
OSMOSE: Automatic Structural
Testing of Executables‡

Sébastien Bardin∗,1, Philippe Herrmann1

1 CEA LIST, Software Safety Laboratory,
Point Courrier 94, Gif-sur-Yvette, F-91191 France
first.name@cea.fr

SUMMARY

Verification is usually performed on a high-level view of thesoftware, either specification or program
source code. However in certain circumstances verificationis more relevant when performed at the machine
code level. This paper focuses on automatic test data generation from a standalone executable. Low-level
analysis is much more difficult than high-level analysis since even the control-flow graph is not available
and bit-level instructions have to be modelled faithfully.The paper shows how “path-based” structural
test data generation can be adapted from structured language to machine code, using both state-of-the-
art technologies and innovative techniques. Results have been implemented in a tool named OSMOSE and
encouraging experiments have been conducted. Copyrightc© 2009 John Wiley & Sons, Ltd.

Received 21/08/2008; Revised xxx

KEY WORDS: machine code analysis ; automatic testing ; IR recovery ; concolic execution

1. Introduction

The verification task is generally performed at the specification level (functional testing, model
checking) or at the programming language level (structuraltesting, static analysis) for structured
languages such as C or Java, but rarely at the machine-code level. Actually, binary-level analysis is
considered more difficult than other analyses, while being redundant with them. However, machine
code analysis is relevant in at least three situations: whenno high-level source code is available, when
the compiling process cannot be trusted or when the increaseof precision is essential. It is quite
common that a company cannot have access to a high-level documentation, either the vendor does
not provide the source code (Commercial Off-The-Shelf software) or the source code is simply lost

∗Correspondence to: CEA LIST, SOL/LSL, Gif-sur-Yvette, F-91191 France.E-mail:sebastien.bardin@cea.fr
‡This article is an extended version of results presented at ICST 2008 [9].
Contract/grant sponsor: Work partially funded by EDF, theSoftware Factory/MoDriValproject of the French cluster
SYSTEM@TIC PARIS-REGION and theArpège/Bincoaproject of Agence Nationale de la Recherche (ANR).

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 1

(legacy code). Standard source code analysis relies on the assumption that the compiler preserves the
program semantics. While it is realistic for standard reachability properties and standard compilation
techniques, it cannot be trusted anymore in the case of strong safety/security requirements and highly
sophisticated optimisations [15]. Moreover, it is not uncommon that exotic processors, typically found
in embedded systems, come with buggy (commercial) compilers. Finally, certain kinds of properties
require to analyse the program as close as possible to the concrete behaviour, e.g. quality of service
(QoS) properties like worst-case execution time and maximal stack-height estimation.

Major difficulties of binary-level analysis.Machine code analysis is different from higher-level
analysis (languages or models) because of three specific difficulties: IR recovery, low-level data
manipulation and low-level control manipulation. (1) The first problem is the so-called Intermediate
Representation recovery (IR recovery): since an executable is nothing more than a sequence of bits,
no basic control-flow information is available (such as functions, loops or variables), while it is given
for free in higher-level analysis. Actually even the exact number of instructions in the program is
unknown since instructions may have different sizes, instructions can overlap, there is no syntactic
difference between instructions and data and finally the exact set of targets of dynamic jumps cannot
be statically determined (a jump is dynamic when its destination is only known at run-time). (2)
Low-level data manipulation.Low-level operations on data have to be taken into account precisely
while for higher-level analysis, coarser abstractions areusually sufficient. The most obvious one is
machine arithmetic. Considering 32-bit long unsigned integers, the operation 4294967295+1 returns
0. Floating-point numbers also behave very differently from real numbers. Actually, while machine
integers can be modelled quite precisely by modulo arithmetic, there is no nice standard theory for
floating-point numbers. (3)Low-level control manipulation.In high-level language, control-oriented
instructions are clearly separated from data-oriented instructions. Moreover, calls to sub-routine are
encapsulated within a clean functional abstraction (bindings of arguments, local context, return to
the caller). None of these good programming patterns are present in machine code. Control-oriented
instructions are just assignments of specific registers andfunction calls are nothing more than jumps
and push / pop of arguments. Finally there is a great diversity of hardware architectures and instruction
sets (ISA), differing both in terms of physical memory layout and instruction sets.

Bit-vector theory. The bit-vector theory (see for example the book of Kroening and Strichman [32]
for an overview) formalises standard machine instructionsat the bit level. Formulae are interpreted over
vectors of bits of a fixed length. Instructions include modulo arithmetic with signed and unsigned views
of bit-vectors, logical bitwise operations and other low-level instructions such as shift, extraction and
concatenation. Floating-point arithmetic is usually not considered though it can be encoded. Note that
in the rest of the paper, only the quantifier-free fragment ofbit-vector theory is considered. Satisfiability
in bit-vector theory is decidable since the interpretationdomain is finite, but complexity is high, even
for the quantifier-free fragment since SAT can be easily encoded into it.

The OSMOSE tool. OSMOSE aims at performing automatic test data generation on standalone
executable files. The test selection is white box since no other information than the executable itself
is considered available, with coverage-based stop criteria. The OSMOSE tool targets reactive systems,
commonly found in embedded software. Reactive systems can interact with an environmentvia sensors
and actuators. In this case, a test data is an initial valuation for input data and a sequence of values

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

2 S. BARDIN AND P. HERRMANN

read on each sensor. The user has to provide a description of the environment, declaring volatile
memory cells. The two main outputs of the tool are an abstraction of the control-flow graph of the
program (ACFG) and a test suite (test data plus exercised execution path) with an approximation of the
coverage measure. Test data are exact, in the sense that at run-time the program launched on these data
follows exactly the expected execution paths. On the other hand, the ACFG is an approximation of the
ideal CFG of the program, neither complete nor correct: the ACFG can both report false instructions /
branches and miss legal instructions / branches.

The issue of the oracle (“does the test pass or fail?”) is not addressed by OSMOSE. However, the
test suite can be exported to an external automated oracle ifavailable, for example in approaches such
as back-to-back testing or parametrised unit testing [48].Moreover, the tool can still find“intrinsic”
bugs, i.e. executions which are undoubtedly faulty independently of any specification, such as division
by zero, jump to an incorrect instruction and violation of programmer-defined assertions.

OSMOSE can be used for standard correctness testing activities (onexecutable files), as well as
for assistance in executable behaviour comprehension. However, since the ACFG and the coverage
measure are just indicative, the tool alone cannot currently be used to generate test suites achieving a
certain level of structural coverage, as is required in safety critical systems like aeronautics. Anad hoc
solution (implemented in OSMOSE) is to let the user specify overapproximations of targets ofdynamic
jumps. An interesting alternative would be to connect OSMOSEto one of the very few tools performing
safe ACFG reconstruction [33].

A very strong requirement of the OSMOSE project is to be as independent as possible from any
particular architecture or instruction set, so that users can add their own architectures without any
assistance from the developers of OSMOSE. This is achieved through a generic software architecture
arranged around a Generic Assembly Language (GAL). The toolcurrently handles three processors:
the Intel 8051, the Motorola 6800 and the more recent Freescale PowerPC 550.

Technologies. Binary-level analysers must first build a high-level model of the software under
investigation. Then verification techniques may be used. The test data generation technology is white
box, based on symbolic execution [16, 24, 23, 29, 45, 47, 51]:a path predicate is computed from a
control path, solving this predicate leads to a test data exercising the path. Path predicates are expressed
in the quantifier-free fragment of bit-vector theory, so a constraint solver for this theory is required.
It turns out that the OSMOSE tool is organised around four basic technologies: structural test data
generation, bit-vector constraint solving, IR recovery and Generic Assembly Language.

A major improvement of symbolic execution is the concept of concolic execution [23, 45], also
referred to as mixed execution [16] or dynamic symbolic execution [47]. It means that a concrete
execution is running in parallel to the symbolic execution,collecting relevant information along the
concrete execution path to help the symbolic execution. In the original approach, the concrete execution
is used to find a feasible initial path and to discover on-the-fly the program CFG [23, 45, 51], or
to approximate complex instructions like non-linear constraints or library function calls [23, 45].
Note that concolic execution can be seen as a mix between pureconstraint-based test data generation
approaches [29] and search-based test data generation techniques [25, 26, 30, 31]. As such, it shares
common ideas with the dynamic symbolic execution approaches developped in the 1990s [39].

The test generation method described above relies on solving path predicates. While test data
generation tools from high-level descriptions [23, 37, 45,51] are usually based on integer constraints
(classically bounded arithmetic [37, 51] or linear arithmetic [23, 45]), constraints are here expressed in

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 3

the bit-vector theory. The OSMOSEsolver is based on the Constraint Programming paradigm [2, 42],
which is flexible enough to encode all “exotic” instructionsone can find in instruction sets.

The IR recovery mechanism combines in an innovative way bothstatic and dynamic analyses. First,
a (global) static analysis creates a coarse model. Then if new parts of the program are discovered during
the test data generation phase (by the concrete execution orthe symbolic execution) the high-level
model is updated and the (global) static analysis is re-launched. The static analysis does not need to be
very precise since a complementary analysis is performed via concolic execution, avoiding difficulties
inherent to purely static IR recovery techniques [14, 15, 33, 34].

To ensure the independence of the tool from any specific hardware architecture and machine
code, all analysis are performed on a generic assembly language (GAL) parametrised by a generic
architecture description. Native machine code is first decoded into native assembly language, then
translated into GAL. All analyses are performed on the GAL description of the program, since
every GAL instruction comes with three (parametrised) semantics: concrete semantics for emulation
/ simulation, logical semantics for symbolic execution (test data generation) and abstract semantics
for static analysis (IR recovery). Benefits are twofold. First, integrating a new instruction set into
OSMOSE requires only to specify the architecture, to provide a decoder for the native instruction set
and to translate each native instruction into a semantically equivalent sequence of GAL instructions.
Other semantics are derived automatically from the concrete one. Second, integrating a new semantics
(e.g. for a new analysis) for all supported ISA requires to define it only for about thirty instructions.

These technologies are organised as shown in figure 1. The machine code is partially decoded and
translated into the internal generic assembly language (IRrecovery, GAL), then the test data generation
algorithm is launched (concolic execution, bit-vector solving). During this phase, new instructions can
be discovered. The decoder is launched again, the IR is updated and test data generation is applied
using an enriched CFG.

 IR / ACFG Test data Machine Code

test1 : input1=0, input2=0
test2 : input1=1, input2=3
test3 : input1=1, input2=8
test4 : input1=2, input2=0
................................
................................
................................

:10004FA34EB567D78
:100DBA00CA0069785
:100DDCA0069701011
:100D0A0668F72202B
:010F6E256D78203F2
................................
................................
................................

