OSMOSE: Automatic Structural
Testing of Executables

Sébastien Bardin', Philippe Herrmanh

! CEA LIST, Software Safety Laboratory,
Point Courrier 94, Gif-sur-Yvette, F-91191 France
first. nane@ea. fr

SUMMARY

Verification is usually performed on a high-level view of thesoftware, either specification or program
source code. However in certain circumstances verificatiois more relevant when performed at the machine
code level. This paper focuses on automatic test data gendicn from a standalone executable. Low-level
analysis is much more difficult than high-level analysis sine even the control-flow graph is not available
and bit-level instructions have to be modelled faithfully. The paper shows how “path-based” structural
test data generation can be adapted from structured languag to machine code, using both state-of-the-
art technologies and innovative techniques. Results haveebn implemented in a tool named G@MOSE and
encouraging experiments have been conducted. Copyrigk) 2009 John Wiley & Sons, Ltd.

Received 21/08/2008; Revised xxx

KEY WORDS: machine code analysis ; automatic testing ; IR recoveryncatic execution

1. Introduction

The verification task is generally performed at the spetificalevel (functional testing, model

checking) or at the programming language level (structtesling, static analysis) for structured
languages such as C or Java, but rarely at the machine-cogle Aetually, binary-level analysis is

considered more difficult than other analyses, while beedundant with them. However, machine
code analysis is relevant in at least three situations: wodmgh-level source code is available, when
the compiling process cannot be trusted or when the incretipeecision is essential. It is quite
common that a company cannot have access to a high-levehotation, either the vendor does
not provide the source code (Commercial Off-The-Shelfvgarft) or the source code is simply lost

*Correspondence to: CEA LIST, SOL/LSL, Gif-sur-Yvette, F191 FranceE- mai | : sebasti en. bardi n@ea. fr
This article is an extended version of results presenteG@&T 12008 [9].

Contract/grant sponsor: Work partially funded by EDF, tBeftware Factory/MoDriValproject of the French cluster
SYSTEM@TIC PARIS-REGION and th&rpege/Bincoaroject of Agence Nationale de la Recherche (ANR).

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 1

(legacy code). Standard source code analysis relies orsstuengtion that the compiler preserves the
program semantics. While it is realistic for standard reddity properties and standard compilation
techniques, it cannot be trusted anymore in the case ofgstafety/security requirements and highly
sophisticated optimisations [15]. Moreover, it is not umeoon that exotic processors, typically found
in embedded systems, come with buggy (commercial) conspilénally, certain kinds of properties
require to analyse the program as close as possible to tleeterbehaviour, e.g. quality of service
(QoS) properties like worst-case execution time and mabstagk-height estimation.

Major difficulties of binary-level analysis.Machine code analysis is different from higher-level
analysis (languages or models) because of three specificutties: IR recovery, low-level data
manipulation and low-level control manipulation. (1) Thestfiproblem is the so-called Intermediate
Representation recovery (IR recovery): since an execalighiothing more than a sequence of bits,
no basic control-flow information is available (such as tiorts, loops or variables), while it is given
for free in higher-level analysis. Actually even the exaatnier of instructions in the program is
unknown since instructions may have different sizes, irtsions can overlap, there is no syntactic
difference between instructions and data and finally theteset of targets of dynamic jumps cannot
be statically determined (a jump is dynamic when its detinais only known at run-time). (2)
Low-level data manipulatiori.ow-level operations on data have to be taken into accoustigely
while for higher-level analysis, coarser abstractionswmeally sufficient. The most obvious one is
machine arithmetic. Considering 32-bit long unsignedgets, the operation 4294967295+1 returns
0. Floating-point numbers also behave very differentlyrfreeal numbers. Actually, while machine
integers can be modelled quite precisely by modulo aritiantitere is no nice standard theory for
floating-point numbers. (low-level control manipulationin high-level language, control-oriented
instructions are clearly separated from data-orientetitiosons. Moreover, calls to sub-routine are
encapsulated within a clean functional abstraction (lmigsliof arguments, local context, return to
the caller). None of these good programming patterns argeptén machine code. Control-oriented
instructions are just assignments of specific registersfamction calls are nothing more than jumps
and push / pop of arguments. Finally there is a great diyes$thardware architectures and instruction
sets (ISA), differing both in terms of physical memory layand instruction sets.

Bit-vector theory. The bit-vector theory (see for example the book of Kroenind &trichman [32]
for an overview) formalises standard machine instructadrise bit level. Formulae are interpreted over
vectors of bits of a fixed length. Instructions include madadithmetic with signed and unsigned views
of bit-vectors, logical bitwise operations and other l@avdl instructions such as shift, extraction and
concatenation. Floating-point arithmetic is usually nmbsidered though it can be encoded. Note that
in the rest of the paper, only the quantifier-free fragmemi¥ector theory is considered. Satisfiability
in bit-vector theory is decidable since the interpretatiomain is finite, but complexity is high, even
for the quantifier-free fragment since SAT can be easily dadanto it.

The OsMOSE tool. OsSMOSE aims at performing automatic test data generation on skanea
executable files. The test selection is white box since nerdtifformation than the executable itself
is considered available, with coverage-based stop @itéhie GMOSEtool targets reactive systems,
commonly found in embedded software. Reactive systemswaract with an environmentia sensors
and actuators. In this case, a test data is an initial valodtr input data and a sequence of values

Copyright(©) 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

2 S. BARDIN AND P. HERRMANN

read on each sensor. The user has to provide a descriptidreafrtvironment, declaring volatile
memory cells. The two main outputs of the tool are an abstraaif the control-flow graph of the
program (ACFG) and a test suite (test data plus exercisemigégea path) with an approximation of the
coverage measure. Test data are exact, in the sense thattahathe program launched on these data
follows exactly the expected execution paths. On the otardhthe ACFG is an approximation of the
ideal CFG of the program, neither complete nor correct: t&€&@ can both report false instructions /
branches and miss legal instructions / branches.

The issue of the oraclédoes the test pass or fail¥)"is not addressed by €mose However, the
test suite can be exported to an external automated oraatailbible, for example in approaches such
as back-to-back testing or parametrised unit testing [Mi8keover, the tool can still fintintrinsic”
bugs, i.e. executions which are undoubtedly faulty indepetly of any specification, such as division
by zero, jump to an incorrect instruction and violation cdgrammer-defined assertions.

OsMosE can be used for standard correctness testing activitie®Xeoutable files), as well as
for assistance in executable behaviour comprehensionelawsince the ACFG and the coverage
measure are just indicative, the tool alone cannot cuyrémtlused to generate test suites achieving a
certain level of structural coverage, as is required intgafetical systems like aeronautics. Al hoc
solution (implemented in &MOSH is to let the user specify overapproximations of targetdyofamic
jumps. An interesting alternative would be to connesM®SEto one of the very few tools performing
safe ACFG reconstruction [33].

A very strong requirement of the SMOSE project is to be as independent as possible from any
particular architecture or instruction set, so that usars add their own architectures without any
assistance from the developers o$§MDSE This is achieved through a generic software architecture
arranged around a Generic Assembly Language (GAL). Thecimoéntly handles three processors:
the Intel 8051, the Motorola 6800 and the more recent Frée&maverPC 550.

Technologies. Binary-level analysers must first build a high-level modéltiee software under
investigation. Then verification techniqgues may be usee. €kt data generation technology is white
box, based on symbolic execution [16, 24, 23, 29, 45, 47, ®&Pjath predicate is computed from a
control path, solving this predicate leads to a test datecesirg the path. Path predicates are expressed
in the quantifier-free fragment of bit-vector theory, so astoaint solver for this theory is required.
It turns out that the GMOSE tool is organised around four basic technologies: strattigst data
generation, bit-vector constraint solving, IR recoverg &eneric Assembly Language.

A major improvement of symbolic execution is the concept afianlic execution [23, 45], also
referred to as mixed execution [16] or dynamic symbolic exien [47]. It means that a concrete
execution is running in parallel to the symbolic executiooljecting relevant information along the
concrete execution path to help the symbolic executiomérotiginal approach, the concrete execution
is used to find a feasible initial path and to discover onfthehe program CFG [23, 45, 51], or
to approximate complex instructions like non-linear caaists or library function calls [23, 45].
Note that concolic execution can be seen as a mix betweercpustraint-based test data generation
approaches [29] and search-based test data generationiciees [25, 26, 30, 31]. As such, it shares
common ideas with the dynamic symbolic execution appraadeeelopped in the 1990s [39].

The test generation method described above relies on gopéith predicates. While test data
generation tools from high-level descriptions [23, 37, 3F], are usually based on integer constraints
(classically bounded arithmetic [37, 51] or linear arithim§23, 45]), constraints are here expressed in

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 3

the bit-vector theory. The @MosEsolver is based on the Constraint Programming paradignm?[, 4
which is flexible enough to encode all “exotic” instructiamse can find in instruction sets.

