FAST: Theory and practice of acceleration

Sébastien Bardin
LSV - CNRS \& ÉNS de Cachan
24 avril 2006

Verification of reactive systems

Reactive systems

- Software and/or hardware
- Autonomous
- Critical

The TTP protocol

Processors embedded in cars

The TTP protocol

- fault tolerance
- ensure no fault will propagate

TTP is supported by Audi, PSA, Renault, ...

A model of the TTP [Bouajjani-Merceron 2002]

```
If \(\mathrm{d}<\mathrm{N}\) Do
    \(\mathrm{d}:=\mathrm{d}+1 ; \mathrm{Cp}:=\mathrm{Cp}+1\)
End Do
```


N : number of processors
Cp : round number
d : number of processors having broadcast so far

A model of the TTP [Bouajjani-Merceron 2002]

A model of the TTP [Bouajjani-Merceron 2002]

Question

In the red location, does
$C_{p}=N \Rightarrow\left(C_{0}=0 \vee C_{1}=0\right)$?

Objective

Automatic verification for any value of N

Our problem: counter system verification

Counter systems

- we study mathematical models of concrete systems
- automata extended with unbounded integer variables

Properties to check

Reachability properties $=$ properties of reachable configurations.

- useful: mutual exclusion, deadlock freedom, ...
- easy to check from the reachability set.

Our problem: counter system verification

Problems

- Undecidable for two counters with $(+1,-1, \stackrel{?}{=} 0)$
- One of the issues: infinite reachability set

Back to the finite case

Extend verification to infinite systems

Enumerative methods do not work any more

Algorithms for decidable subclasses

- Petri nets,
- timed automata,
or Semi-algorithms to compute the reachability set
- more expressive/realistic systems
- no guarantee of termination, we hope practical termination
- Extend iterative computation for infinite sets
- (symbolic model-checking)

Extend verification to infinite systems

Enumerative methods do not work any more

Algorithms for decidable subclasses

- Petri nets,
- timed automata, ...
or Semi-algorithms to compute the reachability set
- more expressive/realistic systems
- no guarantee of termination, we hope practical termination
- Extend iterative computation for infinite sets
- (symbolic model-checking)

Extend verification to infinite systems

Enumerative methods do not work any more

Algorithms for decidable subclasses

- Petri nets,
- timed automata, ...
or Semi-algorithms to compute the reachability set
- more expressive/realistic systems
- no guarantee of termination, we hope practical termination
- Extend iterative computation for infinite sets
- (symbolic model-checking)

Symbolic model-checking framework

Issue 1: infinite set of reachable configurations.
Idea $=$ manipulate infinite sets of configurations

- sets are represented symbolically.
- need basic symbolic operations POST, ப, \sqsubseteq.

Example: intervals of integers

- Formula $\phi_{x}:\{x>5\}$ means that x ranges over all integers greater than 5
- After transition $\xrightarrow{\mathrm{y}:=\mathrm{x}+1}$, the possible values of y are exactly represented by $\phi_{Y}=\{y>6\}$

Symbolic model-checking framework

Issue 1: infinite set of reachable configurations.
Idea $=$ manipulate infinite sets of configurations

- sets are represented symbolically.
- need basic symbolic operations POST, \sqcup, \sqsubseteq.

Example: intervals of integers

- Formula $\phi_{X}:\{x>5\}$ means that x ranges over all integers greater than 5
- After transition $\xrightarrow{y:=x+1}$, the possible values of y are exactly represented by $\phi_{Y}=\{y>6\}$

First (and basic) symbolic procedure

Iterative computation of $\operatorname{post}_{S}^{*}\left(X_{0}\right)$
(1) $X \leftarrow X_{0}$
(2) If $\operatorname{Post}(X) \sqsubseteq X$ Goto 5
(3) $\quad X \leftarrow \operatorname{Post}(X) \sqcup X$
(9) Goto 2
(5) Return X

Issue 2: termination is scarce
because of circuits in the control graph

$$
\text { If } X_{0}=\{0\} \text { then }
$$

First (and basic) symbolic procedure

Iterative computation of $\operatorname{post}_{S}^{*}\left(X_{0}\right)$
(1) $X \leftarrow X_{0}$
(2) If $\operatorname{Post}(X) \sqsubseteq X$ Goto 5
(3) $\quad X \leftarrow \operatorname{Post}(X) \sqcup X$
(9) Goto 2
(5) Return X

Issue 2: termination is scarce

because of circuits in the control graph ...

$$
\text { If } x \geq 0 \text { Do } x \leftarrow x+2
$$

If $X_{0}=\{0\}$ then $X=\{0\}$

First (and basic) symbolic procedure

Iterative computation of post $_{S}^{*}\left(X_{0}\right)$
(1) $X \leftarrow X_{0}$
(2) If $\operatorname{Post}(X) \sqsubseteq X$ Goto 5
(3) $\quad X \leftarrow \operatorname{Post}(X) \sqcup X$
(9) Goto 2
(5) Return X

Issue 2: termination is scarce

because of circuits in the control graph ...