Figure 1: OSMOSEworkflow

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

4 S. BARDIN AND P. HERRMANN

Limitations. Floating-point arithmetic and interrupts are not handled,like in almost all verification
technologies. Moreover, self-modifying code cannot be taken into account. However, it can be detected
and signalled. It is worth noticing that many others (if not all) “nasty” low-level control mechanisms
such as dynamic jumps and modification of the return address through stack overflow can be taken into
account, as well as instruction overlapping and recursive functions.

Contributions. This paper addresses the problem of designing an efficient tool for the automatic
analysis (testing and IR recovery) of executables. There are four main contributions in this work.

• The specific issues of machine code analysis (compared to structured languages) are identified,
and the paper shows how to adapt two existing frameworks for test data generation of
structured programs (namely, concolic execution and Constraint Programming) to machine
code, pinpointing the main difficulties. This work proposesalso a very innovative solution to the
IR recovery issue in a test data generation framework (i.e. where completeness of the recovery
can be relaxed), involving a combination of static, symbolic and concrete approaches. It turns
out that concolic execution simplifies dramatically the IR recovery problem.

• The paper presents also an innovative software architecture, based on a Generic Assembly
Language parametrised by an architecture template, to add easily new instruction sets in an
analysis framework. This work has been done independently of the one by Lim and Reps [36].
It was already developed, but only sketched, in the previousOSMOSEconference article [9].

• Finally, it is shown how Constraint Programming can be used in a solver for the quantifier-
free fragment of the bit-vector theory. The OSMOSEsolver manages all bit-vector constraints
generated by the GAL language. It is built on top of a bounded integer CP solver. This is a
very different approach from usual bit-vector solvers, rather based on a bit-sequence view of
variables and SAT/SMT solving [6, 22].

• These results have been implemented in a structural test data generation tool for executables.
First experiments demonstrate the feasibility of the approach. The tool is largely architecture-
independent and can currently handle three different architectures and machine codes (8051,
6800, PowerPC 550).

Related issues.Machine code analysis may seem close to low-level C program analysis and Java
bytecode analysis. This paragraph pinpoints similaritiesand differences. The analysis of low-level C
programs, typically found in embedded systems or operatingsystems, is indeed very close to machine
code analysis: low-level manipulations on data and controlare possible, either directly (arbitrary type
casting, bitwise operations, pointers on functions,longjump/setjump instructions), or indirectly
(embedded assembly language, stack overflow to modify return address). However, it must be clear
that currently, most automatic analysis tools for C programs consider a “clean” subset of the language,
usually excluding all the previous nasty mechanisms. This nice subset can be treated as a structured
language, and is really far from low-level C programs. On theopposite, Java bytecode analysis has
almost nothing in common with machine code analysis. Java bytecode has been designed with safety
concerns in mind: many error-prone features are forbidden and some interesting facts can be verified
statically. For example: strong static typing (boolean, integer, reference), validity of dynamic jumps,
local context and call-return policy.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 5

Outline. The remaining part of the paper is organised as follows. Section 2 gives an overview of
architectures and instruction sets. The next four sectionsdescribe OSMOSEcore technologies: Generic
Assembly Language in section 3, test data generation in section 4, IR recovery in section 5 and bit-
vector solving in section 6. Section 7 presents the OSMOSE tool and its implementation. Section 8
describes some experiments with the tool. Finally section 9discusses related work and section 10
concludes and gives directions for future work.

2. A taste of machine code

This section provides a simple introduction on machine code, architecture and instruction set. This is
a very limited overview, but it should be sufficient to understand the remaining part of the paper. More
complete presentation can be found in standard books [46].

A machine code for a given processor is a language directly understandable by this processor.
This program is a sequence of instructions encoded in binaryformat. A typical instruction has the
form:opcode arg1 arg2 . . . argn, whereopcode is the encoding of a basic command of the
processor (add, move, etc.). Decoding a single instruction is straightforward since an opcode is never
the prefix of another opcode, and all the relevant information (e.g. number of arguments and their sizes)
depends only on the opcode (possibly with additional prefix /postfix information). Once an instruction
has been decoded and executed, the processor searches for the next instruction to execute. The next
instruction is usually located just after the end of the current one, but not always (e.g.jump). In almost
every case, the potential successors of the current instruction are known statically. The only exception
is the case of dynamic jumps, i.e.jump whose operand depends on the execution, likejump R with
R a register. Dynamic jumps are the main reason for the IR recovery being so problematic.

Even if there are many different hardware architectures, they all share common ideas from the
Von Neumann architecture. Basically, a processor can be seen as an automaton extended with a small
number of variables (registers), each one containing exactly a word-size long sequence of bits (shortly,
a m-word). In addition to these registers, an additional memory (typically RAM) allows to store a huge
amount of information. The memory can be seen as a very large array, storing a m-word in each cell.
The memory is conceptually divided in two parts: information local to function calls (caller address,
local values) is stored in the(call) stack, and global / persistent information is stored in theheap. But
usually there is no physical separation between the stack and the heap. Two registers play a special
role: thePC register(program counter)and theSP register(stack pointer). Stack pointer indicates the
address (in memory) of the top of the stack. Program counter indicates the current instruction. At the
end of an instruction,PC is updated with the next instruction address and control jumps to it. In most
instruction sets,PC can be modifiedvia dedicated instructions only.

A processor comes with a finite set of instructions. Most instructions can be seen as a sequence
of affectations of the form lhs← f(rhs1, . . . , rhsn). Control instructions include jumps, calls and
returns. Jumps can be either static: the jump target is knownstatically (e.g.goto 100); or dynamic:
the jump target is computed at run-time (e.g.goto R0). Jumps can also be conditional. Calls and
returns to functions are only convenient shortcuts enforcing the way the call stack is used. The typical
effect of acall instruction is to store the current address on top of the stack, to increase the stack
pointer and to jump to the callee address. The typical effectof a return instruction is to retrieve
the value on top of the stack, which should be the caller address, to decrease the stack pointer and to

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

6 S. BARDIN AND P. HERRMANN

jump to the caller address. This is the general picture. Depending on the architecture, the stack pointer
may be incremented or decremented, and this modification mayappear before or after retrieving the
return address from the stack. Instruction sets usually provide also a large range of data instructions.
Most common ones include: data transfer from / to memory, (machine) integer arithmetic, floating-
point arithmetic and other bit-vector operations. Noticeably, integer arithmetic is performedmodulo
the value of the largest representable integer, and integeroperations update various flags (predefined
memory location), typically to record the occurrence of overflows.

3. Generic Assembly Language (GAL)

To ensure the independence of OSMOSE from any specific hardware architecture and instruction set,
all analyses are performed on a Generic Assembly Language (GAL) parametrised by an architecture
description. Native machine code is first decoded into native assembly language, and then translated
into a GAL program. All analyses are performed at the GAL level, since every GAL instruction comes
with three (parametrised) semantics: concrete semantics for emulation/simulation, logical semantics
for symbolic execution (test data generation) and abstractsemantics for static analysis (IR recovery).
Figure 2 gives a flavour of this framework. Benefits of such an architecture are twofold. On the one
hand, additional cost for integrating a new instruction setinto OSMOSEboils down mainly to specifying
the architecture and translating each native instruction into a semantically equivalent sequence of
GAL instructions. The instruction set is then fully supported by all analysers in OSMOSE(emulation,
symbolic execution, static analysis), the symbolic semantics and the abstract semantics being deduced
from the concrete one. On the other hand, adding a new semantic (for a new kind of analysis) requires
to define it for only about thirty basic instructions.

Abstract architecture and GAL program.An abstract architectureX is defined by a pairX = 〈R,M〉
whereR is a finite set of variables ranging over m-words andM is a finite set of (disjoint) arrays of m-
words, calledmemory regions(shortly, m-regions). Each m-region is indexed by non-negative integer
values, called addresses. Amemory location(m-loc) is defined as being either a register or the cell
of a m-region. The size of m-words stored in each m-loc is fixeda priori for each m-loc. Intuitively,
variables represent registers and m-regions represent different physical memories, for example RAM
and ROM. A GAL programP is a tupleP = 〈R,M, A, I〉where〈R,M〉 is an abstract architecture,A
is the set of addresses of valid instructions andI is a map fromA to GAL instructions. GAL instructions
are composed of more primitive micro-instructions. Indeed, a GAL instruction is a sequence of data
(micro-) instructions followed by a control (micro-) instruction. Data instructions (assign) are multi-
affectations. Basic control instructions are static jumps(goto) and dynamic jumps (cgoto). Moreover,
these jumps can be combined with a conditional statement (ite). Note that instructiongoto is a special
case ofcgoto, however they are distinguished from each other in GAL sincethey are managed in very
different ways by automatic analysers. GAL instructions obey the following grammar:

GAL instr ::= (data)∗ control
control ::= jump| ite (cond,jump,jump)
jump ::= gotoaddr| cgotorhs
data ::= assign(lhs1, . . . , lhsn)← f(rhs1, . . . , rhsn)

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 7

 GAL<Archi>

 BLOCK
 move, +, x, ...
 GOTO
 CGOTO
 ITE
 CALL
 RET

concrete semantic

 other ?

abstract semantic

logical semantic

Simulator

Static Analysis

Concolic Execution

 Other ?

 Target-specific Description Generic Description + Semantics Analysis Engines

Machine Code

:10004FA34EB567D
:100DBA00CA00697
:100DDCA00697010
:100D0A0668F7220
:010F6E256D78203
..............................
..............................
..............................

Native ISA

B, BA, BL, BLA
BC, BCA, BCL, BCLA
MCRF, MCRXF, MCRS
ADDI, ADDS, ADDop,
CMPI, CMP, CMPL,...
AND, ANDp,............
XOR, XORp,.............
..............................
..............................
..............................

<Architecture>

DECODER TRANSLATION

Figure 2: Generic Architecture with GAL

Left-hand side and right-handside operands are defined by
rhs ::= bv | r | m[rhs] | restrict(rhs,i,j)
lhs ::= Ignore| r | m[rhs]

wherebv is a m-word,r ∈ R is a register,m ∈ M is a m-region,restrict(rhs,i,j)denotes the extraction
of the sub-bitvector ofrhs from bit i to bit j (i andj are integer constants) andIgnoreis a dummy
operand, used when a multi-affectation does not need all results from an operation (typically flags).

Operators available in multi-affectations include usual arithmetic operators (signed and unsigned
versions), usual bitwise operators, usual bit-vector manipulations such as shifts and rotations and a
C-like compare operator.