The IR recovery mechanism combines in an innovative way $iattic and dynamic analyses. First,
a (global) static analysis creates a coarse model. Thewipaets of the program are discovered during
the test data generation phase (by the concrete executitire mymbolic execution) the high-level
model is updated and the (global) static analysis is redhaed. The static analysis does not need to be
very precise since a complementary analysis is performaedoncolic execution, avoiding difficulties
inherent to purely static IR recovery techniques [14, 15,333.

To ensure the independence of the tool from any specific remharchitecture and machine
code, all analysis are performed on a generic assembly daygy(GAL) parametrised by a generic
architecture description. Native machine code is first dedointo native assembly language, then
translated into GAL. All analyses are performed on the GAlsadiption of the program, since
every GAL instruction comes with three (parametrised) sgios: concrete semantics for emulation
/ simulation, logical semantics for symbolic executiors{tdata generation) and abstract semantics
for static analysis (IR recovery). Benefits are twofold.sEilintegrating a new instruction set into
OsmosErequires only to specify the architecture, to provide a decdor the native instruction set
and to translate each native instruction into a semanfiegjlivalent sequence of GAL instructions.
Other semantics are derived automatically from the cor@eé. Second, integrating a new semantics
(e.g. for a new analysis) for all supported ISA requires tiingst only for about thirty instructions.

These technologies are organised as shown in figure 1. Thieimeacode is partially decoded and
translated into the internal generic assembly languages@Bvery, GAL), then the test data generation
algorithm is launched (concolic execution, bit-vectonvgad). During this phase, new instructions can
be discovered. The decoder is launched again, the IR is egdatd test data generation is applied
using an enriched CFG.

Machine Code IR/ACFG Test data

:10004FA34EB567D78
:100DBAO0CA0069785
:100DDCA0069701011
:100DOA0668F72202B
:010F6E256D78203F2

testl : inputl=0, input2=0
test2 : input t2=3
test3 : input
testd : inputl=2, input2=0

Figure 1: Gsmoseworkflow

Copyright(©) 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

4 S. BARDIN AND P. HERRMANN

Limitations. Floating-point arithmetic and interrupts are not handlg, in almost all verification
technologies. Moreover, self-modifying code cannot betakto account. However, it can be detected
and signalled. It is worth noticing that many others (if nibt ‘@masty” low-level control mechanisms
such as dynamic jumps and modification of the return addnesagh stack overflow can be taken into
account, as well as instruction overlapping and recursinetions.

Contributions. This paper addresses the problem of designing an efficiehtféo the automatic
analysis (testing and IR recovery) of executables. Thexéoaur main contributions in this work.

e The specific issues of machine code analysis (comparedictsted languages) are identified,
and the paper shows how to adapt two existing frameworks dst tlata generation of
structured programs (namely, concolic execution and Caim$tProgramming) to machine
code, pinpointing the main difficulties. This work propoaés a very innovative solution to the
IR recovery issue in a test data generation framework (iterescompleteness of the recovery
can be relaxed), involving a combination of static, symbalid concrete approaches. It turns
out that concolic execution simplifies dramatically the &eavery problem.

e The paper presents also an innovative software archischéised on a Generic Assembly
Language parametrised by an architecture template, to asity eew instruction sets in an
analysis framework. This work has been done independehthecone by Lim and Reps [36].
It was already developed, but only sketched, in the previ@sigoseconference article [9].

e Finally, it is shown how Constraint Programming can be used solver for the quantifier-
free fragment of the bit-vector theory. Thes@0SE solver manages all bit-vector constraints
generated by the GAL language. It is built on top of a boundeeger CP solver. This is a
very different approach from usual bit-vector solversheatbased on a bit-sequence view of
variables and SAT/SMT solving [6, 22].

e These results have been implemented in a structural testydaeration tool for executables.
First experiments demonstrate the feasibility of the appino The tool is largely architecture-
independent and can currently handle three different tactires and machine codes (8051,
6800, PowerPC 550).

Related issues. Machine code analysis may seem close to low-level C prograysis and Java
bytecode analysis. This paragraph pinpoints similariied differences. The analysis of low-level C
programs, typically found in embedded systems or operafstems, is indeed very close to machine
code analysis: low-level manipulations on data and comtr®lpossible, either directly (arbitrary type
casting, bitwise operations, pointers on functidnengj unp/set j unp instructions), or indirectly
(embedded assembly language, stack overflow to modifynretddress). However, it must be clear
that currently, most automatic analysis tools for C proggaonsider a “clean” subset of the language,
usually excluding all the previous nasty mechanisms. Thie subset can be treated as a structured
language, and is really far from low-level C programs. Ondpeosite, Java bytecode analysis has
almost nothing in common with machine code analysis. Jatechge has been designed with safety
concerns in mind: many error-prone features are forbidaeinsame interesting facts can be verified
statically. For example: strong static typing (booleateger, reference), validity of dynamic jumps,
local context and call-return policy.

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 5

Outline. The remaining part of the paper is organised as follows.i@e& gives an overview of
architectures and instruction sets. The next four sectiessribe @mosEecore technologies: Generic
Assembly Language in section 3, test data generation iogeéf IR recovery in section 5 and bit-
vector solving in section 6. Section 7 presents th&vOSE tool and its implementation. Section 8
describes some experiments with the tool. Finally sectiatisBusses related work and section 10
concludes and gives directions for future work.

2. A taste of machine code

This section provides a simple introduction on machine cadghitecture and instruction set. This is
a very limited overview, but it should be sufficient to undansl the remaining part of the paper. More
complete presentation can be found in standard books [46].

A machine code for a given processor is a language directlieratandable by this processor.
This program is a sequence of instructions encoded in biftargat. A typical instruction has the
form:opcode argl arg2 ... argn, whereopcode is the encoding of a basic command of the
processorddd, nove, etc.). Decoding a single instruction is straightforwante an opcode is never
the prefix of another opcode, and all the relevant infornmeog. number of arguments and their sizes)
depends only on the opcode (possibly with additional prefiastfix information). Once an instruction
has been decoded and executed, the processor searches fiexthinstruction to execute. The next
instruction is usually located just after the end of the entone, but not always (e jgunp). In almost
every case, the potential successors of the current itisiniere known statically. The only exception
is the case of dynamic jumps, ijeunp whose operand depends on the execution jlikep R with
R a register. Dynamic jumps are the main reason for the IR gdyeing so problematic.

Even if there are many different hardware architecturesy tl share common ideas from the
Von Neumann architecture. Basically, a processor can beagan automaton extended with a small
number of variables (registers), each one containing Bxaetord-size long sequence of bits (shortly,
a m-word. In addition to these registers, an additional memoryi¢aity RAM) allows to store a huge
amount of information. The memory can be seen as a very largg, &toring a m-word in each cell.
The memory is conceptually divided in two parts: informatlocal to function calls (caller address,
local values) is stored in thigall) stack and global / persistent information is stored in teap But
usually there is no physical separation between the statklenheap. Two registers play a special
role: thePC register(program counterpnd theSP register(stack pointer) Stack pointer indicates the
address (in memory) of the top of the stack. Program counticates the current instruction. At the
end of an instructionPC is updated with the next instruction address and contropgito it. In most
instruction setsPC can be modifiedia dedicated instructions only.

A processor comes with a finite set of instructions. Mostriredtons can be seen as a sequence
of affectations of the form lhs— f(rhs,...,rhs,). Control instructions include jumps, calls and
returns. Jumps can be either static: the jump target is krstatically (e.ggot o 100); or dynamic:
the jump target is computed at run-time (eg@t 0 R0O). Jumps can also be conditional. Calls and
returns to functions are only convenient shortcuts enfigrine way the call stack is used. The typical
effect of acal | instruction is to store the current address on top of thekstacincrease the stack
pointer and to jump to the callee address. The typical effiéetr et ur n instruction is to retrieve
the value on top of the stack, which should be the caller addte decrease the stack pointer and to

Copyright(©) 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

6 S. BARDIN AND P. HERRMANN

jump to the caller address. This is the general picture. Beipg on the architecture, the stack pointer
may be incremented or decremented, and this modificationappgar before or after retrieving the
return address from the stack. Instruction sets usuallyigecalso a large range of data instructions.
Most common ones include: data transfer from / to memorychime) integer arithmetic, floating-
point arithmetic and other bit-vector operations. Notldgainteger arithmetic is performenodulo
the value of the largest representable integer, and intggenations update various flags (predefined
memory location), typically to record the occurrence ofrfiogvs.

3. Generic Assembly Language (GAL)

To ensure the independence o§i@osefrom any specific hardware architecture and instruction set
all analyses are performed on a Generic Assembly Langua8je)(@arametrised by an architecture
description. Native machine code is first decoded into radissembly language, and then translated
into a GAL program. All analyses are performed at the GAL lesi@ce every GAL instruction comes
with three (parametrised) semantics: concrete semarmtiosniulation/simulation, logical semantics
for symbolic execution (test data generation) and absseeiantics for static analysis (IR recovery).
Figure 2 gives a flavour of this framework. Benefits of such mhigecture are twofold. On the one
hand, additional cost for integrating a new instructiorirsgt OsmMoseboils down mainly to specifying
the architecture and translating each native instructido a semantically equivalent sequence of
GAL instructions. The instruction set is then fully supmatby all analysers in &MoOSE (emulation,
symbolic execution, static analysis), the symbolic sefarind the abstract semantics being deduced
from the concrete one. On the other hand, adding a new sanéorta new kind of analysis) requires
to define it for only about thirty basic instructions.

