FAST: Theory and practice of acceleration

Sébastien Bardin

LSV - CNRS & ÉNS de Cachan

24 avril 2006

Séminaire LIAFA-

Verification of reactive systems

Reactive systems

- Software and/or hardware
- Autonomous
- Critical

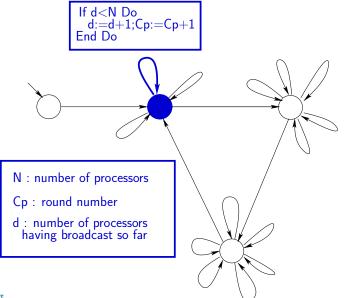
Processors embedded in cars

The TTP protocol

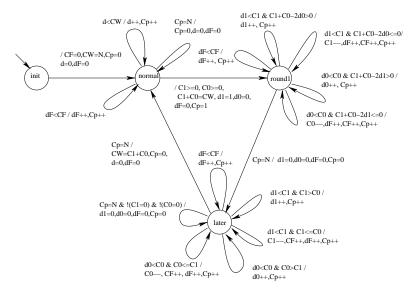
- fault tolerance
- ensure no fault will propagate

TTP is supported by Audi, PSA, Renault, ...

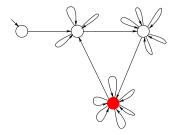
A model of the TTP [Bouajjani-Merceron 2002]



A model of the TTP [Bouajjani-Merceron 2002]



A model of the TTP [Bouajjani-Merceron 2002]



Question

In the red location , does $C_p = N \Rightarrow (C_0 = 0 \lor C_1 = 0)?$

Objective

Automatic verification for any value of N

Counter systems

- we study mathematical models of concrete systems
- automata extended with unbounded integer variables

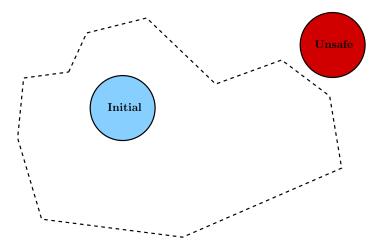
Properties to check

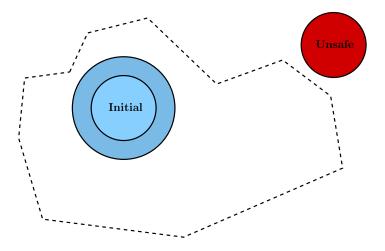
Reachability properties = properties of reachable configurations.

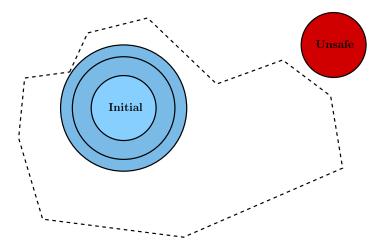
- useful: mutual exclusion, deadlock freedom, ...
- easy to check from the reachability set.

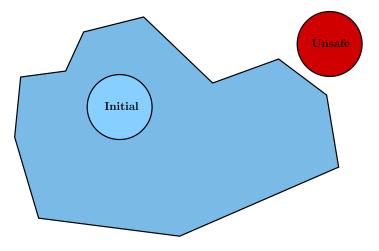
Problems

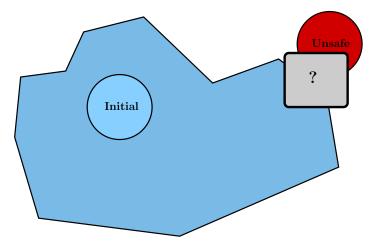
- Undecidable for two counters with $(+1, -1, \stackrel{?}{=} 0)$
- One of the issues: infinite reachability set











Enumerative methods do not work any more

Algorithms for decidable subclasses

- Petri nets,
- timed automata, ...

or Semi-algorithms to compute the reachability set

- more expressive/realistic systems
- no guarantee of termination, we hope practical termination
- Extend iterative computation for infinite sets
- (symbolic model-checking)

Enumerative methods do not work any more

Algorithms for decidable subclasses

- Petri nets,
- timed automata, ...

or Semi-algorithms to compute the reachability set

- more expressive/realistic systems
- no guarantee of termination, we hope practical termination
- Extend iterative computation for infinite sets
- (symbolic model-checking)

Enumerative methods do not work any more

Algorithms for decidable subclasses

- Petri nets,
- timed automata, ...

or Semi-algorithms to compute the reachability set

- more expressive/realistic systems
- no guarantee of termination, we hope practical termination
- Extend iterative computation for infinite sets
- (symbolic model-checking)

Symbolic model-checking framework

Issue 1: infinite set of reachable configurations.