Semantics. Considering a GAL programP = 〈R,M, A, I〉, a configurationc of P is either a pair
c = (addr, val) whereaddr is an address inA andval is a valuation of each m-loc, i.e. a map from m-
locs to m-words; or the special configurationerror. The operational semantic is given in an imperative
way. Undefined values, e.g. division by zero or out-of-boundmemory access, are modelled by the
special value⊥. Thus, partial functions from bit-vectors to bit-vectors are turned into total functions
from bit-vectors to the union set of bit-vectors and⊥. Given a configuration(addr, val), its successor
configuationsucc is defined by:

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

8 S. BARDIN AND P. HERRMANN

• Let I(addr) = d1 . . . dn ctrl, wheredi’s are data instructions andctrl is a control instruction.
• Let val′′ be the valuation obtained fromval after having performed the sequential multi-

affectationsd1, . . . , dn; if an exception occurs during multi-affectations thenval′ = ⊥ else
val′ = val′′;

• Let addr′ be equal toeval(ctrl, val′) whereeval is defined recursively by:

– eval(goto k, v) is equal tok,
– eval(cgoto rhs, v) is equal to the evaluation ofrhs overv (may evaluate to⊥),
– eval(ite(cond, jump1, jump2), v) is equal toeval(jump1, v) if cond holds true over

v, it is equal toeval(jump2, v) if cond holds false, and it is equal to⊥ if cond evaluates
to⊥.

• If val′ 6= ⊥ andaddr′ 6= ⊥ andaddr′ ∈ A thensucc = (addr′, val′), elsesucc = error.

Note that theerror configuration itself has no successor.

Encoding an ISA into GAL. A typical ISA is encoded into GAL in the following manner. A variable
is associated to each ISA register and a m-region is associated to each physical memory (in most
architectures, one m-region for the RAM is sufficient). Someauxiliary variables may be useful for
complex instructions requiring a micro-code level modelling. The program counter variable can be
removed, since its effect is captured by GAL control micro-instructions. Most ISA instructions are
directly translated in a sequence of two GAL micro-instruction: one for data and one for control. Side-
effects such as flag updating are modelled with multi-affectations. One can notice that there is nocall
or ret instructions. They are modelled as multi-affectations followed by a (dynamic) jump.

Adding a new architecture/ISA inOSMOSE. Adding a new architecture and instruction set to OSMOSE

requires three different artifacts: a decoder for the instruction set, an instantiated architecture and a
translation from the instruction set into GAL.

• Provide a decoder for the instruction set.Given an address in the program source code, the
decoder returns the corresponding instruction (in the native instruction set) or fails if the
instruction is not defined. Implementing such decoders is a tedious task, but not difficult. Some
decoders are publicly available.

• Fill the architecture template.It is required to define the size of m-words, available registers
and memory regions. Moreover, one must specify which m-loc are writable, which m-loc can
contain program instructions (to detect self-modifying code), and which m-loc represent the
program counter and the stack pointer.

• Translate ISA into GAL.It is the more demanding task. It requires mostly to translate every basic
native operand (like a flag) into an m-loc, to translate each native instruction into an equivalent
sequence of GAL instructions and to specify the size of each instruction.

Discussion. The modelling presented so far does not take into account that the program code itself
is stored somewhere in the memory, allowing in some cases theprogram execution to modify the
program code. Thus self-modifying code cannot be modelled.However, most other “nasty” low-level
control mechanisms can be taken into account: dynamic jumps, stack overflow, modification of return

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 9

address and even overlapping of instructions and run-time decryption of instructions as long as GAL
instructions can be added incrementally into the program map. Considering the GAL language, the
main limitations is that during the translation process, a native instruction can only be translated into
a pure sequence: no loop is allowed. It may cause some problems for instructions involving loops in
their micro-code. Finally, note that there is a strict separation between those GAL micro-instructions
which affect control and those GAL micro-instructions which affect data. Hence, it is not possible to
model an ISA instruction which would or not affect the program counter, depending on the value of
its operands (imagine an architecture where the PC value is stored in RAM, and an instruction like
ram[x] := y). However, this is currently a very theoretic limitation, since no common architecture
provides such a feature.

4. Test data generation

4.1. Basic ideas

The OSMOSE test data generation technology follows the idea of symbolic execution. This is an old
idea [29], but automatic tools implementing this idea for software have blossomed recently [16, 23, 24,
45, 47, 51]. The central notion of path predicate is introduced first.

Definition 1 (Path predicate) Given a programP of input domainD and π a path ofP , a path
predicate ofπ is a formulaϕπ onD such that ifV |= ϕπ then execution ofP onV follows the pathπ.

The two main ideas behind symbolic execution are that: (1) a solution to a path predicateϕπ for
a given programP is actually a test data exercising pathπ, with potential applications in structural
testing; and (2) a path predicateϕπ for a pathπ can be computed by keeping track of logical relations
among variables along the execution, rather than just theirconcrete values. Figure 3 shows how a
symbolic execution is performed on a path of a small program.

Loc Instruction Symbolic exec
0 input(y,z) new varsY0, Z0

1 y++ Y1 = Y0 + 1

2 x := y + 3 X2 = Y1 + 3

3 if (x < 2 * z) (branch True) X2 < 2 × Z0

4 if (x < z) (branch False) X2 ≥ Z0

Path predicate for path 0→1→2→(3,T)→(4,F) Path predicate projected on input
Y1 = Y0 + 1 ∧ X2 = Y1 + 3 ∧ X2 < 2 × Z0 ∧ X2 ≥ Z0 Z0 − 4 ≤ Y0 < 2 × Z0 − 4

Figure 3: Symbolic execution along a path

The basic procedure for test data generation by symbolic execution consists in choosing a path,
computing and solving its path predicate, recording the solution (if any) as a test datum, and iterate
until a termination criterion is reached. The termination criterion is typically structural, like path,

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

10 S. BARDIN AND P. HERRMANN

instruction or branch coverage. Compared to previous work where no global representation of the
program is required [23, 45, 51], the technique developed here works on an (abstract) control-flow
graph (ACFG). The ACFG allows to use static techniques for IRrecovery and path pruning [11]. ACFG
nodes can be either sequences of multi-affectations (assign), conditional statements (ite), static jumps
(goto) and dynamic jumps (cgoto). For the sake of simplicity, in this section the ACFG is considered
precomputed once and for all before the test data generationis launched. Hence, eachcgotoinstruction
comes with a predefined set of possible successors. The ACFG is given by its nodes with methods
.addr and.next to access the address of the instruction (in the executable)and its successor nodes
in the ACFG. Section 5 discusses how to build the ACFG incrementally.

Algorithm 1 presents the basic idea of OSMOSE test data generation algorithm. The procedure
uses a bounded depth-first traversal of the control-flow graph to enumerate all paths in a recursive
manner. This is a standard strategy [23, 45, 51] which allowsconstraints to be added incrementally,
and requires only a minimal change to get a new path predicateby reusing the path prefix up to the last
choice point in the program. Choice points in a machine code program are conditionals and dynamic
jumps. For conditional, the procedure just forces the search to take the“then” or “else” branch by
adding to the current path predicateΦ the condition or its negation. In the case of dynamic jumps,
the procedure explores each possible target by constraining the argument of the jump (usually an
arithmetic expression over registers) to take each possible known value in turn. Basic instructions are
translated into formulae by the procedureatomic. The external proceduresolve returns a solution
of a constraint or theunsat exception in case of unsatisfiability. The procedure is presented for an
all-path coverage termination criterion. To adapt the algorithm to other criteria, the program must keep
a set of uncovered itemsU , and each time a path predicate is solved, items covered by the execution
are removed. The program stops as soon asU is empty.

4.2. Concolic execution

Concolic execution [23, 45] is a recent major improvement tosymbolic execution. Basically, a concolic
execution is a concrete execution and a symbolic execution running in parallel, the concrete one
collecting relevant information along the execution path to help the symbolic execution. Concrete
information is used to perform approximation when the symbolic execution encounters instructions
which are either impossible to model in the given path predicate theory, or whose modelling leads
to constraints too costly to solve. A typical mechanism is the concretizationof a variable: at some
point of the symbolic execution, a variable is forced to be equal to its current concrete value over
the concrete execution, limiting the symbolic resolution to all paths going through this concrete
value. Concrete execution can be used for example to follow feasible paths only [23, 45, 51],
to approximate non-linear arithmetic constraints, to dealwith library function calls and multiple
levels of pointer dereferencement [23, 45]. Concolic execution is a recent approach, however it
has been quickly recognised as very promising and many different recent works are based on this
approach [9, 12, 16, 24, 47]. The main advantages of concolicexecution compared to other purely
static techniques (and especially symbolic execution) aretwofolds: concolic execution is very robust
against “difficult-to-analyse” instructions or programming features: it can always concretize it rather
than just ignore it or stop the analysis; concolic executionoffers a control on the trade-off between
performances and completeness of the resolution, depending on which constraints are concretized.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 11

algorithm GENTEST1(nodeinit)
input : initial node nodeinit
output: set of test data Res
1: Res← ∅
2: REC(nodeinit, ⊤)
3: return Res

procedure REC(node,Φ)
input : node, path predicateΦ
output: no result, update Res
1: Casenodeof
2: | ε→ /* end node */
3: try Sp ← SOLVE(Φ) ; Res← Res∪ {Sp}
4: with unsat→ ();
5: end try
6: | assign affect-list→ REC(node.next,Φ ∧ ATOMIC(affect-list))
7: | goto tnode→ REC(tnode,Φ)
8: | ite(cond,inode,tnode)→
9: REC(inode,Φ ∧ cond);

10: REC(tnode,Φ ∧ ¬cond) /* branching */
11: | cgoto expr→
12: for all tnode∈ node.nextdo
13: REC(tnode,Φ ∧ expr= tnode.addr) /* branching */
14: end for
15: end case

Algorithm 1: Basic test data generation algorithm

Note that concolic execution can be seen as a mix between pureconstraint-based test data generation
approaches [29] and search-based test data generation techniques [25, 26, 30, 31]. As such, it shares
common ideas with dynamic symbolic execution from the 1990s[39].