If $X_{0}=\{0\}$ then $X=\{0,2\}$

First (and basic) symbolic procedure

Iterative computation of post $_{S}^{*}\left(X_{0}\right)$
(1) $X \leftarrow X_{0}$
(2) If $\operatorname{Post}(X) \sqsubseteq X$ Goto 5
(3) $\quad X \leftarrow \operatorname{Post}(X) \sqcup X$
(9) Goto 2
(5) Return X

Issue 2: termination is scarce

because of circuits in the control graph ...

Principle of circuit acceleration

Circuit acceleration

Enhance the convergence of the iterative symbolic procedure by computing in one step the iteration of a sequence of transitions (circuit).

If $X_{0}=\{0\}$ then

Principle of circuit acceleration

Circuit acceleration

Enhance the convergence of the iterative symbolic procedure by computing in one step the iteration of a sequence of transitions (circuit).

About acceleration of counter systems

State-of-the-art in 2002
(Karp-Miller 1969)
(Fribourg 1990)
[Boigelot-Wolper 1994],
[Boigelot-Wolper 1998],
[Annichini-Asarin-Bouajjani 2000], (+ temps)
[Finkel-Leroux 2002],
Remarks
(1) very different techniques, no unifying view (comparison?)
(2) still a gap between acceleration algorithm and fixpoint
computation (how to select circuits?)

About acceleration of counter systems

State-of-the-art in 2002
(Karp-Miller 1969)
(Fribourg 1990)
[Boigelot-Wolper 1994],
[Boigelot-Wolper 1998],
[Annichini-Asarin-Bouajjani 2000], (+ temps)
[Finkel-Leroux 2002],
Remarks
(1) very different techniques, no unifying view (comparison?)
(2) still a gap between acceleration algorithm and fixpoint computation (how to select circuits?)

Symbolic computation in counter systems, 2002

- A symbolic representation: automata
- DFA [Boudet-Comon 1996],
- NDD [Wolper-Boigelot 2000]).
- Various circuit acceleration algorithms
- $f(x)=M . x+v$, with finite monoid and convex guard [Boigelot 1998]
- $f(x)=M \cdot x+v$ with finite monoid and Presburger guard [Finkel-Leroux 2002]
- functions "à la" timed automata [Annichini-Asarin-Bouajjani 2000]
- Circuit selection no argued heuristic
- Tools
- Alv (no acceleration) [Bultan]
- LASH (acceleration but no circuit selection) [Wolper]
- TREX (acceleration and circuit selection, but no argument) [Bouajjani]

Symbolic computation in counter systems, 2002

- A symbolic representation: automata

■ DFA [Boudet-Comon 1996],

- NDD [Wolper-Boigelot 2000]).
- Various circuit acceleration algorithms
- $f(x)=M \cdot x+v$, with finite monoid and convex guard [Boigelot 1998]
■ $f(x)=M \cdot x+v$ with finite monoid and Presburger guard [Finkel-Leroux 2002]
- functions "à la" timed automata [Annichini-Asarin-Bouajjani 2000]
- Circuit selection no argued heuristic
- Tools
- AlV (no acceleration) [Bultan]
- LASH (acceleration but no circuit selection) [Wolper]
- TREX (acceleration and circuit selection, but no argument) [Bouajjani]

Symbolic computation in counter systems, 2002

- A symbolic representation: automata

■ DFA [Boudet-Comon 1996],
■ NDD [Wolper-Boigelot 2000]).

- Various circuit acceleration algorithms
- $f(x)=M \cdot x+v$, with finite monoid and convex guard [Boigelot 1998]
- $f(x)=M . x+v$ with finite monoid and Presburger guard [Finkel-Leroux 2002]
■ functions "à la" timed automata [Annichini-Asarin-Bouajjani 2000]
- Circuit selection no argued heuristic
- Tools
- Alv (no acceleration) [Bultan]
- LaSh (acceleration but no circuit selection) [Wolper]
- TREX (acceleration and circuit selection, but no argument) [Bouajjani]

Symbolic computation in counter systems, 2002

- A symbolic representation: automata

■ DFA [Boudet-Comon 1996],
■ NDD [Wolper-Boigelot 2000]).