- Idea = manipulate infinite sets of configurations
 - sets are represented symbolically.
 - need basic symbolic operations POST, \sqcup , \sqsubseteq .

Example: intervals of integers

- Formula φ_X : {x > 5} means that x ranges over all integers greater than 5
- After transition ^{y:=x+1}
 , the possible values of y are exactly represented by φ_Y = {y > 6}

Issue 1: infinite set of reachable configurations.

- Idea = manipulate infinite sets of configurations
 - sets are represented symbolically.
 - need basic symbolic operations POST, \sqcup , \sqsubseteq .

Example: intervals of integers

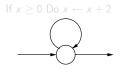
- Formula φ_X : {x > 5} means that x ranges over all integers greater than 5
- After transition ^{y:=x+1}
 , the possible values of y are exactly represented by φ_Y = {y > 6}

Iterative computation of $post_S^*(X_0)$

- $X \leftarrow X_0$
- 2 If $POST(X) \sqsubseteq X$ Goto 5
- $X \leftarrow \operatorname{POST}(X) \sqcup X$
- Goto 2
- Return X

Issue 2: termination is scarce

because of circuits in the control graph ...



If $X_0 = \{0\}$ then

Iterative computation of $post_S^*(X_0)$

- $X \leftarrow X_0$
- **2** If $POST(X) \sqsubseteq X$ Goto 5
- $X \leftarrow \operatorname{POST}(X) \sqcup X$
- Goto 2
- 3 Return X

I

Issue 2: termination is scarce

because of circuits in the control graph ...

If
$$x \ge 0$$
 Do $x \leftarrow x + 2$
f $X_0 = \{0\}$ then $X = \{0\}$

Iterative computation of $post_S^*(X_0)$

- $X \leftarrow X_0$
- 2 If $POST(X) \sqsubseteq X$ Goto 5
- $X \leftarrow \operatorname{POST}(X) \sqcup X$
- Goto 2
- 3 Return X

Issue 2: termination is scarce

because of circuits in the control graph ...

If
$$x \ge 0$$
 Do $x \leftarrow x + 2$
If $X_0 = \{0\}$ then $X = \{0, 2\}$

Iterative computation of $post_S^*(X_0)$

- $X \leftarrow X_0$
- 2 If $POST(X) \sqsubseteq X$ Goto 5
- $X \leftarrow \operatorname{POST}(X) \sqcup X$
- Goto 2
- 3 Return X

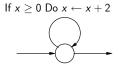
Issue 2: termination is scarce

because of circuits in the control graph ...

If
$$x \ge 0$$
 Do $x \leftarrow x+2$
If $X_0 = \{0\}$ then $X = \{0, 2, \dots, 2k\}$

Circuit acceleration

Enhance the convergence of the iterative symbolic procedure by computing in one step the iteration of a sequence of transitions (circuit).

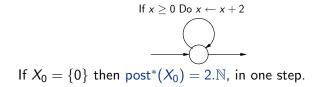


If $X_0 = \{0\}$ then

Introduction- Principles of circuit acceleration

Circuit acceleration

Enhance the convergence of the iterative symbolic procedure by computing in one step the iteration of a sequence of transitions (circuit).



Introduction- Principles of circuit acceleration

State-of-the-art in 2002 (Karp-Miller 1969) (Fribourg 1990) [Boigelot-Wolper 1994], [Boigelot-Wolper 1998], [Annichini-Asarin-Bouajjani 2000], (+ temps) [Finkel-Leroux 2002],

Remarks

- very different techniques, no unifying view (comparison?)
- still a gap between acceleration algorithm and fixpoint computation (how to select circuits?)


```
State-of-the-art in 2002
(Karp-Miller 1969)
(Fribourg 1990)
[Boigelot-Wolper 1994],
[Boigelot-Wolper 1998],
[Annichini-Asarin-Bouajjani 2000], (+ temps)
[Finkel-Leroux 2002],
```

Remarks

- very different techniques, no unifying view (comparison?)
- still a gap between acceleration algorithm and fixpoint computation (how to select circuits?)