The OSMOSEtest data generation technology follows the concolic principle. The concrete execution
is classically used to detect a first feasible path but also inan innovative way to handle alias constraints
(see below) and to dynamically detect new targets for dynamic jumps (see section 5). A simplified
view of the concolic test data generation procedure is presented in Algorithm 2. The main procedure
RECnow takes two different inputs: the current path predicateΦ and the current concrete memory state
C. Concrete memory states come with basic functions for update and condition evaluation. Initially,
C is the map filled with0 (denoted0). Branching is more difficult to handle in the concolic case than
in the symbolic case. Indeed,Φ andC must always be consistent with the path prefix. While this
property is easily ensured forΦ, it is not the case for the concrete memory state: at each branching
instruction,C is consistent with only one of the successors. The symbolic execution algorithm is
modified in the following way to ensure consistency at each step betweenC and the path prefix.
When a branching instruction is encountered, first the conditional is evaluated w.r.t.C and the concolic
execution is launched along that path (the search follows the concrete path). Then on backtracking, the
current path predicate augmented with the new branching condition is solvedimmediately. If there is
no solution, the branch is infeasible and the search backtracks. Otherwise, the solution can be used to
derive a new concrete memory stateC′ consistent with both the current path prefix and the desired new
branch. DerivingC′ is straightforward if the path predicate contains all intermediate variables (like
in OSMOSE). If the path predicate contains only entry variables, it isalways possible to relaunch a
concrete execution from these entries and get the concrete memory state at the instruction point where

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

12 S. BARDIN AND P. HERRMANN

it is needed. In Algorithm 2, subprocedureupdate C for branching takes as input a solution of
a path predicate and outputs a new concrete memory stateC′ consistent with the corresponding path
prefix.

algorithm GENTEST2(nodeinit)
input : initial node nodeinit
output: set of test data Res
1: Res← ∅
2: REC(nodeinit, ⊤, 0)
3: return Res

procedure REC(node,Φ, C)
input : node, formulaΦ, concrete state C
output: no result, the procedure updates Res
1: Casenodeof
2: | ε→
3: try Sp ← solve(Φ) ; Res← Res∪ {Sp}
4: with unsat→ ();
5: end try
6: | assign affect-list→ REC(node.next,Φ ∧ atomic(affect-list),update(C,affect-list))
7: | goto tnode→ REC(tnode,Φ, C)
8: | ite(cond,inode,tnode)→
9: caseeval(cond,C)of

10: | true→ /* concrete execution follows the if branch */
11: REC(inode,Φ ∧ cond,C);
12: try /* find C’ compatible with the else branch */
13: Sp ← solve(Φ ∧ ¬cond);
14: C’← updateC for branching(Sp);
15: REC(tnode,Φ ∧ ¬cond,C′);
16: with unsat→ ();
17: end try
18: | false→/* symmetric of the true case */
19: end case
20: | cgoto expr→
21: tnode← (eval(expr,C)).node/* concrete successor */
22: REC(tnode,Φ ∧ expr= tnode.addr,C)
23: for all nd∈ node.next -{tnode} do
24: try /* find C’ compatible with node.addr */
25: Sp ← solveΦ ∧ expr=nd.addr;
26: C’← updateC for branching(Sp);
27: REC(nd,Φ ∧ expr= nd.addr,C′)
28: with unsat→ ();
29: end try
30: end for
31: end case

Algorithm 2: Concolic test data generation algorithm

4.3. Advanced concerns

This subsection describes advanced concerns about the symbolic/concolic execution algorithm. For the
sake of simplicity, these features have been omitted in Algorithm 2.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 13

IR Recovery. The test data generation algorithm and the IR recovery mechanism are deeply
interwoven and the ACFG may be updated during the test generation step. The whole IR recovery
mechanism is described in section 5.

Functions. Functions are inlined. Recursive functions are allowed since the bounded depth first
search prevents the search from infinite looping. A modular analysis of function calls would be
more satisfactory. However it is not clear how to perform such a modular analysis for structural test
data generation. Recent papers [1, 27, 38] propose some solutions, but they focus mainly on purely
functional procedures while procedures with side-effectsare preeminent in machine code programs.

Alias. Two m-locs are said to be in an alias relationship when one of them contains the address of
the second. Aliasing is known to be a very difficult point in software analysis since tracking variable
modifications becomes much more problematic. It turns out that aliasing is a bit less difficult from a
testing perspective than from a static one, since it is not required to compute a safe approximation of
all possible alias relationships in order to generate relevant test data. The following solution is used:
the concrete execution is analysed to extract the aliasing relationships existing in the concrete trace
and add them to the path predicate. The good point is that the solution found (if any) is sure to follow
the right execution path. The bad point is that this new predicate is stronger than required, and it may
be infeasible while the path is actually feasible with another alias constraint. This technique allows
to discover aliasing relationships depending only on the memory layout. This is orthogonal to the
technique developed in CUTE [45] where possible syntactic alias relationships are extracted from the
C program, mainly from type declarations and alias expressions in branch conditions.

Optimisations. Concolic execution engines can be improved in two orthogonal ways, either reducing
the number of path prefixes to explore (path pruning) or reducing the cost of each call to the solver
(formula simplification). Path pruning techniques implemented in OSMOSE [11] include discarding
path prefixes which cannot reach new instructions or branches and preventing the search from
backtracking in deep nested calls. Formula simplificationsinclude the slicing of instructions which
do not affect control expressions along the path, as well as splitting the path predicate into independant
subformulas solved separately. Moreover, OSMOSEprocedure is also enhanced with a “semi-concrete”
execution dynamically detecting constant values at each step of the execution, allowing to prune the
path search by detecting on-the-fly trivial cases of infeasible paths. This can be seen as a combination
of formula simplification through constant propagation andincremental lightweight solving.

Formula simplification techniques such as formula splitting and constant propagation are rather
common in concolic execution tools [16, 24, 45, 47], some of them performing even incremental
solving [51]. Path pruning techniques are more original. However, smart heuristics geared towards
faster coverage [16, 24, 47] and modular or lazy test data generation [1, 27, 38] allow also to reduce
the search space.

5. IR recovery

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

14 S. BARDIN AND P. HERRMANN

5.1. Motivations

Purely static techniques for IR recovery are either too coarse or very sophisticated [14, 15] and
difficult to implement for the non-expert because they aim atcomputing a both safe and tight
overapproximation. In a testing perspective, completeness can be relaxed and the analysis is much
easier. Actually, once the problem is relaxed, a purely dynamic discovery of the executable structure is
feasible. However, the dynamic approach suffers from threedrawbacks. First, dynamic methods cannot
ensure that all dynamic targets have been explored, while insome cases even simple static analyses do.
While such a safe IR recovery is not mandatory for common testing practices, it is absolutely imperative
for the validation of critical systems. Second, concolic execution relies on very precise and potentially
expensive theorem proving techniques, while simple staticanalyses (e.g. constant propagation) are
cheap. Third, some recent path-pruning optimisations for concolic execution require a global view of
the program structure [11]. This section describes an innovative combination of static analysis and
concolic execution to solve the (weak) IR recovery issue typically arising in test data generation.

5.2. Existing solutions

There existad hocstatic techniques to address the IR recovery problem, mainly the brute force method
and naive static discovery. In the brute force approach, onetries to decode an instruction at every byte
(or word) of program. The resulting set of instructions is a safe upper-approximation, however it does
not recover legal transitions between instructions and reports too many false instructions. The naive
static approach is a recursive traversal starting from the initial instruction. Decoding goes on if next
instructions are known statically and stops otherwise. This technique is useful unless dynamic jumps
or violations of call-return policy are encountered. Theses approaches can be improved in a few ways.
First if the header (part of the program added by the compiler/linker) is available, entry points of most
functions may be known, which may allow to recover parts of the program “hidden” by a dynamic
jump. Second, when the compilation toolset used to create the executable is known, some dynamic
jumps may be resolved by a syntactic analysis of the machine code to detect standard compilation
patterns. However, these pieces of information are not always available (e.g. the header may have
been stripped off because of strict memory limitations), they cannot be completely trusted (the header
may have been forged) and anyway they are not sufficient to solve the general problem. Interestingly,
recent researches have been conducted to develop both safe and tight IR recovery mechanisms based
on advanced static analysis [14, 15, 33, 34], but they are difficult to implement for the non-expert since
they interleave many different analyses.

5.3. IR recovery in OSMOSE

Test data generation techniques like concolic execution donot require a perfect IR recovery: (1) the
recovered ACFG may contain illegal instructions since the test data generation engine do not consider
infeasible paths; (2) the recovered ACFG may miss some legalinstructions: it will not affect the
relevance of test data generated by the procedure, and test is incomplete in essence. Hence the IR
recovery mechanism can be both incorrect and incomplete. But on the other hand, the more precise the
ACFG is, the more efficient and relevant the test data generation will be, since the procedure will not

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 15

waste time on infeasible paths and generated tests will exercise the program more thoroughly. Since
the static analysis does not need to be either complete or correct, it relies on lightweight techniques
and its goal is to cheaply guide the concolic procedure for IRrecovery. The concolic-based recovery
requires only slight modifications of the OSMOSEtest data generation algorithm. Algorithm 3 presents
the big picture of this approach. The static algorithm (STATICPROPAGATION) and the concolic one are
interleaved and iterated in the following manner. STATICPROPAGATION updates a map from dynamic
jump instructions to potential address targets (TargetCache). The map itself is used as an entry
of STATICPROPAGATION so that targets discovered in earlier calls to the procedureare remembered.
Then the straightforward procedure BUILD creates an ACFG from the executable, the jump-to-target
map and the entry-point of the file. Finally the test generation algorithm GENTEST is launched on
the ACFG. When a new target is discovered by the concolic procedure, an exceptionnewTarget
is thrown and caught by the top-level algorithm, the jump-to-target map is updated and the whole
process is iterated starting on the new map. The procedureSTATICPROPAGATION and the modification
of GENTEST2 are described below.

algorithm IR-RECOV(exec,iadd)
input: executable exec, initial address iadd
output: a test suite and the ACFG
1: TargetCache← ∅
2: Loop
3: TargetCache← STATICPROPAGATION(exec,iadd,TargetCache)
4: ACFG← BUILD (exec,iadd,TargetCache)
5: try
6: return (GENTEST(ACFG.init node),ACFG)
7: with exception
8: | newTarget (jump,taddr)→
9: TargetCache← TargetCache∪ {(jump,taddr)}

10: end try
11: end loop

Algorithm 3: IR recovery mechanism

Static analysis. The static analysis is mostly a standard constant propagation (over finite sets of
constants rather than singleton) except that when abstractdynamic jump targets are not precise enough
(i.e. evaluate to the “don’t know” abstract value), their values are not propagated to all possible
instructions (i.e. the analysis does not try to decode everyaddress in the executable file). Hence this
static analysis does not compute a safe over-approximationof the program. In an automatic testing
context, missing targets is an issue because it may lead to missing some paths of the program, but
having too many false targets is also an issue because this will lead to many infeasible paths in the
ACFG, and the test data generation procedure may waste a lot of time trying to explore them. Since
missing targets may be discovered dynamically, the static analysis part of the IR recovery mechanism
is adapted to avoid the second case, at the price of incompleteness.

Concolic execution. The ACFG is also discovered during concolic execution. It requires to modify
thecgotocase of Algorithm 4. There are two reasons why a new target could be discovered: (1) it can be
discovered by the concrete execution; (2) for each dynamic jump, once all targets have been treated, an

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

16 S. BARDIN AND P. HERRMANN

additional path predicate is computed to constrain the target expression to take an undiscovered value.
If it succeeds, the solution leads to a new target. Algorithm4 presents the modification of Algorithm 2
to take into account IR recovery mechanisms. Each time a new target is discovered in the concolic
execution procedure, an exception is thrown and caught by Algorithm 3.