Abstract architecture and GAL program An abstract architectuc® is defined by a paiX = (R, M)
whereR is a finite set of variables ranging over m-words awds a finite set of (disjoint) arrays of m-
words, callednemory regiongshortly, m-regions). Each m-region is indexed by non-tieganteger
values, called addresses.memory locatio(m-loc) is defined as being either a register or the cell
of a m-region. The size of m-words stored in each m-loc is fixgatiori for each m-loc. Intuitively,
variables represent registers and m-regions represdetetif physical memories, for example RAM
and ROM. A GAL progranP is atupleP = (R, M, A, I) where(R, M) is an abstract architecturé,

is the set of addresses of valid instructions aila map fromA to GAL instructions. GAL instructions
are composed of more primitive micro-instructions. Indeee@&AL instruction is a sequence of data
(micro-) instructions followed by a control (micro-) ingttion. Data instructionsagsign are multi-
affectations. Basic control instructions are static jurfgigo) and dynamic jumpscgoto). Moreover,
these jumps can be combined with a conditional stateniteft Note that instructiolgotois a special
case ofcgoto, however they are distinguished from each other in GAL stheg are managed in very
different ways by automatic analysers. GAL instructionsythe following grammar:

GALinstr = (data) control
control = jump] ite (cond,jump,jump)
jump ;= gotoaddr| cgotorhs
data = assign(lhsy,...,lhs,) «— f(rhs,...,rhs,)
Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0

Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 7

(Target-specific Description) (Generic Description + Semantics) Analysis Engines

Simulator

<Architecture>

Machine Code Native ISA GAL<Archi> Concolic Execution

concrete semantic

B,BA, BL, BLA BLOCK
10004FA34EBS67D DECODER BC, BCA, BCL, BCLA TRANSLATION

. BCA, BCL, move, +,X, ..
100DBA00CA00697 MCRF, MCRXF, MCRS GOTO
100DDCA00697010 ADDI, ADDS, ADDop, CGOTO
100D0A0668F7220 CMPI, CMP, CMPL, ITE
010F6E256D78203 AND, ANDp, CALL

XOR, XORp, RET

logical semantic

abstract semantic

other ?

Static Analysis

Other ?

Figure 2: Generic Architecture with GAL

Left-hand side and right-handside operands are defined by

rhs = bv|r| m[rhs]| restrict(rhs,i,j)

lhs = Ignore| r| m[rhs]
wherebv is a m-wordy € R is aregisterm € M is a m-regionrestrict(rhs,i,jdenotes the extraction
of the sub-bitvector ofhs from bit i to bit j (: andj are integer constants) arghoreis a dummy
operand, used when a multi-affectation does not need alltsefsom an operation (typically flags).

Operators available in multi-affectations include usuaihanetic operators (signed and unsigned
versions), usual bitwise operators, usual bit-vector maations such as shifts and rotations and a
C-like conpar e operator.

Semantics. Considering a GAL progran? = (R, M, A, I), aconfigurationc of P is either a pair

¢ = (addr,val) whereaddr is an address il andval is a valuation of each m-loc, i.e. a map from m-
locs to m-words; or the special configuratienor. The operational semantic is given in an imperative
way. Undefined values, e.g. division by zero or out-of-boumemory access, are modelled by the
special valuel. Thus, partial functions from bit-vectors to bit-vectors &urned into total functions
from bit-vectors to the union set of bit-vectors ahdGiven a configuratioaddr, val), its successor
configuationsucc is defined by:

Copyright(©) 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

8 S. BARDIN AND P. HERRMANN

e Letl(addr) =d;...d, ctrl, whered;’s are data instructions andr{ is a control instruction.

e Let val” be the valuation obtained fromal after having performed the sequential multi-
affectationsds, . . ., d,; if an exception occurs during multi-affectations ther’ = L else
val’ = val”;

e Letaddr’ be equal teeval(ctrl, val’) whereeval is defined recursively by:

— eval(goto k,v) is equal tok,

— eval(cgoto rhs,v) is equal to the evaluation ef.s overv (may evaluate ta),

— eval(ite(cond, jumpl, jump?2),v) is equal toeval (jumpl, v) if cond holds true over
v, itis equal teeval (jump2, v) if cond holds false, and itis equal to if cond evaluates
to L.

If val’ # 1 andaddr’ # 1 andaddr’ € A thensucc = (addr’,val’), elsesucc = error.
Note that theerror configuration itself has no successor.

Encoding an ISA into GAL. A typical ISA is encoded into GAL in the following manner. Anable

is associated to each ISA register and a m-region is asedciateach physical memory (in most
architectures, one m-region for the RAM is sufficient). Somuiliary variables may be useful for
complex instructions requiring a micro-code level moaejliThe program counter variable can be
removed, since its effect is captured by GAL control mianetiuctions. Most ISA instructions are
directly translated in a sequence of two GAL micro-instimttone for data and one for control. Side-
effects such as flag updating are modelled with multi-affechs. One can notice that there iscail

or ret instructions. They are modelled as multi-affectationtofeed by a (dynamic) jump.

Adding a new architecture/ISA@sMOSE Adding a new architecture and instruction set toM®d SE
requires three different artifacts: a decoder for the utdion set, an instantiated architecture and a
translation from the instruction set into GAL.

e Provide a decoder for the instruction s&iven an address in the program source code, the
decoder returns the corresponding instruction (in theveatistruction set) or fails if the
instruction is not defined. Implementing such decodersésimus task, but not difficult. Some
decoders are publicly available.

o Fill the architecture templatdt is required to define the size of m-words, available regsst
and memory regions. Moreover, one must specify which m-teongitable, which m-loc can
contain program instructions (to detect self-modifyinglely and which m-loc represent the
program counter and the stack pointer.

e Translate ISA into GALt is the more demanding task. It requires mostly to traesaery basic
native operand (like a flag) into an m-loc, to translate eativa instruction into an equivalent
sequence of GAL instructions and to specify the size of eastniction.

Discussion. The modelling presented so far does not take into accounthikgrogram code itself
is stored somewhere in the memory, allowing in some casegrtbgram execution to modify the
program code. Thus self-modifying code cannot be modeledvever, most other “nasty” low-level
control mechanisms can be taken into account: dynamic just@sk overflow, modification of return

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 9

address and even overlapping of instructions and run-tieceyghtion of instructions as long as GAL
instructions can be added incrementally into the program.@@nsidering the GAL language, the
main limitations is that during the translation processative instruction can only be translated into
a pure sequence: no loop is allowed. It may cause some prelftaninstructions involving loops in
their micro-code. Finally, note that there is a strict safian between those GAL micro-instructions
which affect control and those GAL micro-instructions whiffect data. Hence, it is not possible to
model an ISA instruction which would or not affect the pragreounter, depending on the value of
its operands (imagine an architecture where the PC valum®iedsin RAM, and an instruction like
rani x] := y). However, this is currently a very theoretic limitatioimee no common architecture
provides such a feature.

4. Test data generation
4.1. Basicideas

The OsmosEtest data generation technology follows the idea of synsbmtiecution. This is an old
idea [29], but automatic tools implementing this idea fditware have blossomed recently [16, 23, 24,
45, 47, 51]. The central notion of path predicate is intralfirst.

Definition 1 (Path predicate) Given a programP of input domainD and = a path of P, a path
predicate ofr is a formulayp,. on D such that ifl” |= ¢, then execution aP onV follows the pathr.

The two main ideas behind symbolic execution are that: (Qlatisn to a path predicate, for
a given progranP is actually a test data exercising pathwith potential applications in structural
testing; and (2) a path predicate for a pathr can be computed by keeping track of logical relations
among variables along the execution, rather than just ttwicrete values. Figure 3 shows how a
symbolic execution is performed on a path of a small program.

Loc Instruction Symbolic exec

0 input(y,2z) new varsYy, Zo

1 y++ Yi=Yy+1

2 x:=y +3 Xo=Y1+3

3 if (x < 2 z) (branchTrue) | X2 <2 X Z

4 if (x < z) (branch False) X2 > 7o

Path predicate for path-01—2—(3,T)—(4,F) Path predicate projected on input
Yi=Y0+1AXo=Y1 +3ANXo<2X ZygANXe > Z Zo—4<Yo<2xZy—4

Figure 3: Symbolic execution along a path

The basic procedure for test data generation by symbolicutis consists in choosing a path,
computing and solving its path predicate, recording thetgm (if any) as a test datum, and iterate
until a termination criterion is reached. The terminatiaitecion is typically structural, like path,

Copyright(©) 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

10 S. BARDIN AND P. HERRMANN

instruction or branch coverage. Compared to previous wdikre no global representation of the
program is required [23, 45, 51], the technique developed herks on an (abstract) control-flow
graph (ACFG). The ACFG allows to use static techniques faeldovery and path pruning [11]. ACFG
nodes can be either sequences of multi-affectatiassigr), conditional statement#é¢), static jumps
(goto) and dynamic jumpsc@oto). For the sake of simplicity, in this section the ACFG is ddesed
precomputed once and for all before the test data geneiatiaanched. Hence, eachotoinstruction
comes with a predefined set of possible successors. The AEE®an by its nodes with methods
. addr and. next to access the address of the instruction (in the executabtkits successor nodes
in the ACFG. Section 5 discusses how to build the ACFG incraaily.