- A symbolic representation: automata
 - DFA [Boudet-Comon 1996],NDD [Wolper-Boigelot 2000]).
- Various circuit acceleration algorithms
 - f(x) = M.x + v, with *finite monoid* and convex guard [Boigelot 1998]
 - f(x) = M.x + v with finite monoid and Presburger guard [Finkel-Leroux 2002]
 - functions "à la" timed automata [Annichini-Asarin-Bouajjani 2000]
- Circuit selection no argued heuristic
- Tools
 - ALV (no acceleration) [Bultan]
 - LASH (acceleration but no circuit selection) [Wolper]
 - TREX (acceleration and circuit selection, but no argument) [Bouajjani]

- A symbolic representation: automata
 - DFA [Boudet-Comon 1996],
 - NDD [Wolper-Boigelot 2000]).
- Various circuit acceleration algorithms
 - f(x) = M.x + v, with *finite monoid* and convex guard [Boigelot 1998]
 - f(x) = M.x + v with finite monoid and Presburger guard [Finkel-Leroux 2002]
 - functions "à la" timed automata [Annichini-Asarin-Bouajjani 2000]
- Circuit selection no argued heuristic
- Tools
 - ALV (no acceleration) [Bultan]
 - LASH (acceleration but no circuit selection) [Wolper]
 - TREX (acceleration and circuit selection, but no argument) [Bouajjani]

- A symbolic representation: automata
 - DFA [Boudet-Comon 1996],
 - NDD [Wolper-Boigelot 2000]).
- Various circuit acceleration algorithms
 - f(x) = M.x + v, with *finite monoid* and convex guard [Boigelot 1998]
 - f(x) = M.x + v with finite monoid and Presburger guard [Finkel-Leroux 2002]
 - functions "à la" timed automata [Annichini-Asarin-Bouajjani 2000]
- Circuit selection no argued heuristic
- Tools
 - ALV (no acceleration) [Bultan]
 - LASH (acceleration but no circuit selection) [Wolper]
 - TREX (acceleration and circuit selection, but no argument) [Bouajjani]

- A symbolic representation: automata
 - DFA [Boudet-Comon 1996],
 - NDD [Wolper-Boigelot 2000]).
- Various circuit acceleration algorithms
 - f(x) = M.x + v, with *finite monoid* and convex guard [Boigelot 1998]
 - f(x) = M.x + v with finite monoid and Presburger guard [Finkel-Leroux 2002]
 - functions "à la" timed automata [Annichini-Asarin-Bouajjani 2000]
- Circuit selection no argued heuristic
- Tools
 - ALV (no acceleration) [Bultan]
 - LASH (acceleration but no circuit selection) [Wolper]
 - TREX (acceleration and circuit selection, but no argument) [Bouajjani]

- A symbolic representation: automata
 - DFA [Boudet-Comon 1996],
 - NDD [Wolper-Boigelot 2000]).
- Various circuit acceleration algorithms
 - f(x) = M.x + v, with *finite monoid* and convex guard [Boigelot 1998]
 - f(x) = M.x + v with *finite monoid* and Presburger guard [Finkel-Leroux 2002]
 - functions "à la" timed automata [Annichini-Asarin-Bouajjani 2000]
- Circuit selection no argued heuristic
- Tools
 - ALV (no acceleration) [Bultan]
 - LASH (acceleration but no circuit selection) [Wolper]
 - TREX (acceleration and circuit selection, but no argument) [Bouajjani]

- Issue : Various acceleration techniques
- Results : Unifying framework encompassing most of acceleration theorems [ATVA'05]
 - Issue : How to select circuits?

Results : Maximal heuristic, efficient in practice [CAV'03,ATVA'05]

- Issue : Improve practical efficiency of acceleration
- Results : "Convex acceleration" algorithm [TACAS'04]
 - Issue : Experimentations
- Results : implementation of FAST [CAV'03], Verification of various protocols: TTP [TACAS'04] , CES and others.

These works have been partially supported by ACI PERSÉE.

- Issue : Various acceleration techniques
- Results : Unifying framework encompassing most of acceleration theorems [ATVA'05]
 - Issue : How to select circuits?

Results : Maximal heuristic, efficient in practice [CAV'03,ATVA'05]

- Issue : Improve practical efficiency of acceleration
- Results : "Convex acceleration" algorithm [TACAS'04]
 - Issue : Experimentations
- Results : implementation of FAST [CAV'03], Verification of various protocols: TTP [TACAS'04] , CES and others.

These works have been partially supported by ACI PERSÉE.

Issue : Various acceleration techniques

Results : Unifying framework encompassing most of acceleration theorems [ATVA'05]

- Issue : How to select circuits?
- Results : Maximal heuristic, efficient in practice [CAV'03,ATVA'05]
 - Issue : Improve practical efficiency of acceleration
- Results : "Convex acceleration" algorithm [TACAS'04]
 - Issue : Experimentations
- Results : implementation of FAST [CAV'03], Verification of various protocols: TTP [TACAS'04] , CES and others.

These works have been partially supported by ACI PERSÉE.