/* only modifications of algorithm 2 are shown */
procedure REC(node,Φ, C)

1: Casenodeof
2:
3: | cgoto expr→
4: if eval(expr,C)6∈ node.nextthen /* new target */
5: exceptionnewTarget(node,eval(expr,C));
6: else
7:
8: for all n∈ node.next -{tnode} do
9:

10: end for /* the following lines try to discover new target */
11: try
12: Sp ← solve(Φ ∧

V

t∈node.nextexpr 6= t.addr) ;
13: C′ ← updateC for branching(Sp);
14: exceptionnewTarget(node, eval(expr,C′)); /* new target */
15: with unsat→ ();
16: end try
17: end if
18:

Algorithm 4: IR recovery via concolic execution

Correction and completeness.The concolic-based IR recovery mechanism is correct, in thesense
that it can only find legal targets. However, it is obviously not complete because of missing targets.
The static analysis-based IR recovery mechanism is neithercomplete (missing targets) nor correct
(false targets). Thus the ACFG is an approximation of the real CFG. However, generated test data are
still correct (in the sense that they follow the intended path at execution), since they are generatedin
fineby the concolic execution procedure, which ensures that false targets will not generate false test
data. Note that it can be checked easily whether the static analysis is complete or not: it is the case when
all addresses represented by abstract expressions attached to dynamic jumps are decoded. In that case,
the ACFG is a safe overapproximation of the ideal CFG of the program, and coverage measurement
can be safely trusted (i.e. it is an underapproximation of the truly achieved coverage). However, this
ideal case is not expected to happen often considering the simple analysis carried out.

Discussion. Even though safe IR recovery is not mandatory for common testing practices, it is
absolutely imperative for the validation of critical systems. In that case, a safe recovery can be obtained
by systematically decoding all abstract targets [33, 34]. However, in this setting the simple static
analysis presented so far would probably recover too many false targets, and more advanced static
analyses for IR recovery should probably be used [14, 15, 34].

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 17

6. Bit-level Constraint solving

The concolic procedure requires a solver for the quantifier-free fragment of bit-vector theory.
This solver relies on a generic solving technique, namely Constraint Programming [2, 42], rather
than theory-specific algorithms. It is then easy to adapt newinstructions while keeping reasonable
performance. Constraint programming is mainly limited to theories over finite domains, which is the
case for the bit-vector theory.

6.1. Bit-vector theory

The bit-vector theory (see for example the book of Kroening and Strichman [32] for an overview)
formalises standard machine instructions at the bit level.Formulae are interpreted over vectors of bits
of a fixed length. Instructions include modulo arithmetic, logical bitwise operations and other low-level
instructions such as shift, rotation or concatenation. Forexample, the following formula falls into the
scope of bit-vector theory:

((x + 100) >> 2) ≤ b :: c

where>> and :: denote respectively logical right-shift and concatenation operators. Floating-point
arithmetic is usually not considered though it can be encoded. Satisfiability in bit-vector theory is
decidable since the interpretation domain is finite.

6.2. Principles of constraint programming

Considering a formula (or constraint)φ on a set of variablesV in a boundeddomainD, Constraint
Programming (CP) is essentially a clever exploration of allpartial valuations ofV to find a solution
to φ. Two main steps are interleaved and iterated until a solution is found (or the absence of solution
is proved):searchandconstraint propagation. The search is a standard depth-first one with labelling
and backtracking. At each step a variable is assigned a valuefrom its domain. Once all variables are
assigned, the valuation is checked against the formula. If it is not a solution, backtracking allows to
make new choices. When neither labelling nor backtracking are possible, the formula is proved to
be unsatisfiable. To avoid “blind” labelling as much as possible and speed up the search, constraint
propagation mechanisms reduce variable domains at each step of the search through propagation rules
(or propagators), removing values of the domain of a variable which are not involved in any solution
of the constraint. For example, here are the two propagatorsfor constraintx < y on variablesx andy,
with interval-based domainsDx, Dy defined byDx = [lx, Lx] andDy = [ly, Ly]:

(Propagator 1) ifLx ≥ Ly thenDx = [lx, Ly − 1]

(Propagator 2) ifly ≤ lx thenDy = [lx + 1, Ly]

The following example shows how labelling and propagation are interleaved. Consider the formula
x < y and suppose that domainsDx andDy of x andy are respectively the intervals[20, 1000] and
[0, 900]. First, by propagation rules, domains are reduced toDx = [20, 899] andDy = [21, 900]. No
more reduction can be obtained, so a labelling step is performed. Suppose thaty is labelled with the
value42 ∈ Dy. The domain ofx is then reduced by propagation toDx = [20, 41]. Finally, suppose
thatx is labelled with value23 ∈ Dx. A solution to the constraintx < y has been found.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

18 S. BARDIN AND P. HERRMANN

Constraint Programming is a flexible paradigm to model and solve problems on finite-domain
theories. It can encode easily any reasonable constraint onfinite domains, and it is quite efficient
at finding quickly a solution for “easy-to-solve” formulae,i.e. formulae having many solutions.
Moreover, one can control the trade-off between efficiency of resolution and implementation effort
by designing more or less complex propagators. However it can suffer from the so-called“slow
convergence phenomenon”on “difficult-to-solve” formulae and inconsistent formulae. For example,
try the search-propagation paradigm on constraintx < y ∧x > y ∧Dx = [0..1000]∧Dy = [0..1000].
The OSMOSE solver makes use of such traditional local propagators in addition with more global
propagators aimed at detecting early some specific kinds of inconsistencies and avoid as much as
possible slow convergence phenomena [19].

Constraint Programming is a paradigm rather than a technology defined once and for all, and it
has a number of degrees of freedom. Thus, implementing a CP-based solver requires to instantiate
at least the following parameters: (1) representation of the domain of variables; (2) search algorithm
(kind of traversal, choice of the next variable to be labelled and next value to be assigned, backtracking
procedure); (3) propagation rules; and (4) mechanisms against slow convergences, typically detecting
early certain causes of unsatisfiability.

6.3. OSMOSE solver

The OSMOSE constraint solver for bit-vectors is written on top of an existing CP-based solver for
bounded integer constraints developed for the model-basedtesting tool GATEL [37]. The philosophy
behind the solver is the following: bit-vectors are mostly manipulated as integers, relying on the
arithmetic solver as much as possible. Low-level constraints are encoded into integer constraints when
possible. Otherwise, resolution is mostly delayed until enough information is obtained on the operands.
Yet, a few constraints identified as bottlenecks during experimentation have been optimised for specific
cases appearing in case-studies.

Bounded arithmetic solver.This paragraph describes briefly the main characteristics of the CP-based
bounded arithmetic solver of GATEL. Representation for domain variables is based on intervals plus
congruence [35], allowing to express for example:x ∈ [0, 10000] ∧ x ≡ 0 modulo1024. The search
algorithm is depth-first with chronological (standard) backtracking. The next variable to be labelled
is chosen according to the most constrained input variable,and the next value to be assigned is the
minimal value in the domain. Finally, the solver incorporates a specific mechanism against slow-
convergence: in addition to the local propagators presented so far, the solver maintains a global view
of all difference constraints appearing in the problem (i.e. inequalities of the formx − y ≤ k, with
k ∈ Z) and performs standard satisfiability checking on this subset. For example, the slow convergence
phenomenon pointed out early in this section can be discovered by this mechanism. A similar technique
is described by Feydy, Schutt and Stuckey [19].

The bit-vector layer. As previously stated, bit-vectors are considered as their (unsigned) integer
representation and the solver relies on standard arithmetic as much as possible. Three kind of
translations from bit-vectors to arithmetic are used: direct translation, delayed translation and a mixture
of both. Moreover, some specific optimisations are implemented.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 19

Direct translation to standard arithmetic: some constraints on bit-vectors can be directly
encoded into arithmetic constraints without any loss in precision, using operations like integer
division and remainder to extract specific portions of a bit-vector. Such constraints include for
example: extraction, concatenation, rotation, logical and arithmetic shifts, bitwise not, modulo
arithmetic and flags management. Here are two examples of such direct translations. The constraint
concat(NA,A,NB,B,NR,R), meaning thatR (of lengthNR) is the concatenation ofA (sizeNA)
andB (sizeNB), is equivalent to:R = 2NB ×A + B. The constraintadd(N,A,B,R,FC), meaning
thatR (of sizeN) is the result of the addition ofA andB (both of sizeN) and thatC is the resulting carry
flag, can be encoded (with an additional variable) as:C = (A + B)/2N ∧ R = (A + B) mod 2N .

Delayed translation to standard arithmetic.In case that a bit-vector constraint is too costly to
translate directly into an arithmetic constraint (typically: bitwise xor), CP allows to delay the
translation. Indeed, propagators can have the form:“once two arguments of the constraints are
instantiated, launch arithmetic constraintsc1, ..., cK” . In the worst case, when an efficient arithmetic
translation does not exist or one does not have time to designit, it is even possible to wait for all input
variables of the constraints to become instantiated, then compute directly output variables.

Mixture of direct and delayed translation to standard arithmetic.Finally, many constraints can be
encoded into a mixture of both direct and delayed translation into arithmetic: a directapproximated
translation into arithmetic allows for efficient (but overapproximated) propagators, while the delayed
translation ensures correctness of the whole result. A typical example is the bitwiseand andor
constraints:R = A and B can be approximated withR ≤ A andR ≤ B, however this translation is
not exact and a delayed translation must be used in addition.

Optimisations for specific cases.It may be the case that a constraint has no efficient translation
into arithmeticin general, while this constraint is always used in a very specific pattern that can be
efficiently encoded into arithmetic. Consider the following example: a bitwiseand constraint is used
with one of its operands being constant. It is a quite common situation since it corresponds to a “mask”
operation in the original program. In this case, the solver performs two optimisations: first it tries to
recognise typical masks corresponding to extraction operation (e.g. x and 7 extracts the three lower
bits ofx), and whenever it succeeds, the solver uses the direct translation of the extraction constraint;
second, if no common mask has been recognised, the longest sequence of 0 contained into the constant
(starting from the least significant bit) is found, permitting to deduce a congruence on the result.

Discussion. The translation from bit-vector to arithmetic makes an intensive use ofdivisionandmod
constraints. It may be costly, as non-linear constraints are not always efficiently handled in Constraint
Programming. However, it seems to be reasonable considering the first experiments of section 8. An
explanation may be that in most cases one input operand only is a variable (the other one being
constant), and keeping track of congruences directly in thedomain of variables deals very efficiently
with multiplications / division by constant. As will be shown in section 8, specific optimisations for
masks and bitwise operations are crucial on some examples.

7. The OSMOSE tool

Results described so far have been implemented in the OSMOSEtool. OSMOSEis an automatic machine
code analyser. It takes as inputs the executable file, architecture and ISA identifiers, a structural

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

20 S. BARDIN AND P. HERRMANN

coverage objective and, optionally, a description of the environment. Outputs are mainly a high-level
representation of the software under analysis, a set of testdata and a report stating bugs encountered, the
coverage achieved by the test suite and unreached branches or instructions. The interface is currently
textual.