- Various circuit acceleration algorithms
- $f(x)=M \cdot x+v$, with finite monoid and convex guard [Boigelot 1998]
- $f(x)=M . x+v$ with finite monoid and Presburger guard [Finkel-Leroux 2002]
■ functions "à la" timed automata [Annichini-Asarin-Bouajjani 2000]
- Circuit selection no argued heuristic
- Tools
- Alv (no acceleration) [Bultan]
- LaSh (acceleration but no circuit selection) [Wolper]
- TREX (acceleration and circuit selection, but no argument) [Bouajjani]

Symbolic computation in counter systems, 2002

- A symbolic representation: automata

■ DFA [Boudet-Comon 1996],

- NDD [Wolper-Boigelot 2000]).
- Various circuit acceleration algorithms
- $f(x)=M \cdot x+v$, with finite monoid and convex guard [Boigelot 1998]
- $f(x)=M . x+v$ with finite monoid and Presburger guard [Finkel-Leroux 2002]
■ functions "à la" timed automata [Annichini-Asarin-Bouajjani 2000]
- Circuit selection no argued heuristic
- Tools
- Alv (no acceleration) [Bultan]
- Lash (acceleration but no circuit selection) [Wolper]
- TREX (acceleration and circuit selection, but no argument) [Bouajjani]

Issues / Results

Issue : Various acceleration techniques
Results : Unifying framework encompassing most of acceleration

theorems [ATVA'05]

Issue : How to select circuits?
Maximal heuristic, efficient in practice [CAV'03,ATVA'05]
Issue : Improve practical efficiency of acceleration
Results: "Convex acceleration" algorithm [TACAS'04]
Issue : Experimentations
implementation of FAST [CAV'03],
Verification of various protocols: TTP [TACAS'04], CES and others.

These works have been partially supported by ACI Persée.

Issues / Results

Issue : Various acceleration techniques
Results : Unifying framework encompassing most of acceleration theorems [ATVA'05]

Issue : How to select circuits?
Results : Maximal heuristic, efficient in practice [CAV'03,ATVA'05]
Issue : Improve practical efficiency of acceleration
Results: "Convex acceleration" algorithm [TACAS'04]
Issue : Experimentations
Results implementation of FAst [CAV'03], Verification of various protocols: TTP [TACAS'04], CES and others.

These works have been partially supported by ACI Persée.

Issues / Results

Issue : Various acceleration techniques
Results : Unifying framework encompassing most of acceleration theorems [ATVA'05]

Issue : How to select circuits?
Results : Maximal heuristic, efficient in practice [CAV'03,ATVA'05]
Issue : Improve practical efficiency of acceleration
Results: "Convex acceleration" algorithm [TACAS'04]
Issue : Experimentations
Results implementation of Fast [CAV'03], Verification of various protocols: TTP [TACAS'04], CES and others.

These works have been partially supported by ACI Persée.

Vérification

Issues / Results

Issue : Various acceleration techniques
Results : Unifying framework encompassing most of acceleration theorems [ATVA'05]

Issue : How to select circuits?
Results : Maximal heuristic, efficient in practice [CAV'03,ATVA'05]
Issue : Improve practical efficiency of acceleration
Results : "Convex acceleration" algorithm [TACAS'04]
Issue : Experimentations
Results implementation of FAst [CAV'03], and others.

These works have been partially supported by ACI Persée.

Issues / Results

Issue : Various acceleration techniques
Results : Unifying framework encompassing most of acceleration theorems [ATVA'05]

Issue: How to select circuits?
Results : Maximal heuristic, efficient in practice [CAV'03,ATVA'05]
Issue : Improve practical efficiency of acceleration
Results : "Convex acceleration" algorithm [TACAS'04]
Issue : Experimentations
Results : implementation of Fast [CAV'03],
Verification of various protocols: TTP [TACAS'04], CES and others.

These works have been partially supported by ACI Persée.

Vérification

Outline

(1) Introduction
(2) Counter systems
(3) Circuit acceleration
(1) Circuit selection
(3) The tool FASt
(C) Applications
(1) Conclusion

Reminder

Presburger arithmetics

First order arithmetics without \times-operator

$$
\begin{aligned}
& \phi::=t \leq t|\neg \phi| \phi \vee \phi|\exists k . \phi| \text { true } \\
& t::=0|1| y|t-t| t+t .
\end{aligned}
$$

Presburger set $=$ set of solutions of a Presburger formula.