Issue : Various acceleration techniques

Results : Unifying framework encompassing most of acceleration theorems [ATVA'05]

- Issue : How to select circuits?
- Results : Maximal heuristic, efficient in practice [CAV'03,ATVA'05]
 - Issue : Improve practical efficiency of acceleration
- Results : "Convex acceleration" algorithm [TACAS'04]
 - Issue : Experimentations
- Results : implementation of FAST [CAV'03], Verification of various protocols: TTP [TACAS'04] , CES and others.

These works have been partially supported by ACI PERSÉE.

Issue : Various acceleration techniques

Results : Unifying framework encompassing most of acceleration theorems [ATVA'05]

Issue : How to select circuits?

Results : Maximal heuristic, efficient in practice [CAV'03,ATVA'05]

- Issue : Improve practical efficiency of acceleration
- Results : "Convex acceleration" algorithm [TACAS'04]
 - Issue : Experimentations
- Results : implementation of FAST [CAV'03], Verification of various protocols: TTP [TACAS'04] , CES and others.

These works have been partially supported by ACI PERSÉE.

- Introduction
- Ounter systems
- Oircuit acceleration
- Circuit selection
- The tool FAST
- Applications
- Conclusion

Presburger arithmetics

First order arithmetics without \times -operator

$$\phi ::= t \le t |\neg \phi| \phi \lor \phi | \exists k. \phi | true$$

$$t ::= 0 |1|y|t - t|t + t.$$

Presburger set = set of solutions of a Presburger formula.

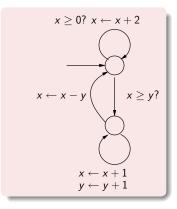
Counter systems- Definitions

- finite set of *m* variables *x*, *y*, *z*, ...
 over ℕ
- finite set of P-affine functions
 f = (M, v, G)
 - $G \subseteq \mathbb{N}^m$ Presburger guard
 - M square matrix
 - v vector

•
$$\overrightarrow{var'} = f(\overrightarrow{var})$$
 iff

•
$$\overrightarrow{var} \in G$$

• and $\overrightarrow{var}' = M.\overrightarrow{var} + v$



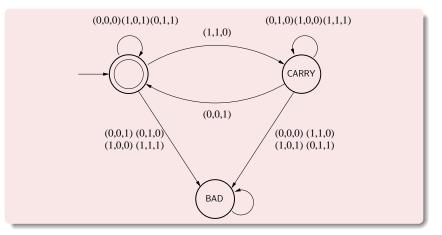
Automata to recognize sets of integer vectors

- a non-negative integer in basis 2 is a word over $\{0,1\}$
- automata recognize sets of words
- extensions
 - any integer: 2-complement encoding
 - vectors: tuples of letters, or variables entanglement

Presburger sets (and a little bit more) are recognized by automata.

Common operations on sets \longrightarrow standard operations on automata

Symbolic representations: Automata



- DFA [Boudet-Comon 1996],
- NDD [Wolper-Boigelot 2000]).

Introduction

- Ounter systems
- O Circuit Acceleration
- Circuit Selection
- The tool FAST
- O Applications
- Conclusion

Monoid of a function f = (M, v, G): $\{1, M, M^2, \ldots, M^n, \ldots\}$

Theorem [Finkel-Leroux 2002]

Let f = (M, v, G) a P-affine function with finite monoid. Then f^* is effectively defined by a Presburger formula

$$f^* = \{(x, x') | x \in G \land \exists k \geq 0. x' = \overline{f}^k(x) \land \forall i.0 \leq i < k, \overline{f}^i(x) \in G\}$$

Building the formula is 3-EXP in $|\mathcal{A}(G)|$, $|v|_{max}$, $|M|_{max}$ et m.

Idea of the algorithm

•
$$f = (M, v, G)$$
 with finite monoid $\langle M \rangle$.

•
$$\overline{f}: \mathbb{Z}^m \to \mathbb{Z}^m, \forall x \in \mathbb{Z}^m, \overline{f}(x) = M.x + v$$

- < M > finite, then $\exists (a, b) \in \mathbb{N} imes \mathbb{N}$ such that $M^{a+b} = M^a$
- We deduce that $\forall n \in \mathbb{N}, \forall x \in \mathbb{Z}^m, \overline{f}^{a+n.b} = \overline{f}^a(x) + n.M^a.\overline{f}^b(0)$