Generic machine code and simulation.All analyses are performed on the GAL generic assembly
language and one needs only to write a specialised translation module to integrate a new architecture.
Processors currently supported by OSMOSEare: Motorola 6800 (8-bit), Intel 8051 (8-bit), Freescale
PowerPC (32-bit). The generic machine code implies that OSMOSEruns tests in simulation mode rather
than in exact mode like other structural test tools. This is mandatory unless OSMOSEcan be run on the
exact architecture targeted by the executable under test, which is unrealistic for most processors.

Environment. The environment is modelled by specifying some memory locations as volatile,
meaning that their value can change non-deterministicallyat any step of execution (typically, because
of data acquisition from a sensor). Algorithms of sections 4and 5 are modified to handle read-
operations on volatile memory locations. They return the abstract “don’t know” value in the static
analysis, a random value in the concrete execution and a freevariable in the symbolic execution. In the
presence of an environment, a test data is composed of a valuation of input values and a sequence of
read values for each volatile memory cell.

Coverage objectives.It is possible to declare the structural coverage objectiveto achieve. Objectives
are defined by three parameters: the nature of items to be covered, the minimal coverage to achieve
and the relevance of subfunction coverage. Items to be covered can be paths, instructions or branches
(in this paper, anite instruction counts for 1 instruction and 2 branches). The minimal coverage
measurement to achieved is a value ranging from 0% to 100%. Finally, test data generation can be
performed in a unit testing fashion (trying to cover only thetarget function) or in an integration testing
fashion (trying to cover in addition all items of subfunctions).

Which guarantees?While test data are always exact, in the sense that the execution path is exactly
the one predicted by OSMOSE, the ACFG and the coverage measure are approximations. Indeed, the
ACFG may contain both false and missing targets. It still provides interesting information to the user,
but the coverage measure is not safe (under-approximation)in most cases.

How to use it? OSMOSE is designed for correctness testing of executable files. Since the ACFG and
the coverage measure are approximated, the tool alone cannot currently be used to generate test suites
achieving a certain level of structural coverage, as is required in safety critical systems like aeronautics.
If a safe coverage measure is mandatory or if the recovery is too coarse, the user can still manually
provide an over-approximation of the sets of dynamic jump targets. However, it may be a cumbersome
activity. An interesting alternative would be to connect OSMOSEto one of the very few tools performing
(a truly) safe ACFG reconstruction [33].

Implementation. OSMOSE is written in OCaml, a functional language with strong static typing and
high-level features like functors (parametrised modules)which have proven very useful for the generic
software architecture. The constraint resolution engine is built upon the bounded arithmetic solver

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 21

developed for the model-based testing tool GATEL [37]. A layer implementing the bit-vector theory
has been written on top of it. GATEL and the bit-vector layer are written in the Constraint Logic
Programming system ECLIPSE [3]. The resolution engine is plugged into the OCaml source code
using the C language as an intermediate. The program contains 22 kloc of OCaml (6kloc more for the
three translation modules), 3.5 kloc of ECLIPSE and 1.5 kloc of glue in C. OSMOSE is compiled on
an Intel PC running Linux.

Currently, the OSMOSEtool is not publicly available.

8. Experiments

This section presents various experiments carried out withOSMOSE. First, the IR recovery abilities
of the tool are evaluated on handcrafted C programs, very small but representative of the kind of
dynamic jumps that can occurs in embedded systems (functionpointers and compilation ofswitch
instructions). The commercial disassembler IDA Pro [50] isused as a witness. Second, the test data
generation abilities of OSMOSE are evaluated on various examples, ranging from standard academic
puzzles to small open source code and preliminary experiments on industrial code. The witness is
random testing. All evaluations have been performed on an Intel Pentium M 2Ghz with 1.2 GBytes of
RAM running Linux Ubuntu 6.10. The following cross-compilers have been used:sdcc for the 8051
andgcc for the PowerPC. Optimisations have been turned off to avoidtoo many modifications of the
program. Unoptimised executables appear to be even more difficult to analyse than optimised ones.

8.1. IR recovery

Description. Experiments are performed on four small C program compiled to PPC 550 machine
code withgcc. These programs are rather representative of the reasons for which dynamic jumps may
be introduced into an executable file through compilation from a C program. Moreover, most dynamic
jumps found in embedded systems are expected to follow theseschemes. The four examples work as
follows:fptr0 is a simple example, with only one function pointer assigneddynamically to a constant
value;fptr4 contains an array of function pointers;switch0 contains a simpleswitch statement
with 5 cases, translated bygcc into a dynamic jump;switch-array looks likeswitch0 except
that the operand of theswitch statement involves an array expression. Note that all branches of the
original C program are feasible.

OSMOSE is used with both the static and the dynamic recovery mechanisms, i.e. the tool provides
an abstract control-flow graph and test data covering this graph. The tool is evaluated against IDA
Pro [50], a commercial disassembler working with a combination of naive static propagation, pattern
matching and brute force decoding. IDA Pro is also able to usethe information stored in the header of
the executable.

Results. Characteristics of the programs and results of IDA Pro and OSMOSE are summarised in
Table I. For each example, the table provides the numbers of instructions (I), branches (Br), dynamic
jumps (DJ) and their targets (T), as well as the percentage ofrecovered instructions (RI) and recovered
dynamic branches (RDB), i.e. branches from a dynamic jump toone of its targets. Computation time
and memory consumption are not reported since they were bothvery low.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

22 S. BARDIN AND P. HERRMANN

name #I #Br #DJ (#T) RI IDA RDB IDA RI OSMOSE RDB OSMOSE

fptr0 8 1 1 (1) 100% 0% 100% 100%
fptr4 41 7 1 (3) 100% 0% 100% 100%
switch0 40 7 1 (5) 100% 0% 100% 100%
switch-array 141 23 1 (5) 100% 0% 100% 100%

I: instructions, Br: branches, DJ: dynamic jumps, T: targets of dynamic jumps
RI: recoverd instructions, RDB: recovered dynamic branches

Table I: Evaluation of the IR abilities of OSMOSE

Both tools recover all the instructions (without introducing any spurious instruction), but while IDA
Pro is unable to recover any of the dynamic branches, OSMOSEfind them all, without introducing any
spurious branch. Thus, while in theory OSMOSE is neither correct nor complete, on these example it
recovers each time theexactcontrol-flow graph.

Comments. It may look surprising that IDA Pro does not find any dynamic branch while recovering
all instructions. Actually, the executable files respect the ELF format which indicates the location of
the code in the executable file. Using this information plus brute force decoding allow IDA Pro to
retrieve all instructions. However, executable files with less additional information may cause serious
problems to IDA Pro. Interestingly, OSMOSE was always faster than IDA Pro (by a factor of two),
while it recovers more information and generates test data achieving a full branch coverage. Finally,
OSMOSElaunched with only the dynamic recovery was also able to recover all dynamic edges.

8.2. Test Data Generation

Experiments are performed on 23 programs written in C compiled to PPC executables or 8051
executables, for a total of 30 executable files. The C programs are divided into three classes:
handcrafted programs, open source programs and embedded programs.

The handcrafted C programs are the following.msquare reads a square matrix and check if
the matrix is magic or not. The number of constraints grows exponentially with the size of the
square matrix.hysteresis simulates a finite-state machine reading inputs slowly increasing until
a maximal threshold is reached, then decreasing inputs until a minimal threshold is reached, and so
on. The rate of variation is bounded. This example needs an environment and long sequences of tests.
merge is the well-known sorting algorithm. The program contains functions and aliases.cell is a
small but tricky example [23].triangle is the standard academic puzzle.list is a small example
manipulating linked lists.

There are two small programs taken from industrial programs.check-pressure is a small 8051
program performing data acquisition and actuator activation when pressure is too high.buf Get is
part of a circular buffer module of an industrial network monitoring application. It is designed to extract
a frame from a buffer and return a buffer status.

Open source functions includestrlen andstrtok from the standard C library (glibc version
2.4) and two functions from the open source program GNU Go (version 1.2),countlib and
findcolor. strtok aims at splitting a string into tokens separated by delimiters. strlen

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 23

computes the numbers of characters of a C-style string. Boththese functions are called once in a
main function: their return value is then tested against a specific value to increase the difficulty of the
test. Functionfindcolor determines the color of a piece depending on the colors of neighbor, while
countlib computes the liberty of a color piece at a given location.

Finally, functionsaircraft0 to aircraft9 are taken from an embedded power-controller
program for aircraft engines running on PowerPC 550, provided by Hispano-Suiza [28]. The source
code is a low-level C program with embedded assembly language. Machine code counts around 30,000
instructions structured into 250 functions. Functionsaircraft0 to aircraft4 have low call-
depths (between 0 and 2) while functionsaircraft5 to aircraft9 have higher call-depths (from
4 to 10).

Protocol. The objective is to cover all branches. Test data generationis performed in an integration
testing way for all small examples and in a unit testing way for the largest ones, i.e. the tool does not
try to cover branches of callees, and backtrack is allowed only when the call depth is less or equal to2,
0 being the procedure to cover. OSMOSE is evaluated against a random test generator. This generator
has been written on top of the simulation engine of OSMOSE. On each example, the random generator
is asked to generateK test data,K being defined byK = max(1000, TO × 20), whereTO is the
number of test data generated by OSMOSE. Test data generation stops once full coverage is achieved.

Results. Results are summarised in Table II. Statistics are reportedfor each executable (number of
instructions and branches). The table reports also the branch coverage achieved and the computation
time for both tools, and the number of tests generated by OSMOSE. The Mode column indicates whether
experiments are performed in a unit testing approach (unit) or in an integration testing approach (full).
In unit testing mode, the number of branches and instructions in the callees is also reported.Time
is the computation time obtained with optimisations for bitwise operations discussed in section 6.
Memory consumption is not reported since it was very low, always smaller than 10 MBytes. The
correctness of test data returned by OSMOSEhas been checked manually on small examples (against
coverage and path information). Especially, on themsquare program, OSMOSEdoes return a test data
corresponding to a magic square.

OSMOSEperforms well on almost all examples, with a computation time often smaller than 1 minute
(23 cases out of 30) and a 100% coverage on 21 cases, while 27 cases show a coverage greater or equal
to 80%. Moreover, OSMOSEreports a very poor coverage on only two examples. Comparisons with the
random generator turn almost always in favour of OSMOSE, both in terms of coverage, computation
time and test efficiency (ratio between coverage and number of tests). For example, random test
generation achieves a coverage greater or equal to 80% in only 9 cases. Random generation beats
OSMOSEonly in two examples.