Counter systems

- finite set of m variables x, y, z, \ldots over \mathbb{N}
- finite set of P-affine functions

$$
f=(M, v, G)
$$

- $G \subseteq \mathbb{N}^{m}$ Presburger guard
- M square matrix
- v vector
- $\overrightarrow{v a r}^{\prime}=f(\overrightarrow{v a r})$ iff
- $\overrightarrow{v a r} \in G$
- and $\overrightarrow{v a r^{\prime}}=M \cdot \overrightarrow{v a r}+v$

Symbolic representations: Automata

Automata to recognize sets of integer vectors

- a non-negative integer in basis 2 is a word over $\{0,1\}$
- automata recognize sets of words
- extensions
- any integer: 2-complement encoding
- vectors: tuples of letters, or variables entanglement

Presburger sets (and a little bit more) are recognized by automata.
Common operations on sets \longrightarrow standard operations on automata

Symbolic representations: Automata

- DFA [Boudet-Comon 1996],
- NDD [Wolper-Boigelot 2000]).

Outline

(1) Introduction
(2) Counter systems
(3) Circuit Acceleration
(9) Circuit Selection
(3) The tool Fast
(C) Applications
(1) Conclusion

Vérification

Standard Acceleration

Monoid of a function $f=(M, v, G):\left\{1, M, M^{2}, \ldots, M^{n}, \ldots\right\}$

Theorem [Finkel-Leroux 2002]

Let $f=(M, v, G)$ a P-affine function with finite monoid. Then f^{*} is effectively defined by a Presburger formula

$$
f^{*}=\left\{\left(x, x^{\prime}\right) \mid x \in G \wedge \exists k \geq 0 \cdot x^{\prime}=\bar{f}^{k}(x) \wedge \forall i .0 \leq i<k, \bar{f}^{i}(x) \in G\right\}
$$

Building the formula is 3-EXP in $|\mathcal{A}(G)|,|v|_{\text {max }},|M|_{\text {max }}$ et m.

Idea of the algorithm

- $f=(M, v, G)$ with finite monoid $\langle M\rangle$.
- $\bar{f}: \mathbb{Z}^{m} \rightarrow \mathbb{Z}^{m}, \forall x \in \mathbb{Z}^{m}, \bar{f}(x)=M . x+v$
- $<M>$ finite, then $\exists(a, b) \in \mathbb{N} \times \mathbb{N}$ such that $M^{a+b}=M^{a}$
- We deduce that $\forall n \in \mathbb{N}, \forall x \in \mathbb{Z}^{m}, \bar{f}^{a+n \cdot b}=\bar{f}^{a}(x)+n \cdot M^{a} \cdot \bar{f}^{b}(0)$
- It comes that $\bar{F}=\left\{\left(i, x, x^{\prime}\right) \in \mathbb{N} \times \mathbb{Z}^{m} \times \mathbb{Z}^{m}, x^{\prime}=\bar{f}^{i}(x)\right\} \Longleftrightarrow$

$$
\begin{aligned}
& \bigvee_{r=0}^{a-1}\left\{\left(i, x, x^{\prime}\right) \mid x^{\prime}=\bar{f}^{r}(x) \wedge i=r\right\} \bigvee_{r=0}^{b-1}\left\{\left(i, x, x^{\prime}\right) \mid \exists n \geq 0\left(x^{\prime}=\right.\right. \\
& \left.\left.f^{a+r}(x)+n \cdot M^{a+r} \cdot \bar{f}^{b}(0)\right) \wedge(i=a+r+n . b)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& f^{*}=\left\{\left(x, x^{\prime}\right), \exists i \geq 0, x^{\prime}=f^{i}(x)\right\} \Longleftrightarrow \\
& \left\{\left(x, x^{\prime}\right), \exists i \geq 0\left[\left(i, x, x^{\prime}\right) \in \bar{F} \wedge\left(\forall k(0 \leq k<i), \exists x^{\prime \prime} \in G,\left(k, x, x^{\prime \prime}\right) \in \bar{F}\right)\right]\right\}
\end{aligned}
$$

Faster acceleration ...

Convex translations [TACAS'04]

$f=\left(I_{m}, v, G\right)$ where I_{m} is the identity matrix and G convex

- No need to test if the predecessors are in the guard.
- The construction can be simplified.