• It comes that $\overline{F} = \{(i, x, x') \in \mathbb{N} \times \mathbb{Z}^m \times \mathbb{Z}^m, x' = \overline{f}^i(x)\} \iff \bigvee_{r=0}^{a-1}\{(i, x, x')|x' = \overline{f}^r(x) \land i = r\} \bigvee_{r=0}^{b-1}\{(i, x, x')|\exists n \ge 0(x' = \overline{f}^{a+r}(x) + n.M^{a+r}.\overline{f}^b(0)) \land (i = a + r + n.b)\}$

$$\begin{split} f^* &= \{(x, x'), \exists i \geq 0, x' = f^i(x)\} \Longleftrightarrow \\ \{(x, x'), \exists i \geq 0[(i, x, x') \in \bar{F} \land (\forall k (0 \leq k < i), \exists x'' \in G, (k, x, x'') \in \bar{F})]\} \end{split}$$

Convex translations [TACAS'04]

 $f = (I_m, v, G)$ where I_m is the identity matrix and G convex

- No need to test if the predecessors are in the guard.
- The construction can be simplified.

Theorem [TACAS'04]

Convex acceleration is quadratic in $|\mathcal{A}(G)|$.

parameter	magnitude	standard algorithm	convex algorithm
$ \mathcal{A}(G) $	100.000	3-EXP	quadratic
m	5-50	3-EXP	EXP
V max	≤ 10	3-EXP	poly. in <i>m</i>
$ M _{max}$	≤ 10	3-EXP	= 1

$\mathcal{A}(f^*)$ = automaton representing f^* (transductor)

$ \mathcal{A}(f^*) $	Time (seconds)	Memory (MB)
	Standard/Convex	Standard/Convex
16,766	10/7	31/13
26,409	5/2	17/18
41,950	18/10	52/30
190,986 (TTP2)	50/9	400/140
380,332 (TTP2)	<u>↑</u> ↑↑/ 3 4	<u> </u>
?	$\uparrow\uparrow\uparrow/>$ 900	$\uparrow\uparrow\uparrow/>$ 500

Introduction

- Ounter systems
- Oircuit acceleration
- Oircuit selection
- The tool FAST
- O Applications
- Conclusion

First answer

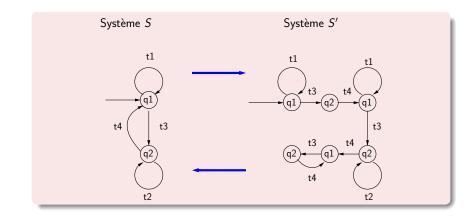
Flat system = at most 1 elementary circuit on each control node

t1:
$$x \ge 0$$
? $x \leftarrow x + 2$
 $(q1)$
 $(q2)$
 $(q$

Circuit acceleration + flat $S = \text{computation of } \text{post}^*_{S}(X_0)$

Circuit Selection- Flat systems

Flattenings of non-flat systems



S' is a flattening of S iff S' is flat and S simulates S'

Circuit Selection- Flattenings

(S, X_0) is flattable iff $\exists S'$ such that

- S' is a flattening of S
- S and S' are equivalent for reachability.

Theorem 1 [ATVA'05]

post^{*}(X_0) is computable by circuit acceleration iff (S, X_0) is flattable.

A restricted linear regular expression (rlre) over T $\rho = w_1^* w_2^* \dots w_n^*$, where $w_i \in T^*$.

 $post(\rho, X) = configurations reachable following transitions in \rho$

Theorem 2 [ATVA'05]

post^{*}(X_0) is computable by circuit acceleration iff \exists a rlre ρ over T such that post^{*}(X_0) = post(ρ , X_0).

Remark: $post(\rho, X)$ is computable with circuit acceleration

Circuit Selection- Flattable Systems

A restricted linear regular expression (rlre) over T $\rho = w_1^* w_2^* \dots w_n^*$, where $w_i \in T^*$.

 $post(\rho, X) = configurations reachable following transitions in \rho$

Theorem 2 [ATVA'05]

post^{*}(X_0) is computable by circuit acceleration iff \exists a rlre ρ over T such that post^{*}(X_0) = post(ρ , X_0).

Remark: $post(\rho, X)$ is computable with circuit acceleration

A restricted linear regular expression (rlre) over T $\rho = w_1^* w_2^* \dots w_n^*$, where $w_i \in T^*$.

 $post(\rho, X) = configurations reachable following transitions in \rho$

Theorem 2 [ATVA'05]

post^{*}(X_0) is computable by circuit acceleration iff \exists a rlre ρ over T such that post^{*}(X_0) = post(ρ , X_0).