Algorithm 1 presents the basic idea ofS@0SE test data generation algorithm. The procedure
uses a bounded depth-first traversal of the control-flow lytapenumerate all paths in a recursive
manner. This is a standard strategy [23, 45, 51] which allowrsstraints to be added incrementally,
and requires only a minimal change to get a new path predigateusing the path prefix up to the last
choice point in the program. Choice points in a machine cadgnam are conditionals and dynamic
jumps. For conditional, the procedure just forces the $etydake the‘then” or “else” branch by
adding to the current path predicabethe condition or its negation. In the case of dynamic jumps,
the procedure explores each possible target by constgathim argument of the jump (usually an
arithmetic expression over registers) to take each paskitmbwn value in turn. Basic instructions are
translated into formulae by the procedarteoni c. The external procedusl ve returns a solution
of a constraint or theinsat exception in case of unsatisfiability. The procedure isqme=d for an
all-path coverage termination criterion. To adapt the atgm to other criteria, the program must keep
a set of uncovered itenid, and each time a path predicate is solved, items coveredebgxbcution
are removed. The program stops as sooll &sempty.

4.2. Concolic execution

Concolic execution [23, 45] is a recent major improvemesimbolic execution. Basically, a concolic
execution is a concrete execution and a symbolic executioning in parallel, the concrete one
collecting relevant information along the execution pathhelp the symbolic execution. Concrete
information is used to perform approximation when the sylehexecution encounters instructions
which are either impossible to model in the given path praicheory, or whose modelling leads
to constraints too costly to solve. A typical mechanism isdhncretizationof a variable: at some
point of the symbolic execution, a variable is forced to beado its current concrete value over
the concrete execution, limiting the symbolic resolutionatl paths going through this concrete
value. Concrete execution can be used for example to folleasible paths only [23, 45, 51],
to approximate non-linear arithmetic constraints, to deih library function calls and multiple
levels of pointer dereferencement [23, 45]. Concolic ekeouis a recent approach, however it
has been quickly recognised as very promising and manyreiffaecent works are based on this
approach [9, 12, 16, 24, 47]. The main advantages of conegbcution compared to other purely
static techniques (and especially symbolic executionhaodolds: concolic execution is very robust
against “difficult-to-analyse” instructions or progranmgifeatures: it can always concretize it rather
than just ignore it or stop the analysis; concolic executifiers a control on the trade-off between
performances and completeness of the resolution, depgondiwhich constraints are concretized.

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 11

algorithm GENTESTL(nodeinit)
input : initial node nodenit
output: set of test data Res
1: Res«—

2: REC(nodeinit, T)

3: return Res

procedure REQ(node,®)

input : node, path predicate
output: no result, update Res
1: Casenodeof

2. |le— /* end node */

3: try Sp <« SOLVE(®) ; Res— ResU {Sp}

4: with unsat— ();

5: end try

6: | assign affect-list~ REC(node.next® A ATomIC (affect-list))
7: | goto tnode— REC(tnode,®)

8: | ite(cond,inode,tnode)>

9: REC(inode,® A cond);
10: REC(tnode,® A —cond) /* branching */
11: | cgoto expr—
12: for all tnodee node.nexdo
13: REC(tnode,® A expr= tnode.addr) /* branching */
14: end for
15: end case

Algorithm 1: Basic test data generation algorithm

Note that concolic execution can be seen as a mix betweercpostraint-based test data generation
approaches [29] and search-based test data generationiciees [25, 26, 30, 31]. As such, it shares
common ideas with dynamic symbolic execution from the 1990

The GsmosEtest data generation technology follows the concolic gipilec The concrete execution
is classically used to detect a first feasible path but alsmiimnovative way to handle alias constraints
(see below) and to dynamically detect new targets for dyngnmps (see section 5). A simplified
view of the concolic test data generation procedure is ptegen Algorithm 2. The main procedure
REC now takes two different inputs: the current path predidasad the current concrete memory state
C. Concrete memory states come with basic functions for @pdatl condition evaluation. Initially,
C' is the map filled with) (denoted)). Branching is more difficult to handle in the concolic casart
in the symbolic case. Indeed, and C' must always be consistent with the path prefix. While this
property is easily ensured fdr, it is not the case for the concrete memory state: at eactchiran
instruction,C is consistent with only one of the successors. The symbakcugion algorithm is
modified in the following way to ensure consistency at eaep stetweernC' and the path prefix.
When a branching instruction is encountered, first the damdil is evaluated w.r.C and the concolic
execution is launched along that path (the search folloestimcrete path). Then on backtracking, the
current path predicate augmented with the new branchinditton is solvedmmediately If there is
no solution, the branch is infeasible and the search badigr®therwise, the solution can be used to
derive a new concrete memory stateéconsistent with both the current path prefix and the desiesd n
branch. DerivingC’ is straightforward if the path predicate contains all intediate variables (like
in Osmosg). If the path predicate contains only entry variables, ialisays possible to relaunch a
concrete execution from these entries and get the conceteony state at the instruction point where

Copyright(©) 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

12 S. BARDIN AND P. HERRMANN

it is needed. In Algorithm 2, subprocedwrpdat e_C_f or _br anchi ng takes as input a solution of
a path predicate and outputs a new concrete memory&tatensistent with the corresponding path
prefix.

algorithm GENTEST2(nodeinit)

input : initial node nodénit

output: set of test data Res

1: Res— 0

2: REC(nodeinit, T, 0)

3: return Res

procedure REC(node,®, C)

input : node, formulap, concrete state C
output: no result, the procedure updates Res

1: Casenodeof

2: ‘ £ —

3 try Sp < solve(®) ; Res— ResU {Sp}
4 with unsat— ();

5 end try

6: | assign affect-list— REC(node.nexp A atomic(affect-list) ,update(C,affect-list))
7: | goto tnode— REC(tnode®, C)

8: | ite(cond,inode,tnode)>

9 caseeval(cond,C)f

10: | true — /* concrete execution follows the if branch */
11: REC(inode,® A cond,C);

12: try /* find C’' compatible with the else branch */
13: Sp «— solve@ A —~cond);

14: C’ «— updateC_for_branchingfp);

15: REC(tnode,® A —~cond,C");

16: with unsat— ();

17: end try

18: | false— * symmetric of the true case */

19: end case

20: | cgoto expr—

21: tnode— (eval(expr,C)).nodé* concrete successor */
22: REC(thode,® A expr= tnode.addr()

23: for all nd € node.next {tnode} do

24: try /* find C' compatible with node.addr */
25: Sp <« solve® A expr=nd.addr;

26: C’ «— updateC_for_branchingfp);

27: REC(nd, ® A expr= nd.addrC")

28: with unsat— ();

29: end try

30: end for

31: end case

Algorithm 2: Concolic test data generation algorithm

4.3. Advanced concerns

This subsection describes advanced concerns about theBgfobncolic execution algorithm. For the
sake of simplicity, these features have been omitted in ddgm 2.

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 13

IR Recovery. The test data generation algorithm and the IR recovery nméstmaare deeply
interwoven and the ACFG may be updated during the test geoerstep. The whole IR recovery
mechanism is described in section 5.

Functions. Functions are inlined. Recursive functions are allowedesithe bounded depth first
search prevents the search from infinite looping. A modukalyesis of function calls would be
more satisfactory. However it is not clear how to performhsaanodular analysis for structural test
data generation. Recent papers [1, 27, 38] propose somgossiubut they focus mainly on purely
functional procedures while procedures with side-effactspreeminent in machine code programs.

Alias. Two m-locs are said to be in an alias relationship when onéeartcontains the address of
the second. Aliasing is known to be a very difficult point ifta@re analysis since tracking variable
modifications becomes much more problematic. It turns aaitéliasing is a bit less difficult from a
testing perspective than from a static one, since it is nqtired to compute a safe approximation of
all possible alias relationships in order to generate egletest data. The following solution is used:
the concrete execution is analysed to extract the aliaglagionships existing in the concrete trace
and add them to the path predicate. The good point is thabléien found (if any) is sure to follow
the right execution path. The bad point is that this new magdiis stronger than required, and it may
be infeasible while the path is actually feasible with aeothlias constraint. This technique allows
to discover aliasing relationships depending only on thenory layout. This is orthogonal to the
technique developed inWXE [45] where possible syntactic alias relationships areaexéd from the

C program, mainly from type declarations and alias expo@ssin branch conditions.