Theorem [TACAS'04]

Convex acceleration is quadratic in $|\mathcal{A}(G)|$.

Faster acceleration ... complexity

parameter	magnitude	standard algorithm	convex algorithm
$\|\mathcal{A}(G)\|$	100.000	$3-$ EXP	quadratic
m	$5-50$	$3-$ EXP	EXP
$\|v\|_{\max }$	≤ 10	$3-$ EXP	poly. in m
$\|M\|_{\max }$	≤ 10	$3-$ EXP	$=1$

Faster acceleration ... practice

$$
\mathcal{A}\left(f^{*}\right)=\text { automaton representing } f^{*} \text { (transductor) }
$$

$\left\|\mathcal{A}\left(f^{*}\right)\right\|$	Time (seconds) Standard/Convex	Memory (MB) Standard/Convex
16,766	$10 / 7$	$31 / 13$
26,409	$5 / 2$	$17 / 18$
41,950	$18 / 10$	$52 / 30$
190,986 (TTP2)	$50 / 9$	$400 / 140$
380,332 (TTP2)	$\uparrow \uparrow \uparrow / 34$	$\uparrow \uparrow \uparrow / 534$
$?$	$\uparrow \uparrow \uparrow />900$	$\uparrow \uparrow \uparrow />500$

Outline

(1) Introduction
(2) Counter systems
(3) Circuit acceleration
(9) Circuit selection
(3) The tool Fast
(C) Applications
(1) Conclusion

What is computable with circuit acceleration?

First answer

Flat system $=$ at most 1 elementary circuit on each control node

Circuit acceleration + flat $S=$ computation of $\operatorname{post}_{S}^{*}\left(X_{0}\right)$

Flattenings of non-flat systems

Système $S \quad$ Système S^{\prime}

S^{\prime} is a flattening of S iff
S^{\prime} is flat and S simulates S^{\prime}

Flattable Systems

$\left(S, X_{0}\right)$ is flattable iff $\exists S^{\prime}$ such that

- S^{\prime} is a flattening of S
- S and S^{\prime} are equivalent for reachability.

Theorem 1 [ATVA'05]

post* $\left(X_{0}\right)$ is computable by circuit acceleration iff $\left(S, X_{0}\right)$ is flattable.

Other characterization

A restricted linear regular expression (rlre) over T

$$
\rho=w_{1}^{*} w_{2}^{*} \ldots w_{n}^{*} \text {, where } w_{i} \in T^{*} .
$$

$\operatorname{post}(\rho, X)=$ configurations reachable following transitions in ρ

Theorem 2 [ATVA'05]
 $\operatorname{post}^{*}\left(X_{0}\right)$ is computable by circuit acceleration iff \exists a rlre p over T such that $\operatorname{post}^{*}\left(X_{0}\right)=\operatorname{post}\left(\rho, X_{0}\right)$.

Remark: $\operatorname{post}(\rho, X)$ is computable with circuit acceleration

Other characterization

A restricted linear regular expression (rlre) over T

$$
\rho=w_{1}^{*} w_{2}^{*} \ldots w_{n}^{*}, \text { where } w_{i} \in T^{*} .
$$

$\operatorname{post}(\rho, X)=$ configurations reachable following transitions in ρ

Theorem 2 [ATVA'05]

post ${ }^{*}\left(X_{0}\right)$ is computable by circuit acceleration iff \exists a rlre ρ over T such that $\operatorname{post}^{*}\left(X_{0}\right)=\operatorname{post}\left(\rho, X_{0}\right)$.

Remark: $\operatorname{post}(\rho, X)$ is computable with circuit acceleration

Other characterization

A restricted linear regular expression (rlre) over T

$$
\rho=w_{1}^{*} w_{2}^{*} \ldots w_{n}^{*}, \text { where } w_{i} \in T^{*} .
$$

$\operatorname{post}(\rho, X)=$ configurations reachable following transitions in ρ

Theorem 2 [ATVA'05]

post ${ }^{*}\left(X_{0}\right)$ is computable by circuit acceleration iff \exists a rlre ρ over T such that $\operatorname{post}^{*}\left(X_{0}\right)=\operatorname{post}\left(\rho, X_{0}\right)$.