Remark: $post(\rho, X)$ is computable with circuit acceleration

Selection Heuristic (I)

aboratoire

ification

Input: (S, X_0) $X \leftarrow X_0; k \leftarrow 0$ If $post(X) \subseteq X$ Goto 10 4 Enumerate the next ρ rire over T5 0 $X \leftarrow \mathsf{post}(\rho, X)$ Goto 4 Return X

> maximal procedure: terminates iff (S, X_0) is flattable PB1(time) find quickly a good rlre

PB2(space) avoid as much as possible unnecessary expensive steps of computations

Selection Heuristic (I)

Input: (S, X_0) $\bigcirc X \leftarrow X_0; k \leftarrow 0$ $k \leftarrow k+1$ S Lunch If $post(X) \subseteq X$ Goto 10 **(4**) Choose fairly $w \in T^{\leq k}$ 5 $X \leftarrow \mathsf{post}(w^*, X)$ 0 7 Goto 4 **1** In parallel with When Watchdog stops Goto 2 9 Return X The procedure is still maximal

PB1(time) partitioning + Watchdog

PB2(space) Choose

Results

The selection heuristic design is reduced to designing

- Choose (a standard solution is given)
- Watchdog (a standard solution is given)

The obtained procedure is then

- maximal
- efficient : good results on counter systems (cf. FAST)

Idea = reduce $|T|^{\leq k}$ by removing redundant functions.

Three reductions:

- union-reduction [Finkel-Leroux 2002]
 if f = (M, v, G₁) and g = (M, v, G₂),
 let h = (M, v, G₁ ∨ G₂)
 then (f + g)* = h*
- commutation-reduction [CAV'03]
 if f and g commute then f*g* = (f ⋅ g)* = (g ⋅ f)*
- conjugacy-reduction [ATVA'05]

 $(f_2 \cdot f_3 \cdot f_1)^* = I_d + f_2 \cdot f_3 \cdot (f_1 \cdot f_2 \cdot f_3)^* \cdot f_1$

Idea = reduce $|T|^{\leq k}$ by removing redundant functions.

Three reductions:

- union-reduction [Finkel-Leroux 2002]
 - if $f = (M, v, G_1)$ and $g = (M, v, G_2)$,

$$\bullet \quad \text{let} \quad h = (M, v, G_1 \lor G_2)$$

• then
$$(f + g)^* = h^*$$

• commutation-reduction [CAV'03]

• if f and g commute then $f^*g^* = (f \cdot g)^* = (g \cdot f)^*$

• conjugacy-reduction [ATVA'05]

 $(f_2 \cdot f_3 \cdot f_1)^* = I_d + f_2 \cdot f_3 \cdot (f_1 \cdot f_2 \cdot f_3)^* \cdot f_1$

Idea = reduce $|T|^{\leq k}$ by removing redundant functions.

Three reductions:

- union-reduction [Finkel-Leroux 2002]
 - if $f = (M, v, G_1)$ and $g = (M, v, G_2)$,

$$\blacksquare \text{ let } h = (M, v, G_1 \lor G_2)$$

• then
$$(f+g)^* = h^*$$

- commutation-reduction [CAV'03]
 - if f and g commute then $f^*g^* = (f \cdot g)^* = (g \cdot f)^*$
- conjugacy-reduction [ATVA'05]

 $(f_2 \cdot f_3 \cdot f_1)^* = I_d + f_2 \cdot f_3 \cdot (f_1 \cdot f_2 \cdot f_3)^* \cdot f_1$

Idea = reduce $|T|^{\leq k}$ by removing redundant functions.

Three reductions:

- union-reduction [Finkel-Leroux 2002]
 - if $f = (M, v, G_1)$ and $g = (M, v, G_2)$,

$$\blacksquare \text{ let } h = (M, v, G_1 \lor G_2)$$

• then
$$(f+g)^* = h^*$$

- commutation-reduction [CAV'03]
 - if f and g commute then $f^*g^* = (f \cdot g)^* = (g \cdot f)^*$
- conjugacy-reduction [ATVA'05]

•
$$(f_2 \cdot f_3 \cdot f_1)^* = I_d + f_2 \cdot f_3 \cdot (f_1 \cdot f_2 \cdot f_3)^* \cdot f_1$$

system	T	k	$ C^{\leq k} $	U	Cm	Cj	U+Cm
csm	13	1	14	14	14	14	14
	13	2	183	103	57	99	35
consistency	8	1	9	9	9	9	9
	8	2	68	45	44	39	30
	8	3	484	172	299	178	98
swimming	6	1	7	7	7	7	7
pool	6	2	43	21	24	25	16
	6	3	259	56	114	97	28
	6	4	1555	126	614	421	47
	6	5	9331	252	3591	1977	86

U, Cm ,Cj : reductions (union, commutation, conjugacy)

Introduction

- Ounter systems
- Orcuit acceleration
- Orcuit selection
- **5** The tool FAST
- O Applications
- Conclusion