Optimisations. Concolic execution engines can be improved in two orthobeags, either reducing
the number of path prefixes to explore (path pruning) or reduthe cost of each call to the solver
(formula simplification). Path pruning techniques implereel in GsMosE[11] include discarding
path prefixes which cannot reach new instructions or bram@ral preventing the search from
backtracking in deep nested calls. Formula simplificatimetude the slicing of instructions which
do not affect control expressions along the path, as welpkitisg the path predicate into independant
subformulas solved separately. MoreovesM® SEprocedure is also enhanced with a “semi-concrete”
execution dynamically detecting constant values at eagh et the execution, allowing to prune the
path search by detecting on-the-fly trivial cases of infdagpaths. This can be seen as a combination
of formula simplification through constant propagation amemental lightweight solving.

Formula simplification techniques such as formula splittand constant propagation are rather
common in concolic execution tools [16, 24, 45, 47], somehait performing even incremental
solving [51]. Path pruning techniques are more originalwieeer, smart heuristics geared towards
faster coverage [16, 24, 47] and modular or lazy test datarg¢ion [1, 27, 38] allow also to reduce
the search space.

5. IR recovery

Copyright(©) 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

14 S. BARDIN AND P. HERRMANN

5.1. Motivations

Purely static techniques for IR recovery are either too smar very sophisticated [14, 15] and
difficult to implement for the non-expert because they aimcamputing a both safe and tight
overapproximation. In a testing perspective, completemas be relaxed and the analysis is much
easier. Actually, once the problem is relaxed, a purely dyin@iscovery of the executable structure is
feasible. However, the dynamic approach suffers from traebacks. First, dynamic methods cannot
ensure that all dynamic targets have been explored, whierime cases even simple static analyses do.
While such a safe IR recoveryis not mandatory for commoiniggtractices, it is absolutely imperative
for the validation of critical systems. Second, concolie@xion relies on very precise and potentially
expensive theorem proving techniques, while simple stati@lyses (e.g. constant propagation) are
cheap. Third, some recent path-pruning optimisations doicolic execution require a global view of
the program structure [11]. This section describes an iati® combination of static analysis and
concolic execution to solve the (weak) IR recovery issuécslfy arising in test data generation.

5.2. Existing solutions

There existd hocstatic techniques to address the IR recovery problem, sndiglbrute force method
and naive static discovery. In the brute force approachrie®to decode an instruction at every byte
(or word) of program. The resulting set of instructions isfesupper-approximation, however it does
not recover legal transitions between instructions andntsgoo many false instructions. The naive
static approach is a recursive traversal starting from iit@l instruction. Decoding goes on if next
instructions are known statically and stops otherwises T&chnique is useful unless dynamic jumps
or violations of call-return policy are encountered. Theapproaches can be improved in a few ways.
First if the header (part of the program added by the conipiiger) is available, entry points of most
functions may be known, which may allow to recover parts ef pnogram “hidden” by a dynamic
jump. Second, when the compilation toolset used to crea&etiecutable is known, some dynamic
jumps may be resolved by a syntactic analysis of the maclode to detect standard compilation
patterns. However, these pieces of information are notyavexailable (e.g. the header may have
been stripped off because of strict memory limitationgdytbannot be completely trusted (the header
may have been forged) and anyway they are not sufficient t@ sbe general problem. Interestingly,
recent researches have been conducted to develop bothnshfiglat IR recovery mechanisms based
on advanced static analysis [14, 15, 33, 34], but they afiedifto implement for the non-expert since
they interleave many different analyses.

5.3. IR recoveryin OSMOSE

Test data generation techniques like concolic executionalaequire a perfect IR recovery: (1) the
recovered ACFG may contain illegal instructions since #st tlata generation engine do not consider
infeasible paths; (2) the recovered ACFG may miss some liegaiuctions: it will not affect the
relevance of test data generated by the procedure, andstestamplete in essence. Hence the IR
recovery mechanism can be both incorrect and incompletsoiBthe other hand, the more precise the
ACFG is, the more efficient and relevant the test data geperaiill be, since the procedure will not

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 15

waste time on infeasible paths and generated tests wilteethe program more thoroughly. Since
the static analysis does not need to be either complete ceatpit relies on lightweight techniques
and its goal is to cheaply guide the concolic procedure ford@&bvery. The concolic-based recovery
requires only slight modifications of thesmosEtest data generation algorithm. Algorithm 3 presents
the big picture of this approach. The static algorithmAS8c PROPAGATION) and the concolic one are
interleaved and iterated in the following manneraBC PROPAGATION updates a map from dynamic
jump instructions to potential address targéfar(get Cache). The map itself is used as an entry
of STATICPROPAGATION so that targets discovered in earlier calls to the procedeeemembered.
Then the straightforward procedur&/BD creates an ACFG from the executable, the jump-to-target
map and the entry-point of the file. Finally the test generatilgorithm GNTEST is launched on
the ACFG. When a new target is discovered by the concolicqutore, an exceptionewTar get

is thrown and caught by the top-level algorithm, the jumgaimet map is updated and the whole
process is iterated starting on the new map. The procesiweCPROPAGATION and the modification

of GENTEST2 are described below.

algorithm IR-RECOV(exec,iadd)

input: executable exec, initial address iadd

output: a test suite and the ACFG

1: TargetCache— 0

2: Loop
: TargetCache— STATICPROPAGATION(exec,iadd, TargetCache)

4: ACFG « BUILD(exec,iadd, TargetCache)

5 try

6: return (GENTEST(ACFG.initnode),ACFG)

7

8

with exception

: | newTarget (jump,taddr)-
9: TargetCache— TargetCacheJ {(jump,taddr}
10: endtry
11: end loop

Algorithm 3: IR recovery mechanism

Static analysis. The static analysis is mostly a standard constant propagétiver finite sets of
constants rather than singleton) except that when abslyaeimic jump targets are not precise enough
(i.e. evaluate to the “don’t know” abstract value), theilues are not propagated to all possible
instructions (i.e. the analysis does not try to decode eaddress in the executable file). Hence this
static analysis does not compute a safe over-approximafitime program. In an automatic testing
context, missing targets is an issue because it may leadgsingi some paths of the program, but
having too many false targets is also an issue because thiead to many infeasible paths in the
ACFG, and the test data generation procedure may waste &tioi@trying to explore them. Since
missing targets may be discovered dynamically, the statyais part of the IR recovery mechanism
is adapted to avoid the second case, at the price of incoemass.

Concolic execution. The ACFG is also discovered during concolic execution. duiees to modify
thecgotocase of Algorithm 4. There are two reasons why a new targéd d@discovered: (1) it can be
discovered by the concrete execution; (2) for each dynamipj once all targets have been treated, an

Copyright(©) 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

16 S. BARDIN AND P. HERRMANN

additional path predicate is computed to constrain thestagpression to take an undiscovered value.
If it succeeds, the solution leads to a new target. Algorithpresents the modification of Algorithm 2
to take into account IR recovery mechanisms. Each time a amyet is discovered in the concolic
execution procedure, an exception is thrown and caught ggr&hm 3.

/* only modifications of algorithm 2 are shown */
procedure REC(node,®, C)

1: Casenodeof
20 s
3: | cgoto expr—

4 if eval(expr,C)¢ node.nexthen /* new target */
5: exceptionnewTarget(node,eval(expr,C));

6: else

T s

8

9

10-: end for /* the following lines try to discover new target */

11: try

12: Sp — solve(® A Ay cnodenex@XPr # t-addy ;

13: C' « updateC_for_branchingG));

14: exceptionnewTarget(node, eval(expl))); /* new target */
15: with unsat— ();

16: end try

17: end if

18:

Algorithm 4: IR recovery via concolic execution

Correction and completenessThe concolic-based IR recovery mechanism is correct, instrese
that it can only find legal targets. However, it is obviousbt momplete because of missing targets.
The static analysis-based IR recovery mechanism is neithvplete (missing targets) nor correct
(false targets). Thus the ACFG is an approximation of the@&&. However, generated test data are
still correct (in the sense that they follow the intendechpatexecution), since they are generdted
fine by the concolic execution procedure, which ensures thae fargets will not generate false test
data. Note that it can be checked easily whether the stalgsia is complete or not: it is the case when
all addresses represented by abstract expressions ataatignamic jumps are decoded. In that case,
the ACFG is a safe overapproximation of the ideal CFG of tlegmm, and coverage measurement
can be safely trusted (i.e. it is an underapproximation efttbly achieved coverage). However, this
ideal case is not expected to happen often consideringrifdesianalysis carried out.

Discussion. Even though safe IR recovery is not mandatory for commonnggiractices, it is
absolutely imperative for the validation of critical syste In that case, a safe recovery can be obtained
by systematically decoding all abstract targets [33, 34jwkler, in this setting the simple static
analysis presented so far would probably recover too malsg fargets, and more advanced static
analyses for IR recovery should probably be used [14, 15, 34]

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 17

6. Bit-level Constraint solving

The concolic procedure requires a solver for the quanfifess- fragment of bit-vector theory.