Results suggest that OSMOSEperformances are sufficient for unit testing of low call-depth functions
on industrial case-studies. OSMOSErequires indeed less than 1 minute to achieve a 98% coverage of a
function with 140 branches, and less than 10 minutes to achieve a 87% coverage of a function with 500
branches and 2247 instructions. However, performances decrease when used on functions of high-call
depth (aircraft examples 7 to 9) with many instructions in subcallees. Note that actually OSMOSEhas
been tested on 40 functions of the aircraft program with low call-depth (between 0 and 4): very good

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

24 S. BARDIN AND P. HERRMANN

name Proc Mode I Br OSMOSE OSMOSE OSMOSE random random
cover time #tests cover time

msquare 3×3 c509 full 272 46 100% 10 43 63% 150
msquare 4×4 c509 full 274 46 100% 120 123 67% 150
hysteresis c509 full 91 16 100% 60 35 56% 40
merge c509 full 56 24 100% 20 70 45% 100
triangle c509 full 102 38 100% 1 15 71% 25
cell c509 full 23 8 100% 1 10 87% 25
list c509 full 13 6 100% 1 3 100% 10
msquare 3×3 ppc full 226 30 100% 10 34 56% 110
msquare 4×4 ppc full 226 30 82% 60 125 50% 120
hysteresis ppc full 76 16 100% 60 251 20% 60
merge ppc full 188 16 100% 1 2 100% 1
triangle ppc full 40 18 100% 1 19 77% 10
cell ppc full 18 8 100% 1 8 50% 10
list ppc full 15 6 100% 1 4 66% 34
check-pressure c509 full 59 10 100% 10 4 90% 160
buf-get ppc full 262 18 100% 10 14 66% 600
strtok ppc full 316 40 100% 450 183 90% 180
strlen ppc full 134 18 100% 10 22 94% 120
findcolor ppc full 283 36 97% 800 328 61% 800
countlib ppc full 328 44 100% 120 48 54% 300
aircraft0 ppc full 237 36 100% 10 19 40% 20
aircraft1 ppc full 290 140 98% 60 43 64% 100
aircraft2 ppc full 201 72 100% 10 37 35% 20
aircraft3 ppc full 977 190 50% 60 3 96% 60
aircraft4 ppc full 2347 500 87% 600 15 68% 600
aircraft5 ppc unit 121 / 4103 2 / 509 100% 1 2 100% 10
aircraft6 ppc unit 250 / 425 18 / 34 94% 100 9 83% 120
aircraft7 ppc unit 506 / 15640 20 / 2790 80% 20 4 75% 500
aircraft8 ppc unit 957 / 30969 14 / 4952 14% 10 3 50% 500
aircraft9 ppc unit 627 / 31793 74 / 5034 77% 600 12 63% 600

Proc: processor, I: #instructions, Br: #branches, Time in seconds
cover: branch coverage achieved, unit: coverage of top function only

Table II: Evaluation of the test generation abilities of OSMOSE

coverage (100%) was achieved in 31 cases, bad coverage (< 50 %) was achieved in 4 cases, and good
coverage (between 70% and 95%) was achieved in the last 5 cases.

Comments. OSMOSE performances on the handcrafted programs are almost alwayssimilar for the
two processors, while the size of variable domains grows from 28 for the 8051 to232 for the PowerPC.
This is surprising since a main issue of constraint programming is the scalability w.r.t. the domain
size. An explanation may be that most path predicates are solved with small values. Note also that the
former version of OSMOSE[9] does not terminate onmsquare 4×4 (PPC) within 5 minutes, while
the optimised version terminates in 40 seconds (nonetheless, full coverage is still not achieved).

It can be noticed that random generation is rather slow here.Since tests are run in simulation, their
execution is much more expensive than in a usual random testing framework.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 25

9. Related work

This section describes various techniques and tools related to OSMOSE, from machine code analysers
to concolic execution and bit-vector solving.

Test data generation from machine code.This article is an extended version of a paper presented
at ICST 2008 [9]. Compared to the conference paper, this article adds a new section on the Generic
Assembly Language, a new section on the bit-vector solver, more experiments, an up-to-date section on
related work and more detailed explanations on various aspects. Two other structural testing tools for
machine code based on concolic execution have been developed recently: SAGE [24] at Microsoft and
BITSCOPE[12] at CMU. Moreover, the tool PEX [47] developed also at Microsoft is geared toward test
data generation from .NET bytecode, whose abstraction level lies somewhere in between real machine
code and Java bytecode.

SAGE aims mainly at debugging, and the tool is dedicated to the x86architecture. Concolic
execution is enhanced with an original heuristics (insteadof the standard DFS) geared toward faster
coverage and bug finding, and various optimisations are implemented to reduce the number of calls to
the solver. Path predicates are expressed in linear arithmetic, non-linear constraints being abstracted
via concretization. Successful experiments have been performed on real-life programs. Notice that the
problem of IR recovery in presence of dynamic jumps is not mentioned in the paper. A reason may be
that the authors target implicitly bug finding for non-critical systems. As a consequence, they may not
consider issues such as maximal coverage or native code comprehension.

BITSCOPEintends to help the user to understand the behaviour of a malware. The tool is dedicated
to x86 executables for a Windows operating system. This restriction allows BITSCOPE to take
into account system calls, via an instrumentation of the QEMU emulator. BITSCOPEuses concolic
execution (referred to asmixed execution) with path predicates expressed into bit-vector theory.
Formulas are solved by an external solver, currently STP [22]. Original features of the tool are
undoubtedly the ability to take system calls into accountboth concretely and symbolically, to perform
goal-oriented test data generation in a concolic executionsetting (i.e. to generate a test data to exercise
a particular instruction of the program) and to take advantage of hand-crafted summaries (for standard
C procedures on strings) to speed-up the analysis. The technical report [12] focuses mainly on the
application of BITSCOPE to malware dissection. IR recovery in presence of dynamic jumps is not
addressed in the paper. It may be a problem since one of the main goals of the tool is to help the user
to understand all possible behaviours of an executable.

PEX [47] is geared toward test data generation from .NET bytecode. In this context, the dynamic
resolution of virtual or inherited methods may pose problems similar to the one of dynamic jumps.
The PEX conference paper [47] explains briefly that the tool is able to reason about type constraints to
handle this issue. It would be interesting to investigate further the relationship between dynamic jumps
found in high-level bytecodes such as Java and .NET and dynamic jumps found in machine code. Note
also that PEX relies on a concolic execution engine equipped with an efficient coverage-based search
heuristics [52].

IR recovery and static analysis of machine code.A few commercial tools are already available. The
disassembler IDA Pro [50] addresses the problem of IR recovery. Tools from the Absint company [49]
are actually geared towards verification of non-functionalproperties like estimation of maximal stack

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

26 S. BARDIN AND P. HERRMANN

height or worst-case execution time, with a core technologybased on static analysis. Both tools support
a wide range of architectures and instruction sets. They address IR recovery in similar ways: mostly
by pattern matching and very basic static analysis, with potential help from the executable header and
user annotations. As a consequence, results can be quite inaccurate on dynamic jumps.

Second, safe static analysis techniques have been developed recently [8, 14, 15, 33, 34]. Since the
goal is to compute statically a safe and tight over-approximation, the technology is very sophisticated.
These IR recovery techniques are difficult to implement for the non-expert because they target both
completeness and tightness of approximations. Note that while the IR technology presented by Repset
al. [14, 15] may be implemented in a safe way, the current implementation in CODESURFER/X86 [8]
is not: the analysis can only recover missing edges among a predefined set of instructions (actually,
the output of IDA Pro), but no missing instruction can be recovered. The tool JAKSTAB performs a
truly safe recovery [33]. Repset al.have also developed a verification technology for executable files
based on model-checking the recovered abstract model [43],but no practical experimentation have
been reported.

In this paper, considering the problem from a testing perspective allows to relax the completeness
requirement. This greatly simplifies the implementation ofthe static part, while correctness is ensured
by the concolic step.

Generic machine code analysis.Lim and Reps have designed a generic framework called TSL [36]
to easily specify a new ISA/analyser into CODESURFER/X86. TSL is based on a ML-like language
whose basic connectors are overloaded according to the semantic required by the analyser. TSL shows
obvious connections with the framework developed here. Themain difference is on the power of the
description language: TSL is based on a true programming language, while in GAL a native instruction
can only be encoded into a sequence of micro-instructions, forbidding any nested loops. This restriction
may cause problems for a few complex instructions with loopsin their micro-code.

Connex problems. Some problems are closely related to the analysis of native machine code. First,
some works aim at ensuring the conformance between machine code and high-level source code,
thus reducing machine code analysis to source code analysis. This line of research includes certified
compilation [13] as well as invariant preservation checking [40]. Though very interesting, these
approaches are limited to applications where the source code is available, while it is not always
the case. Second, a few recent verification tools for the C language take into account the low-level
semantic of data, for example the test data generation tool EXE based on concolic execution [16] and
the verification tool CALYSTO [10] based on static analysis. However, these tools do not address the
low-level semantic of control in C programs. EXE relies on the bit-vector solver STP and a best-first
search enumeration of paths similar to the one of SAGE. Finally, many works have been conducted on
Java bytecode verification, for example the test data generation tool JMOPED [17, 44]. While former
versions aimed at full verification, the last one is devoted to test data generation. The core technology
is based on BDD model-checking of weighted pushdown systems. Note that Java bytecode is rather
high-level compared to usual machine code. Moreover, inherited methods and virtual methods are not
handled.

Concolic execution. As already mentioned, concolic execution-based tools haveliterally blossomed
up since a few years. In addition to BITSCOPE, EXE, SAGE and PEX already mentioned, other

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 27

works include DART [23], CUTE [45] and PATHCRAWLER [51]. These three tools work at the
programming language level (C for all three and also Java forCUTE). They rely on path predicate
solving, bounded depth-first search and concolic execution. Premises of concolic execution can be
found in PATHCRAWLER to find a feasible initial path and discover the CFG on-the-fly, while the
current concept has been explicitly introduced and popularised by DART and CUTE. Each of these tools
has its own specific features. DART and PATHCRAWLER have specific techniques to handle functions
in a modular way [27, 38]. CUTE provides an hybrid test generation algorithm mixing both structural
generation and random generation, which is proved to enhance the achieved coverage and the bug
detection abilities [41].

Compared to OSMOSE, these tools work on a structured language and do not have to face the
IR recovery problem. Considering only the test data generation technique, there are three other
main differences. First they consider integer arithmetic instead of bit-vector arithmetic. Second, these
tools discover dynamically the program, having at each steponly a local view of the CFG, while
OSMOSE relies on a (abstract) global view, allowing some specific optimisations [11]. Third, CUTE

and PATHCRAWLER take advantage of the C program under verification to discover syntactic potential
alias relationships, typically through type declarationsand pointer expressions in branch conditions.
However they cannot detect alias relationships depending only on the memory layout. On the contrary,
OSMOSEdoes not have access to any high-level information but the concolic execution is modified to
discover on-the-fly some alias relationships depending on the memory layout.