Remark: $\operatorname{post}(\rho, X)$ is computable with circuit acceleration

Selection Heuristic (I)

Input: $\left(S, X_{0}\right)$
(1) $X \leftarrow X_{0}$;
(3) Lunch
(3) If $\operatorname{post}(X) \subseteq X$ Goto 10
(3) Enumerate the next ρ rlre over T
($3 \quad X \leftarrow \operatorname{post}(\rho, X)$
(1) Goto 4
(3) In parallel with
(1)

When Watchdog stops Goto 2
(10) Return X
maximal procedure: terminates iff $\left(S, X_{0}\right)$ is flattable
PB1(time) find quickly a good rlre
PB2(space) avoid as much as possible unnecessary expensive steps of computations

Selection Heuristic (I)

Input: $\left(S, X_{0}\right)$
(1) $X \leftarrow X_{0} ; k \leftarrow 0$
(2) $k \leftarrow k+1$
(3) Lunch
(3) If $\operatorname{post}(X) \subseteq X$ Goto 10
(3) Choose fairly $w \in T \leq k$
(0) $X \leftarrow \operatorname{post}\left(w^{*}, X\right)$
(1) Goto 4
(8) In parallel with
(0) When Watchdog stops Goto 2
(10) Return X

The procedure is still maximal
PB1(time) partitioning + Watchdog
PB2(space) Choose

Selection Heuristic (II)

Results

The selection heuristic design is reduced to designing

- Choose (a standard solution is given)
- Watchdog (a standard solution is given)

The obtained procedure is then

- maximal
- efficient : good results on counter systems (cf. FAST)

Reductions

$|T|^{\leq k}$ may be exponential in k.

Idea $=$ reduce $|T|^{\leq k}$ by removing redundant functions.

Three reductions:

- union-reduction [Finkel-Leroux 2002]
\quad if $f=\left(M, V, G_{1}\right)$ and $g=(M$,
let $h=\left(M, v, G_{1}, G_{2}\right)$
- commutation-reduction [CAV'03]
- conjugacy-reduction [ATVA'05]

Reductions

$|T|^{\leq k}$ may be exponential in k.

Idea $=$ reduce $|T|^{\leq k}$ by removing redundant functions.

Three reductions:

- union-reduction [Finkel-Leroux 2002]

■ if $f=\left(M, v, G_{1}\right)$ and $g=\left(M, v, G_{2}\right)$,

- let $h=\left(M, v, G_{1} \vee G_{2}\right)$

■ then $(f+g)^{*}=h^{*}$

- commutation-reduction [CAV'03]
- conjugacy-reduction [ATVA'05]

Reductions

$|T|^{\leq k}$ may be exponential in k.

Idea $=$ reduce $|T|^{\leq k}$ by removing redundant functions.

Three reductions:

- union-reduction [Finkel-Leroux 2002]

■ if $f=\left(M, v, G_{1}\right)$ and $g=\left(M, v, G_{2}\right)$,

- let $h=\left(M, v, G_{1} \vee G_{2}\right)$

■ then $(f+g)^{*}=h^{*}$

- commutation-reduction [CAV'03]
- if f and g commute then $f^{*} g^{*}=(f \cdot g)^{*}=(g \cdot f)^{*}$
- conjugacy-reduction [ATVA'05]

Reductions

$|T|^{\leq k}$ may be exponential in k.

Idea $=$ reduce $|T|^{\leq k}$ by removing redundant functions.

Three reductions:

- union-reduction [Finkel-Leroux 2002]

■ if $f=\left(M, v, G_{1}\right)$ and $g=\left(M, v, G_{2}\right)$,

- let $h=\left(M, v, G_{1} \vee G_{2}\right)$

■ then $(f+g)^{*}=h^{*}$

- commutation-reduction [CAV'03]
- if f and g commute then $f^{*} g^{*}=(f \cdot g)^{*}=(g \cdot f)^{*}$
- conjugacy-reduction [ATVA'05]
- $\left(f_{2} \cdot f_{3} \cdot f_{1}\right)^{*}=I_{d}+f_{2} \cdot f_{3} \cdot\left(f_{1} \cdot f_{2} \cdot f_{3}\right)^{*} \cdot f_{1}$

Practical results

system	$\|T\|$	k	$\mid C \leq k$	U	Cm	Cj	$\mathrm{U}+\mathrm{Cm}$
csm	13	1	14	14	14	14	14
	$\mathbf{1 3}$	$\mathbf{2}$	183	$\mathbf{1 0 3}$	$\mathbf{5 7}$	$\mathbf{9 9}$	35
consistency	8	1	9	9	9	9	9
	8	2	68	45	44	39	30
	$\mathbf{8}$	$\mathbf{3}$	484	$\mathbf{1 7 2}$	$\mathbf{2 9 9}$	$\mathbf{1 7 8}$	98
swimming	6	1	7	7	7	7	7
pool	6	2	43	21	24	25	16
	6	3	259	56	114	97	28
	$\mathbf{6}$	$\mathbf{4}$	1555	$\mathbf{1 2 6}$	$\mathbf{6 1 4}$	$\mathbf{4 2 1}$	47
	6	5	9331	252	3591	1977	86