This solver relies on a generic solving technique, namelpsBaint Programming [2, 42], rather
than theory-specific algorithms. It is then easy to adapt mstructions while keeping reasonable
performance. Constraint programming is mainly limitedhedries over finite domains, which is the
case for the bit-vector theory.

6.1. Bit-vector theory

The bit-vector theory (see for example the book of Kroening &trichman [32] for an overview)
formalises standard machine instructions at the bit Iés@imulae are interpreted over vectors of bits
of a fixed length. Instructions include modulo arithmetigital bitwise operations and other low-level
instructions such as shift, rotation or concatenation.esx@ample, the following formula falls into the
scope of bit-vector theory:

((x+100) >>2)<b:c

where>> and:: denote respectively logical right-shift and concatermmatperators. Floating-point
arithmetic is usually not considered though it can be endo&atisfiability in bit-vector theory is
decidable since the interpretation domain is finite.

6.2. Principles of constraint programming

Considering a formula (or constraint)on a set of variable¥ in a boundeddomain D, Constraint
Programming (CP) is essentially a clever exploration opalitial valuations o to find a solution

to ¢. Two main steps are interleaved and iterated until a saiiidound (or the absence of solution
is proved):searchandconstraint propagationThe search is a standard depth-first one with labelling
and backtracking. At each step a variable is assigned a ffaoeits domain. Once all variables are
assigned, the valuation is checked against the formul&idfriot a solution, backtracking allows to
make new choices. When neither labelling nor backtrackiegpmssible, the formula is proved to
be unsatisfiable. To avoid “blind” labelling as much as polssand speed up the search, constraint
propagation mechanisms reduce variable domains at egebfdfee search through propagation rules
(or propagator3, removing values of the domain of a variable which are natlived in any solution

of the constraint. For example, here are the two propagfdocenstraintz < y on variables: andy,
with interval-based domaind,,, D,, defined byD,, = [I,;, L] andD,, = [I,,, L,]:

(Propagator 1) i.,, > L, thenD,, = [, L, — 1]
(Propagator 2) it, <, thenD, =[l,+1,L,]

The following example shows how labelling and propagatimiaterleaved. Consider the formula
x < y and suppose that domaifs, and D,, of x andy are respectively the interval20, 1000] and
[0,900]. First, by propagation rules, domains are reducef o= [20,899] andD,, = [21,900]. No
more reduction can be obtained, so a labelling step is paddr Suppose thatis labelled with the
value42 € D,. The domain ofz is then reduced by propagationia, = [20,41]. Finally, suppose
thatz is labelled with valu€3 € D,.. A solution to the constraint < y has been found.

Copyright(©) 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

18 S. BARDIN AND P. HERRMANN

Constraint Programming is a flexible paradigm to model ardesproblems on finite-domain
theories. It can encode easily any reasonable constraifinibd@ domains, and it is quite efficient
at finding quickly a solution for “easy-to-solve” formulaee. formulae having many solutions.
Moreover, one can control the trade-off between efficienfcyesolution and implementation effort
by designing more or less complex propagators. Howeverrit udfer from the so-calledslow
convergence phenomenonh “difficult-to-solve” formulae and inconsistent formelaFor example,
try the search-propagation paradigm on constraiaty Az > y A D, = [0..1000] A D,, = [0..1000].
The OsMOSE solver makes use of such traditional local propagators ditiad with more global
propagators aimed at detecting early some specific kindaaahisistencies and avoid as much as
possible slow convergence phenomena [19].

Constraint Programming is a paradigm rather than a techpalefined once and for all, and it
has a number of degrees of freedom. Thus, implementing aasBdbsolver requires to instantiate
at least the following parameters: (1) representation efdbmain of variables; (2) search algorithm
(kind of traversal, choice of the next variable to be lalzbad next value to be assigned, backtracking
procedure); (3) propagation rules; and (4) mechanismsagslow convergences, typically detecting
early certain causes of unsatisfiability.

6.3. OsMOSE solver

The OsMOSE constraint solver for bit-vectors is written on top of ansixig CP-based solver for
bounded integer constraints developed for the model-b@sgidg tool GATEL [37]. The philosophy
behind the solver is the following: bit-vectors are mostlamipulated as integers, relying on the
arithmetic solver as much as possible. Low-level consisaire encoded into integer constraints when
possible. Otherwise, resolution is mostly delayed untiliggh information is obtained on the operands.
Yet, a few constraints identified as bottlenecks during grpentation have been optimised for specific
cases appearing in case-studies.

Bounded arithmetic solver. This paragraph describes briefly the main characteristiteedCP-based
bounded arithmetic solver of GAL. Representation for domain variables is based on intgpials
congruence [35], allowing to express for examplez [0,10000] A z = 0 modulo1024. The search
algorithm is depth-first with chronological (standard) kiaacking. The next variable to be labelled
is chosen according to the most constrained input varialoid,the next value to be assigned is the
minimal value in the domain. Finally, the solver incorpesata specific mechanism against slow-
convergence: in addition to the local propagators presesudar, the solver maintains a global view
of all difference constraints appearing in the problem fhequalities of the formx — y < k, with

k € Z) and performs standard satisfiability checking on this sulf%r example, the slow convergence
phenomenon pointed out early in this section can be disedusy this mechanism. A similar technique
is described by Feydy, Schutt and Stuckey [19].

The bit-vector layer. As previously stated, bit-vectors are considered as thaisined) integer
representation and the solver relies on standard aritbnastimuch as possible. Three kind of
translations from bit-vectors to arithmetic are used:aitenslation, delayed translation and a mixture
of both. Moreover, some specific optimisations are impleteen

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 19

Direct translation to standard arithmeticsome constraints on bit-vectors can be directly
encoded into arithmetic constraints without any loss incigien, using operations like integer
division and remainder to extract specific portions of aveittor. Such constraints include for
example: extraction, concatenation, rotation, logicatl amithmetic shifts, bitwise not, modulo
arithmetic and flags management. Here are two examples bfditect translations. The constraint
concat (NA, A, NB, B, NR, R) , meaning thaR (of lengthNR) is the concatenation &k (size NA)
andB (sizeNB), is equivalent toR = 2V8 x A + B. The constrainadd(N, A, B, R, FC) , meaning
thatR (of sizeN) is the result of the addition & andB (both of sizeN) and thatCis the resulting carry
flag, can be encoded (with an additional variable)as: (A + B)/2Y AR= (A+ B) nmod 2V |

Delayed translation to standard arithmetitn case that a bit-vector constraint is too costly to
translate directly into an arithmetic constraint (typigalbitwise xor), CP allows to delay the
translation. Indeed, propagators can have the fdlance two arguments of the constraints are
instantiated, launch arithmetic constraints, ..., cx” . In the worst case, when an efficient arithmetic
translation does not exist or one does not have time to désigis even possible to wait for all input
variables of the constraints to become instantiated, thempate directly output variables.

Mixture of direct and delayed translation to standard anitétic. Finally, many constraints can be
encoded into a mixture of both direct and delayed transiatito arithmetic: a direcapproximated
translation into arithmetic allows for efficient (but ovppoximated) propagators, while the delayed
translation ensures correctness of the whole result. Acaypxample is the bitwisand and or
constraintsR = A and Bcan be approximated witR < A andR < B, however this translation is
not exact and a delayed translation must be used in addition.

Optimisations for specific cases.may be the case that a constraint has no efficient traoslati
into arithmeticin genera) while this constraint is always used in a very specific patthat can be
efficiently encoded into arithmetic. Consider the follogiexample: a bitwisand constraint is used
with one of its operands being constant. It is a quite comnitaatson since it corresponds to a “mask”
operation in the original program. In this case, the sohexfgrms two optimisations: first it tries to
recognise typical masks corresponding to extraction digerée.g. = and 7 extracts the three lower
bits of), and whenever it succeeds, the solver uses the directatmmsof the extraction constraint;
second, if no common mask has been recognised, the longgestrsse of 0 contained into the constant
(starting from the least significant bit) is found, pernnittito deduce a congruence on the result.

Discussion. The translation from bit-vector to arithmetic makes anrstee use oflivisionandmod
constraints. It may be costly, as non-linear constrairgat always efficiently handled in Constraint
Programming. However, it seems to be reasonable consipirinfirst experiments of section 8. An
explanation may be that in most cases one input operand erdyviariable (the other one being
constant), and keeping track of congruences directly irdtiraain of variables deals very efficiently
with multiplications / division by constant. As will be shawn section 8, specific optimisations for
masks and bitwise operations are crucial on some examples.

7. The OsMOSE tool

Results described so far have been implemented in thed3Etool. OSMOSEIs an automatic machine
code analyser. It takes as inputs the executable file, aatbie and ISA identifiers, a structural

Copyright(©) 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

20 S. BARDIN AND P. HERRMANN

coverage objective and, optionally, a description of thd@renment. Outputs are mainly a high-level
representation of the software under analysis, a set add&atand a report stating bugs encountered, the
coverage achieved by the test suite and unreached brancimesractions. The interface is currently
textual.