Constraint Programming-based test data generation.INKA [20, 21] performs structural test data
generation on C programs through Constraint Programming. In this approach the whole program is
translated into an equivalent CP problem, while the techniques presented so far translate only one path
at a time. Notably, INKA includes a solver for floating-point arithmetic constraints [7]. Other CP-based
testing tools have been developped for programs and models [5]. OSMOSE is the only one targeting
executable files, and one of the very few CP-based tools dealing with bit-vector constraints.

Bit-vector solving. Many solvers for bit-vector theory have emerged recently [4, 6, 22], taking
advantages of the recent dramatic increase in performancesof SAT solvers. These solvers are based
on bit-blasting: the original problem is encoded into a SAT problem, each bit of every bit-vector being
represented by a boolean variable and each bit-vector constraint being represented by its logical circuit
implementation, which is then solved by a state-of-the-artSAT solver. While very effective on bitwise-
oriented problems, bit-blasting is well known to be less efficient on more high-level constraints, such
as (non-linear) arithmetic [32]. Current SAT-based bit-vector solvers combine bit-blasting with heavy
preprocessing to partly remedy this issue [22].

The approach proposed here stays at the exact opposite: bit-vectors are seen as integer variables
and constraints are encoded as integer constraints. It turns out that this method performs better
on arithmetic-oriented problems than on bitwise-orientedproblems. Some work have already been
conducted in this direction in the VHDL verification community [18, 53]. However, these approaches
show some drawbacks: (1) they use the CP solver in a black box manner, preventing any “deep”
optimisation, and (2) they handle bitwise constraints witha bit-blasting technique, which is very
inefficient in a CP setting. The OSMOSEsolver avoids bit-blasting through delayed computation and
specific optimisations. Moreover, it relies on a bounded arithmetic solver optimised for constraints over
very large domains, incorporating state-of-the-art technologies such as congruence domains [35] and

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

28 S. BARDIN AND P. HERRMANN

global constraints to detect quickly unsatisfiable parts ofthe search space [19]. It would be interesting to
conduct an in-depth comparison between SAT-based and CP-based approaches for solving constraints
over bit-vectors.

10. Conclusion and future works

Verification at the machine code level is more difficult than higher-level analysis mainly due to the
absence of any exact control-flow graph. However, this machine-code analysis may be the most
relevant one in case of strong security requirements or eventhe only option left when no higher-level
documentation is available. This paper shows how to performautomatic structural test data generation
on a standalone executable. The approach followed is to relyon existing robust technologies, namely
concolic execution and Constraint Programming, and to adapt them to the specific issues appearing in
binary-level analysis. Innovative techniques for IR recovery have also been developed. Results have
been implemented in a tool named OSMOSEand encouraging experiments have been conducted.

This work is just a preliminary step demonstrating the viability of automatic structural test data
generation on standalone executables. There are at least three directions for future work. First,
the test data generation technology needs to be improved in order to scale up to larger programs,
and especially to handle functions with many nested calls orvery long paths. There are different
possibilities, from modular generation [1, 27, 38] to hybrid generation [41] or dedicated constraint
solving techniques [6, 22]. Second, the user interface of the tool must be improved to allow more
interaction. No verification tool can claim to be completelyautomatic and user guidance has proven to
be useful. Finally, safe static IR recovery techniques [14,15, 33, 34] could give assurance about the
quality of both the abstract control-flow graph and the coverage measure returned by OSMOSE. This is
not yet done in the tool, but would be useful for safety applications where preciseness of the coverage
measure is essential.

Acknowledgements.The authors wish to thank the three anonymous referees for their helpful
comments, contributing to a significant improvement of the paper.

REFERENCES

1. S. Anand, P. Godefroid and N. Tillmann. Demand-Driven Compositional Symbolic Execution. InTACAS 2008. Springer.
2. K. R. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.
3. K. R. Apt and M. Wallace. Constraint Logic Programming using Eclipse. Cambridge University Press, 2007.
4. R. Brummayer and A. Biere. Boolector: An Efficient SMT Solver for Bit-Vectors and Arrays. InTACAS 2009. Springer.
5. S. Bardin, B. Botella, F. Dadeau, F. Charreteur, A. Gotlieb, B. Marre, C. Michel, M. Rueher and N. Williams. Constraint-

based software testing. In GDR-GPL meeting, 2009.
6. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, Z. Hanna, A. Nadel, A. Palti and R. Sebastiani. A Lazy and Layered

SMT(BV) Solver for Hard Industrial Verification Problems. In CAV 2007. Springer.
7. B. Botella, A. Gotlieb and C. Michel. Symbolic execution of floating-point computations. InSTVRvol. 16, 2006.
8. G. Balakrishnan, R. Gruian, T. W. Reps and T. Teitelbaum. CodeSurfer/x86-A Platform for Analyzing x86 Executables.

In CC 2005. Springer.
9. S. Bardin and P. Herrmann. Structural Testing of Executables. InICST 2008. IEEE Computer Society.

10. D. Babic and A. J. Hu. Calysto: scalable and precise extended static checking, InICSE 2008. ACM.
11. S. Bardin and P. Herrmann. Pruning the search space in path-based test generation. InIEEE ICST 2009. IEEE.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 29

12. D. Brumley, C. Hartwig, M. G. Kang, Z. Liang, J. Newsome, P. Poosankam and D. Song. BitScope: Automatically
Dissecting Malicious Binaries. Technical report CS-07-133, CMU, 2007.

13. S. Blazy, X. Leroy. Formal verification of a memory model for C-like imperative languages. InInternational Conference
on Formal Engineering Methods (ICFEM 2005), volume 3785, pages 280-299, 2005.

14. G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables. InCC 2004. Springer.
15. G. Balakrishnan, T. Reps, D. Melski and T. Teitelbaum. WYSINWYX: What You See Is Not What You eXecute. InIFIP

Working Conference on Verified Software: Theories, Tools, Experiments. 2005.
16. C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill and D. R. Engler. EXE: automatically generating inputs of death. In

CCS 2006. ACM.
17. J. Esparza and S. Schwoon. A BDD-based Model Checker for Recursive Programs. InCAV 2001, Springer.
18. F. Ferrandi, M. Rendine and D. Sciuto. Functional verification for SystemC descriptions using constraint solving. In DATE

2002.
19. T. Feydy, A. Schutt and P. J. Stuckey. Global difference constraint propagation for finite domain solvers. InPPDP 2008.

ACM.
20. A. Gotlieb, B. Botella and M. Rueher. Automatic Test DataGeneration Using Constraint Solving Techniques. InISSTA

1998. ACM.
21. A. Gotlieb, B. Botella and M. Watel. Inka: Ten years afterthe first ideas. InICSSEA 2006.
22. V. Ganesh and D. L. Dill. A Decision Procedure for Bit-Vectors and Arrays. InCAV 2007. Springer.
23. P. Godefroid, N. Klarlund and K. Sen. DART: Directed Automated Random Testing. InPLDI’2005. ACM.
24. P. Godefroid, N. Klarlund, M. Y. Levin and D. Molnar. Automated Whitebox Fuzz Testing. InNDSS 2008.
25. N. Gupta, A. P. Mathur and M. L. Soffa. Automated Test DataGeneration Using an Iterative Relaxation Method. InFSE

1998.
26. N. Gupta, A. P. Mathur and M. L. Soffa. UNA Based IterativeTest Data Generation and its Evaluation. InASE 1999.
27. P. Godefroid. Compositional dynamic test generation. In POPL 2007. ACM.
28. http://www.hispano-suiza-sa.com/
29. J. C. King. Symbolic execution and program testing. Communications of the ACM, 19(7), july 1976.
30. B. Korel. Automated Software Test Data Generation. InIEEE TSE. IEEE, 1990.
31. B. Korel. Automated Test Data Generation for Programs with Procedures. InISSTA 1996.
32. D. Kroening and O. Strichman. Decision Procedures: An Algorithmic Point of View. Springer, 2008.
33. J. Kinder and H. Veith Jakstab: A Static Analysis Platform for Binaries InCAV 2008. Springer.
34. J. Kinder, F. Zuleger and H. Veith An Abstract Interpretation-Based Framework for Control Flow Reconstruction from

Binaries. InVMCAI 2008. Springer.
35. M. Leconte and B. Berstel. Extending a CP Solver With Congruences as Domains for Software Verification. InWorkshop

on Constraints in Software Testing, Verification and Analysis. CP 2006. Springer
36. J. Lim and T. W. Reps. A System for Generating Static Analyzers for Machine Instructions. InCC 2008. Springer.
37. B. Marre and A. Arnould. Test sequences generation from LUSTRE descriptions: GATeL. InASE 2000. IEEE.
38. P. Mouy, B. Marre, N.Williams and P. Le Gall. Generation of All-Paths Unit Test with Function Calls. InICST2008.
39. J. Offutt, Z. jin and J. Pan. The Dynamic Domain ReductionProcedure for Test Data Generation. InSoftware Practice

and Experience, 29 (2), January 1999.
40. X. Rival. Invariant Translation-Based Certification ofAssembly Code. InSTTT, 6(1), July 2004.
41. R. Majumdar and K. Sen. Hybrid Concolic Testing. InICSE 2007. IEEE.
42. F. Rossi, P. Van Beek and T. Walsh, editors. Handbook of Constraint Programming. Elsevier, 2006.
43. T. Reps, S. Schwoon, S. Jha and D. Melski. Weighted pushdown systems and their application to interprocedural dataflow

analysis. In SCP, october 2005.
44. D. Suwimonteerabuth, F. Berger, S. Schwoon and J. Esparza. jMoped: A Test Environment for Java programs. InCAV

2007, Springer.
45. K. Sen, D. Marinov and G. Agha. CUTE: A Concolic Unit Testing Engine for C. InESEC/FSE 2005. ACM.
46. A. S. Tanenbaum. Structured Computer Organization. Prentice Hall, 6th edition, 2005.
47. N. Tillmann and J. de Halleux. Pex-White Box Test Generation for .NET. InTAP 2008. Springer.
48. N. Tillmann and W. Schulte. Parameterized unit tests. InESEC/SIGSOFT FSE 2005. ACM.
49. http://www.absint.com/
50. http://www.datarescue.com/
51. N. Williams, B. Marre and P. Mouy. On-the-Fly Generationof K-Path Tests for C Functions. InASE 2004. IEEE.
52. T. Xie, N. Tillmann, P. de Halleux and W. Schulte. Fitness-Guided Path Exploration in Dynamic Symbolic Execution. In

DSN 2009. IEEE.
53. Z. Zeng, M. Ciesielski and B. Rouzeyre. Functional test generation using Constraint Logic Programming. InVLSI-SOC

2001.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2009;0:0–0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