The previous results are implemented in $\ensuremath{\mathrm{FAST}}$

FAST works well in practice

- successfully verify 80% of 40 infinite systems [CAV'03].
- first automatic verification of TTP [TACAS'04]
- first automatic verification of CES

	Alv	Lash	Fast	TReX				
system	relational	affine		affine		affine		restricted
symb. rep	automata		automata					
				(undec. \sqsubseteq)				
acceleration	no	circuits		circuits		circuits		
						(partial.rec.)		
circuit selection		no	yes	yes, $\leq k$				

Practical comparison

System	Alv	Lash	Fast	k	TREX
RTP (bounded)	Т	Т	Т	1	Т
Lamport (bounded)	Т	Т	Т	1	Т
Dekker (bounded)	Т	Т	Т	1	Т
ticket 2	Т	Т	Т	1	Т
kanban	1	Т	Т	1	Т
multipoll	1	Т	Т	1	↑
prod/cons (2)	1	Т	Т	1	-
ttp	1	Т	Т	1	-
prod/cons (N)	1	1	Т	2	-
lift control, N	↑	1	Т	2	Т
train	1	1	Т	2	Т
csm, N	1	1	Т	2	↑
consistency	1	1	Т	3	-
swimming pool	↑	1	Т	4	↑
pncsa	1	1	1	?	↑
incdec	1	1	1	?	↑
bigjava	1	1	1	?	1

T: success within 20 minutes

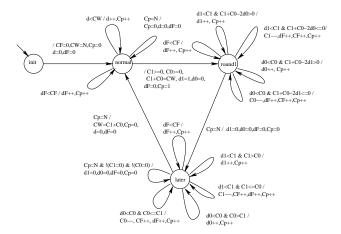
k: circuit length for FAST -: not an input of TREX

 $\uparrow:$ no success within 20 minutes

Introduction

- Ounter systems
- Orcuit acceleration
- Orcuit selection
- The tool FAST
- Applications
- Conclusion

Verification of TTP by $\ensuremath{\mathrm{FAST}}$



Applications- The TTP protocol

1 error [TACAS'04]

16 transitions, 9 variables, complex guards

- automatic verification
- Pentium 4 2.4 GHz, 1 Gbyte RAM : 940 sec. and 73 Mbytes.

Other tools:

- ALV does not terminate
- LASH terminates when good circuits are provided
- TTP does not fit TREX input model.

2 errors [TACAS'04]

20 transitions, 18 variables, even more complex guards

- standard acceleration does not work
- convex acceleration + overapproximation.

1 error [TACAS'04]

16 transitions, 9 variables, complex guards

- automatic verification
- Pentium 4 2.4 GHz, 1 Gbyte RAM : 940 sec. and 73 Mbytes.

Other tools:

- ALV does not terminate
- $\bullet~{\rm LASH}$ terminates when good circuits are provided
- TTP does not fit TREX input model.

2 errors [TACAS'04]

20 transitions, 18 variables, even more complex guards

- standard acceleration does not work
- convex acceleration + overapproximation.

- Supported by Philips
- multimedia streaming
- ensures reliable communications over lossy channels

Jonathan Billington and Lin Liu [Billington-Liu 2002]

- Colored Petri net modeling of the CES,
- infinite system, counters and queues of parameterized length
- (complex) proofs of many properties of the CES (ex: size of the reachability set w.r.t. the buffer lengths)

Modeling issues

 $\ensuremath{\operatorname{FAST}}$ does not handle queues.

- queues simulated by counters,
- correctness of the simulation is expressed as a reachability property of the counter system, and it is checked by FAST automatically.

Results

Properties proved in [Billington-Liu 2002] are checked easily.

Applications- The Capability Exchange Signalling Protocol (CES)

Verification of pointer systems (work in progress)

Manual management of memory ressources (language C)

- memory heap = collection of memory cells
- a cell contains: data or address
- addresses \in {valid, invalid, NULL}
- primitives: new, free, successor

Common errors

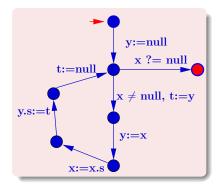
- memory violation
- memory leak

Work supported by EDF (2002-2004), and by RNTL AVÉRILES (2005-2008)

Programs:

- only one successor (lists, no trees)
- no data, only pointers

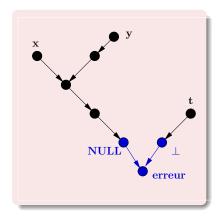
```
List reverse(List x) {
  List y,t;
  y =NULL;
  while (x!=NULL) {
    t=y;
    y=x;
    x=x->n;
    y->n=t;
    t=NULL;
  }
  return y;
}
```