Generic machine code and simulationAll analyses are performed on the GAL generic assembly
language and one needs only to write a specialised tramslatodule to integrate a new architecture.
Processors currently supported bg@oseare: Motorola 6800 (8-bit), Intel 8051 (8-bit), Freescale
PowerPC (32-bit). The generic machine code implies tta @sEruns tests in simulation mode rather
than in exact mode like other structural test tools. Thisamdatory unless MoSsEcan be run on the
exact architecture targeted by the executable under tbsthvs unrealistic for most processors.

Environment. The environment is modelled by specifying some memory lonat as volatile,
meaning that their value can change non-deterministiealny step of execution (typically, because
of data acquisition from a sensor). Algorithms of sectionandl 5 are modified to handle read-
operations on volatile memory locations. They return thstralet “don’t know” value in the static
analysis, a random value in the concrete execution and adréble in the symbolic execution. In the
presence of an environment, a test data is composed of aiealwd input values and a sequence of
read values for each volatile memory cell.

Coverage objectives.lt is possible to declare the structural coverage objettivachieve. Objectives
are defined by three parameters: the nature of items to beemwhe minimal coverage to achieve
and the relevance of subfunction coverage. Iltems to be edwean be paths, instructions or branches
(in this paper, an t e instruction counts for 1 instruction and 2 branches). Theimal coverage
measurement to achieved is a value ranging from 0% to 1008&llf;i test data generation can be
performed in a unit testing fashion (trying to cover only thgget function) or in an integration testing
fashion (trying to cover in addition all items of subfuncts).

Which guarantees? While test data are always exact, in the sense that the éseqadth is exactly
the one predicted by SMOSE the ACFG and the coverage measure are approximationedntiee
ACFG may contain both false and missing targets. It stilvies interesting information to the user,
but the coverage measure is not safe (under-approximatiomyst cases.

How to use it? OsMOsEis designed for correctness testing of executable fileseSime ACFG and
the coverage measure are approximated, the tool alone toeummently be used to generate test suites
achieving a certain level of structural coverage, as isiredun safety critical systems like aeronautics.
If a safe coverage measure is mandatory or if the recovegoistdarse, the user can still manually
provide an over-approximation of the sets of dynamic jumgets. However, it may be a cumbersome
activity. An interesting alternative would be to connesM® sEto one of the very few tools performing
(a truly) safe ACFG reconstruction [33].

Implementation. OsMoSEis written in OCaml, a functional language with strong stayiping and
high-level features like functors (parametrised moduldsgh have proven very useful for the generic
software architecture. The constraint resolution enginbuilt upon the bounded arithmetic solver

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 21

developed for the model-based testing tool GAT[37]. A layer implementing the bit-vector theory
has been written on top of it. GAL and the bit-vector layer are written in the Constraint Logi
Programming system EGP S [3]. The resolution engine is plugged into the OCaml soummgec
using the C language as an intermediate. The program carzdikloc of OCaml (6kloc more for the
three translation modules), 3.5 kloc of EGASE and 1.5 kloc of glue in C. ®v0sEis compiled on
an Intel PC running Linux.

Currently, the @mosEtool is not publicly available.

8. Experiments

This section presents various experiments carried out @&moSE First, the IR recovery abilities

of the tool are evaluated on handcrafted C programs, veryl $mtarepresentative of the kind of
dynamic jumps that can occurs in embedded systems (fungtiotiers and compilation afwi t ch
instructions). The commercial disassembler IDA Pro [50}$ed as a witness. Second, the test data
generation abilities of ®@voOSE are evaluated on various examples, ranging from standadkeatic
puzzles to small open source code and preliminary expetsram industrial code. The witness is
random testing. All evaluations have been performed on tah Rentium M 2Ghz with 1.2 GBytes of
RAM running Linux Ubuntu 6.10. The following cross-compgéave been useddcc for the 8051
andgcc for the PowerPC. Optimisations have been turned off to atmmdnany modifications of the
program. Unoptimised executables appear to be even mdicuttifo analyse than optimised ones.

8.1. IR recovery

Description. Experiments are performed on four small C program compiteBRC 550 machine
code withgcc. These programs are rather representative of the reasonkifth dynamic jumps may
be introduced into an executable file through compilatiomfia C program. Moreover, most dynamic
jumps found in embedded systems are expected to follow @wmes. The four examples work as
follows: f pt r 0 is a simple example, with only one function pointer assigiygthmically to a constant
value;f pt r 4 contains an array of function pointessyi t chO contains a simplewi t ch statement
with 5 cases, translated lgcc into a dynamic jumpswi t ch- ar r ay looks likeswi t chO except
that the operand of thewi t ch statement involves an array expression. Note that all in@sof the
original C program are feasible.

OsmosEis used with both the static and the dynamic recovery meshasyii.e. the tool provides
an abstract control-flow graph and test data covering thaptyrThe tool is evaluated against IDA
Pro [50], a commercial disassembler working with a combamedf naive static propagation, pattern
matching and brute force decoding. IDA Pro is also able tatlusénformation stored in the header of
the executable.

Results. Characteristics of the programs and results of IDA Pro astMQ@sE are summarised in
Table I. For each example, the table provides the numbersstriictions (1), branches (Br), dynamic
jumps (DJ) and their targets (T), as well as the percentagecof/ered instructions (RI) and recovered
dynamic branches (RDB), i.e. branches from a dynamic jumgn®of its targets. Computation time
and memory consumption are not reported since they werevieoyHow.

Copyright(©) 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

22 S. BARDIN AND P. HERRMANN

name # | #Br | #DJ (#T) | RIIDA | RDBIDA | RI OsMOSE | RDB OSMOSE
fptrO 8 1 1(2) 100% 0% 100% 100%
fptrd 41 7 1(3) 100% 0% 100% 100%
switchO 40 7 1(5) 100% 0% 100% 100%
switch-array| 141 | 23 1(5 100% 0% 100% 100%

I: instructions, Br: branches, DJ: dynamic jumps, T: taesgdtdynamic jumps
RI: recoverd instructions, RDB: recovered dynamic brasche

Table I: Evaluation of the IR abilities of MOSE

Both tools recover all the instructions (without introdugiany spurious instruction), but while IDA
Pro is unable to recover any of the dynamic branchesy@sEefind them all, without introducing any
spurious branch. Thus, while in theorys@osEis neither correct nor complete, on these example it
recovers each time thexactcontrol-flow graph.

Comments. It may look surprising that IDA Pro does not find any dynamiariwh while recovering
all instructions. Actually, the executable files respeet BLF format which indicates the location of
the code in the executable file. Using this information plustédo force decoding allow IDA Pro to
retrieve all instructions. However, executable files wébkd additional information may cause serious
problems to IDA Pro. Interestingly, MOSE was always faster than IDA Pro (by a factor of two),
while it recovers more information and generates test detéeaing a full branch coverage. Finally,
OsmosEelaunched with only the dynamic recovery was also able towescall dynamic edges.

8.2. Test Data Generation

Experiments are performed on 23 programs written in C caedpib PPC executables or 8051
executables, for a total of 30 executable files. The C prograne divided into three classes:
handcrafted programs, open source programs and embedutgdims.

The handcrafted C programs are the followimg.quar e reads a square matrix and check if
the matrix is magic or not. The number of constraints growgoeentially with the size of the
square matrixhyst er esi s simulates a finite-state machine reading inputs slowlygasing until
a maximal threshold is reached, then decreasing inputsaintinimal threshold is reached, and so
on. The rate of variation is bounded. This example needsan@ment and long sequences of tests.
nmer ge is the well-known sorting algorithm. The program containsdtions and aliasesel | is a
small but tricky example [23k r i angl e is the standard academic puzilé.st is a small example
manipulating linked lists.

There are two small programs taken from industrial progtaeck- pr essur e is a small 8051
program performing data acquisition and actuator activatvhen pressure is too higbuf _Get is
part of a circular buffer module of an industrial network ntoring application. Itis designed to extract
a frame from a buffer and return a buffer status.

Open source functions includg r | en andst rt ok from the standard C library (glibc version
2.4) and two functions from the open source program GNU Gasjer 1.2),countli b and
findcol or. strtok aims at splitting a string into tokens separated by delimitet r | en

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 23

computes the numbers of characters of a C-style string. Bathe functions are called once in a
main function: their return value is then tested againsteziic value to increase the difficulty of the
test. Functiorf i ndcol or determines the color of a piece depending on the colors ghbeir, while
count | i b computes the liberty of a color piece at a given location.

Finally, functionsai rcraft0 to ai rcraft9 are taken from an embedded power-controller
program for aircraft engines running on PowerPC 550, pexyidy Hispano-Suiza [28]. The source
code is a low-level C program with embedded assembly largyidgchine code counts around 30,000
instructions structured into 250 functions. Functi@ig cr af t 0 to ai r cr af t 4 have low call-
depths (between 0 and 2) while functiaaisr cr af t 5toai r cr af t 9 have higher call-depths (from
4 to 10).