$\mathrm{U}, \mathrm{Cm}, \mathrm{Cj}$: reductions (union, commutation, conjugacy)

Outline

(1) Introduction
(2) Counter systems
(3) Circuit acceleration
(3) Circuit selection
(3) The tool FAST
(0) Applications
(1) Conclusion

FAST

The previous results are implemented in FAST

FAST works well in practice

- successfully verify 80% of 40 infinite systems [CAV'03].
- first automatic verification of TTP [TACAS'04]
- first automatic verification of CES

Technological comparison

	ALV	LASH	FAST	TREX
system	relational	affine	restricted	
symb. rep	automata		arith. + pdbm (undec. $\sqsubseteq) ~$	
acceleration	no	circuits		circuits (partial.rec.)
circuit selection		no	yes	yes, $\leq k$

Practical comparison

System	ALV	LASH	FAST	k	TREX
RTP (bounded)	T	T	T	1	T
Lamport (bounded)	T	T	T	1	T
Dekker (bounded)	T	T	T	1	T
ticket 2	T	T	T	1	T
kanban	\uparrow	T	T	1	T
multipoll	\uparrow	T	T	1	\uparrow
prod/cons (2)	\uparrow	T	T	1	-
ttp	\uparrow	T	T	1	-
prod/cons (N)	\uparrow	\uparrow	T	2	-
lift control, N	\uparrow	\uparrow	T	2	T
train	\uparrow	\uparrow	T	2	T
csm, N	\uparrow	\uparrow	T	2	\uparrow
consistency	\uparrow	\uparrow	T	3	-
swimming pool	\uparrow	\uparrow	T	4	\uparrow
pncsa	\uparrow	\uparrow	\uparrow	$?$	\uparrow
incdec	\uparrow	\uparrow	\uparrow	$?$	\uparrow
bigjava	\uparrow	\uparrow	\uparrow	$?$	\uparrow

T : success within 20 minutes
\uparrow : no success within 20 minutes
k: circuit length for FAST
-: not an input of TREX

Outline

(1) Introduction
(2) Counter systems
(3) Circuit acceleration
(1) Circuit selection
(5) The tool FASt
(0) Applications
(Conclusion

Verification of TTP by FAST

Verification of TTP by FAsT

1 error [TACAS'04]

16 transitions, 9 variables, complex guards

- automatic verification
- Pentium 4 2.4 GHz, 1 Gbyte RAM : 940 sec. and 73 Mbytes .

Other tools:

- Alv does not terminate
- LaSh terminates when good circuits are provided
- TTP does not fit TREX input model.

2 errors [TACAS'04]
20 transitions, 18 variables, even more complex guards

- standard acceleration does not work
- convex acceleration + overapproximation.

Verification of TTP by FAsT

1 error [TACAS'04]

16 transitions, 9 variables, complex guards

- automatic verification
- Pentium 4 2.4 GHz, 1 Gbyte RAM : 940 sec. and 73 Mbytes.

Other tools:

- Alv does not terminate
- LaSh terminates when good circuits are provided
- TTP does not fit TREX input model.

$$
2 \text { errors [TACAS'04] }
$$

20 transitions, 18 variables, even more complex guards

- standard acceleration does not work
- convex acceleration + overapproximation.

The CES protocol - presentation

- Supported by Philips
- multimedia streaming
- ensures reliable communications over lossy channels

Jonathan Billington and Lin Liu [Billington-Liu 2002]

- Colored Petri net modeling of the CES,
- infinite system, counters and queues of parameterized length
- (complex) proofs of many properties of the CES (ex: size of the reachability set w.r.t. the buffer lengths)

The CES protocol - verification with FAST

Modeling issues

FAST does not handle queues.

- queues simulated by counters,
- correctness of the simulation is expressed as a reachability property of the counter system, and it is checked by FAST automatically.

Results

Properties proved in [Billington-Liu 2002] are checked easily.

