/ 51

Lessons and limits of the tool

Theoretical limitations (finite monoid, Presburger logic)

not the main issue for protocols

would be different for programs

Practical limitations:
1 Number of variables

main point = complexity of relationship among variables

Petri net with 50 variables is OK

TTP2 with 20 variables is not

no more than 100 variables

2 Number of transitions

difficulty to find large circuits
currently: circuits of length 4 with 20 variables

Conclusion- Limits of Fast 49/ 51

Fast Extended Release

A new version FASTer is released [CAV’06]

A new architecture

Reachability set computation engine
Generic Presburger Interface
Presburger packages (Lash, Mona, omega)

A new Presburger package

Cache computation [Couvreur 2004]
(not yet optimized)

New features in analysis

Circuit selection,
Convex acceleration

Conclusion- FAST Extended Release 50/ 51

Perspectives

• Improve circuit detection: partial orders, system transformation

• Scale-up our methods: abstract-refine and checks methods

• Timed counter systems? (TPN, TA + counters, ...)

Conclusion- Perspectives 51/ 51

	Séminaire LIAFA
	Introduction
	Motivations
	Back to the finite case ...
	Infinite systems
	Symbolic model-checking framework
	Principles of circuit acceleration
	Results

	Counter systems
	Definitions
	Symbolic representations

	Acceleration
	Standard Acceleration
	Convex acceleration

	Circuit Selection
	Flat systems
	Flattenings
	Flattable Systems
	Selection Heuristic
	Reductions

	Fast
	Presentation
	Comparison

	Applications
	The TTP protocol
	The Capability Exchange Signalling Protocol (CES)
	Verification of pointer systems

	Conclusion
	Summary
	Limits of Fast
	FAST Extended Release
	Perspectives