Concrete configurations

Memory graphs

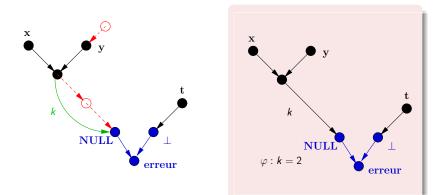
- nodes = memory cells
- edges = "pointed by"
- labels = set of pointer variables pointing the cell
- $\bullet \ \bot = \mathsf{invalid} \ \mathsf{addresses}$



Symbolic representation [AVIS'04]

memory graph (shape) + counters + constraint

- canonical form of shapes
- finite number of shapes



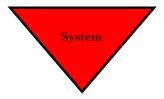
Applications- Verification of pointer systems

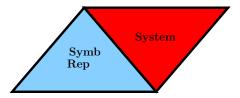
Verification of pointer systems [AVIS'06]

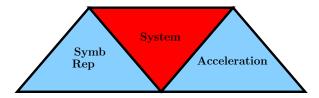
- Encode infinite sets of memory graphs by Presburger sets
- bisimulation between the pointer system and a counter system
- verification by FAST
- A prototype is in progress (with A. Sangnier and É. Lozes)
 - \bullet Works well for ≈ 10 small standard examples
 - Both qualitative and quantitative properties
 - Allows to check programs with counters + pointers

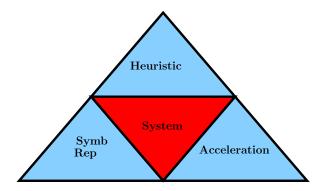
Introduction

- Ounter systems
- Oircuit acceleration
- Orcuit selection
- the tool FAST
- O Applications
- Conclusion









Results

- 1. Generic methodology [ATVA'05]
 - unified acceleration framework
 - power and limits (flattable systems)
 - maximal circuit selection
 - generic optimizations (reductions)
- 2. Instantiation to counter systems
 - two acceleration algorithms
 - [Finkel-Leroux 2002]
 - [TACAS'04]
 - a reduction fit to counters [Finkel-Leroux 2002]
 - The tool FAST

Results

- 3. Many experimentations
 - Counter systems
 - 40 infinite systems [CAV'03]
 - TTP [TACAS'04]
 - Counters + queues
 - CES (in my PhD thesis, work with Laure Petrucci)
 - Stop and Wait Protocol [Billington-Gallasch-Petrucci 2005]
 - Pointer systems
 - translation into counter systems [AVIS'06, AVIS'04]
 - prototype, works on 10 standard examples (work with Étienne Lozes and Arnaud Sangnier)

- not the main issue for protocols
- would be different for programs

Practical limitations:

Number of variables

main point = complexity of relationship among variables
 Petri net with 50 variables is OK
 TTP2 with 20 variables is not

no more than 100 variables

O Number of transitions

- difficulty to find large circuits
- currently: circuits of length 4 with 20 variables

- not the main issue for protocols
- would be different for programs

Practical limitations:

- Number of variables
 - main point = complexity of relationship among variables
 - Petri net with 50 variables is OK
 - TTP2 with 20 variables is not
 - no more than 100 variables

Oumber of transitions

- difficulty to find large circuits
- currently: circuits of length 4 with 20 variables

- not the main issue for protocols
- would be different for programs

Practical limitations:

- Number of variables
 - main point = complexity of relationship among variables
 - Petri net with 50 variables is OK
 - TTP2 with 20 variables is not
 - no more than 100 variables

Oumber of transitions

- difficulty to find large circuits
- currently: circuits of length 4 with 20 variables

- not the main issue for protocols
- would be different for programs

Practical limitations:

- Number of variables
 - main point = complexity of relationship among variables
 - Petri net with 50 variables is OK
 - TTP2 with 20 variables is not
 - no more than 100 variables
- Oumber of transitions
 - difficulty to find large circuits
 - currently: circuits of length 4 with 20 variables

A new version ${\rm FAST_{\rm ER}}$ is released [CAV'06]

- A new architecture
 - Reachability set computation engine
 - Generic Presburger Interface
 - Presburger packages (LASH, MONA, OMEGA)
- A new Presburger package
 - Cache computation [Couvreur 2004]
 - (not yet optimized)
- New features in analysis
 - Circuit selection,
 - Convex acceleration

- Improve circuit detection: partial orders, system transformation
- Scale-up our methods: abstract-refine and checks methods
- Timed counter systems? (TPN, TA + counters, ...)