Verification of pointer systems (work in progress)

Manual management of memory ressources (language C)

- memory heap $=$ collection of memory cells
- a cell contains: data or address
- addresses $\in\{$ valid, invalid, NULL\}
- primitives: new, free, successor

Common errors

- memory violation
- memory leak

Work supported by EDF (2002-2004), and by RNTL AVÉRILES (2005-2008)

Pointer systems

Programs:

- only one successor (lists, no trees)
- no data, only pointers

```
List reverse (List x ) \{
    List y,t;
    y =NULL;
    while ( \(x\) !=NULL) \{
        \(\mathrm{t}=\mathrm{y}\);
        \(\mathrm{y}=\mathrm{x}\);
        \(\mathrm{x}=\mathrm{x}->\mathrm{n}\);
        \(\mathrm{y}->\mathrm{n}=\mathrm{t}\);
        \(\mathrm{t}=\) NULL;
    \}
    return y ;
\}
```


Modeling the memory heap

Concrete configurations

Memory graphs

- nodes $=$ memory cells
- edges $=$ "pointed by"
- labels $=$ set of pointer variables pointing the cell
- $\perp=$ invalid addresses

Symbolic representation [AVIS'04]

memory graph (shape) + counters + constraint

- canonical form of shapes
- finite number of shapes

FAST and pointers

Verification of pointer systems [AVIS'06]

- Encode infinite sets of memory graphs by Presburger sets
- bisimulation between the pointer system and a counter system
- verification by FAST

A prototype is in progress (with A. Sangnier and É. Lozes)

- Works well for ≈ 10 small standard examples
- Both qualitative and quantitative properties
- Allows to check programs with counters + pointers

Outline

(1) Introduction
(2) Counter systems
(3) Circuit acceleration
(1) Circuit selection
(5) the tool FAST
(0) Applications

- Conclusion

Our methodology

 Vérification

Our methodology

Our methodology

Our methodology

Results

1. Generic methodology [ATVA'05]

- unified acceleration framework
- power and limits (flattable systems)
- maximal circuit selection
- generic optimizations (reductions)

2. Instantiation to counter systems

- two acceleration algorithms
- [Finkel-Leroux 2002]
- [TACAS'04]
- a reduction fit to counters [Finkel-Leroux 2002]
- The tool Fast

Results

3. Many experimentations

- Counter systems
- 40 infinite systems [CAV'03]
- TTP [TACAS'04]
- Counters + queues
- CES (in my PhD thesis, work with Laure Petrucci)
- Stop and Wait Protocol [Billington-Gallasch-Petrucci 2005]
- Pointer systems
- translation into counter systems [AVIS'06, AVIS'04]
- prototype, works on 10 standard examples (work with Étienne Lozes and Arnaud Sangnier)

Lessons and limits of the tool

Theoretical limitations (finite monoid, Presburger logic)

- not the main issue for protocols
- would be different for programs
(2) Number of transitions

Lessons and limits of the tool

Theoretical limitations (finite monoid, Presburger logic)

- not the main issue for protocols
- would be different for programs

Practical limitations:
(1) Number of variables

- main point $=$ complexity of relationship among variables
- no more than 100 variables
(2) Number of transitions
- difficulty to find large circuits
- currently: circuits of length 4 with 20 variables

Lessons and limits of the tool

Theoretical limitations (finite monoid, Presburger logic)

- not the main issue for protocols
- would be different for programs

Practical limitations:
(1) Number of variables

- main point $=$ complexity of relationship among variables
- Petri net with 50 variables is OK
- TTP2 with 20 variables is not
- no more than 100 variables
(2) Number of transitions
- difficulty to find large circuits
- currently: circuits of length 4 with 20 variables

Lessons and limits of the tool

Theoretical limitations (finite monoid, Presburger logic)

- not the main issue for protocols
- would be different for programs

Practical limitations:
(1) Number of variables

- main point $=$ complexity of relationship among variables
- Petri net with 50 variables is OK
- TTP2 with 20 variables is not
- no more than 100 variables
(2) Number of transitions
- difficulty to find large circuits
- currently: circuits of length 4 with 20 variables

FASt Extended Release

A new version FASTER is released [CAV'06]

- A new architecture
- Reachability set computation engine
- Generic Presburger Interface
- Presburger packages (Lash, Mona, omega)
- A new Presburger package

■ Cache computation [Couvreur 2004]
■ (not yet optimized)

- New features in analysis
- Circuit selection,
- Convex acceleration

Perspectives

- Improve circuit detection: partial orders, system transformation
- Scale-up our methods: abstract-refine and checks methods
- Timed counter systems? (TPN, TA + counters, ...)