Protocol. The objective is to cover all branches. Test data generaiparformed in an integration
testing way for all small examples and in a unit testing waytli@ largest ones, i.e. the tool does not
try to cover branches of callees, and backtrack is allowdglwhen the call depth is less or equal2p

0 being the procedure to covers®osEis evaluated against a random test generator. This generato
has been written on top of the simulation engine sfM@SE On each example, the random generator
is asked to generat®¥ test data, being defined by = maxz(1000,7To x 20), whereTy is the
number of test data generated bgMOSE Test data generation stops once full coverage is achieved.

Results. Results are summarised in Table Il. Statistics are repdaiedach executable (number of
instructions and branches). The table reports also thechramverage achieved and the computation
time for both tools, and the number of tests generateddy@sE The Mode column indicates whether
experiments are performed in a unit testing approaciit)or in an integration testing approadhl().

In unit testing mode, the number of branches and instrustiorthe callees is also reported. me

is the computation time obtained with optimisations fomlise operations discussed in section 6.
Memory consumption is not reported since it was very low,agisvsmaller than 10 MBytes. The
correctness of test data returned bgM SE has been checked manually on small examples (against
coverage and path information). Especially, onitBguar e program, &Mosedoes return a test data
corresponding to a magic square.

OsmosEeperforms well on almost all examples, with a computatioretoften smaller than 1 minute
(23 cases out of 30) and a 100% coverage on 21 cases, whils23 slaow a coverage greater or equal
to 80%. Moreover, @MOSEreports a very poor coverage on only two examples. Compeasiaith the
random generator turn almost always in favour &fM®SE both in terms of coverage, computation
time and test efficiency (ratio between coverage and numbéests). For example, random test
generation achieves a coverage greater or equal to 80% yn9ochses. Random generation beats
OsmMosEonly in two examples.

Results suggest thatsmoseperformances are sufficient for unit testing of low call-ttefpinctions
on industrial case-studies.smosEerequires indeed less than 1 minute to achieve a 98% covefage o
function with 140 branches, and less than 10 minutes to eeli®7% coverage of a function with 500
branches and 2247 instructions. However, performancesasee when used on functions of high-call
depth (aircraft examples 7 to 9) with many instructions ibcallees. Note that actuallySmosehas
been tested on 40 functions of the aircraft program with lai-depth (between 0 and 4): very good

Copyright(©) 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

24 S.BARDIN AND P. HERRMANN
name Proc | Mode] Br OSMOSE | OsMOSE | OsMOSE | random | random
cover time #tests cover time
msquare &3 c509 full 272 46 100% 10 43 63% 150
msquare &4 c509 full 274 46 100% 120 123 67% 150
hysteresis c509 | full 91 16 100% 60 35 56% 40
merge c509 full 56 24 100% 20 70 45% 100
triangle c509 full 102 38 100% 1 15 71% 25
cell c509 full 23 8 100% 1 10 87% 25
list c509 full 13 6 100% 1 3 100% 10
msquare %3 ppc full 226 30 100% 10 34 56% 110
msquare 44 ppc full 226 30 82% 60 125 50% 120
hysteresis ppc full 76 16 100% 60 251 20% 60
merge ppc full 188 16 100% 1 2 100% 1
triangle ppc full 40 18 100% 1 19 7% 10
cell ppc full 18 8 100% 1 8 50% 10
list ppc full 15 6 100% 1 4 66% 34
check-pressurg ¢509 | full 59 10 100% 10 4 90% 160
buf-get ppc full 262 18 100% 10 14 66% 600
strtok ppc full 316 40 100% 450 183 90% 180
strlen ppc full 134 18 100% 10 22 94% 120
findcolor ppc full 283 36 97% 800 328 61% 800
countlib ppc full 328 44 100% 120 48 54% 300
aircraftO ppc full 237 36 100% 10 19 40% 20
aircraftl ppc full 290 140 98% 60 43 64% 100
aircraft2 ppc full 201 72 100% 10 37 35% 20
aircraft3 ppc full 977 190 50% 60 3 96% 60
aircraft4 ppc full 2347 500 87% 600 15 68% 600
aircrafts ppc unit 12174103 2/509 100% 1 2 100% 10
aircraft6 ppc unit 250/ 425 18/34 94% 100 9 83% 120
aircraft7 ppc unit 506 /15640 20/2790 80% 20 4 75% 500
aircraft8 ppc unit 957 /30969 14/4952 14% 10 3 50% 500
aircraft9 ppc unit 627 /31793 | 74/5034 7% 600 12 63% 600

Proc: processor, I: #instructions, Br: #branches, Timeooads
cover: branch coverage achieved, unit: coverage of togtifumonly

Table II: Evaluation of the test generation abilities cf\MDSE

coverage (100%) was achieved in 31 cases, bad covera§@ #b) was achieved in 4 cases, and good
coverage (between 70% and 95%) was achieved in the last §.case

Comments. OsmMOSE performances on the handcrafted programs are almost alsuamiar for the
two processors, while the size of variable domains growsftd for the 8051 ta23? for the PowerPC.
This is surprising since a main issue of constraint progrargrs the scalability w.r.t. the domain
size. An explanation may be that most path predicates aveaalith small values. Note also that the
former version of @MOSE[9] does not terminate omsquar € 4 x4 (PPC) within 5 minutes, while
the optimised version terminates in 40 seconds (nonethdléscoverage is still not achieved).

It can be noticed that random generation is rather slow I8nee tests are run in simulation, their
execution is much more expensive than in a usual randomgestimework.

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 25

9. Related work

This section describes various techniques and tools tetat®smosEg from machine code analysers
to concolic execution and bit-vector solving.

Test data generation from machine coddhis article is an extended version of a paper presented
at ICST 2008 [9]. Compared to the conference paper, thislaridds a new section on the Generic
Assembly Language, a new section on the bit-vector solvereraxperiments, an up-to-date section on
related work and more detailed explanations on variouscaspeno other structural testing tools for
machine code based on concolic execution have been dedalepently: 3GE [24] at Microsoft and
BiTscopg[12] at CMU. Moreover, the tool Px [47] developed also at Microsoft is geared toward test
data generation from .NET bytecode, whose abstractiomhliegesomewhere in between real machine
code and Java bytecode.

SAGE aims mainly at debugging, and the tool is dedicated to the a@bitecture. Concolic
execution is enhanced with an original heuristics (instefaithe standard DFS) geared toward faster
coverage and bug finding, and various optimisations areesmphted to reduce the number of calls to
the solver. Path predicates are expressed in linear atithhnen-linear constraints being abstracted
via concretization. Successful experiments have beeopeaed on real-life programs. Notice that the
problem of IR recovery in presence of dynamic jumps is nottineed in the paper. A reason may be
that the authors target implicitly bug finding for non-a#l systems. As a consequence, they may not
consider issues such as maximal coverage or native coderebansion.

BiTscopEeintends to help the user to understand the behaviour of aanalwhe tool is dedicated
to x86 executables for a Windows operating system. Thigicish allows BTSCOPE to take
into account system calls, via an instrumentation of the QEdMulator. BTSCOPEuses concolic
execution (referred to amixed executionwith path predicates expressed into bit-vector theory.
Formulas are solved by an external solver, currently STR. [@2iginal features of the tool are
undoubtedly the ability to take system calls into accdaoth concretely and symbolicallio perform
goal-oriented test data generation in a concolic execstting (i.e. to generate a test data to exercise
a particular instruction of the program) and to take advgate#f hand-crafted summaries (for standard
C procedures on strings) to speed-up the analysis. Theitatheport [12] focuses mainly on the
application of BTscopPeEto malware dissection. IR recovery in presence of dynamigpjslis not
addressed in the paper. It may be a problem since one of thregoals of the tool is to help the user
to understand all possible behaviours of an executable.

PEX [47] is geared toward test data generation from .NET bytectthis context, the dynamic
resolution of virtual or inherited methods may pose proldesimilar to the one of dynamic jumps.
The FEX conference paper [47] explains briefly that the tool is ableeason about type constraints to
handle this issue. It would be interesting to investigatthier the relationship between dynamic jumps
found in high-level bytecodes such as Java and .NET and dgrjamps found in machine code. Note
also that Bx relies on a concolic execution engine equipped with an effictoverage-based search
heuristics [52].

IR recovery and static analysis of machine codé. few commercial tools are already available. The
disassembler IDA Pro [50] addresses the problem of IR regoVeols from the Absint company [49]
are actually geared towards verification of non-functiqgraperties like estimation of maximal stack

Copyright(©) 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

26 S. BARDIN AND P. HERRMANN

height or worst-case execution time, with a core technobaped on static analysis. Both tools support
a wide range of architectures and instruction sets. TheyeaddR recovery in similar ways: mostly
by pattern matching and very basic static analysis, witlemiil help from the executable header and
user annotations. As a consequence, results can be quiteiniaée on dynamic jumps.

Second, safe static analysis techniques have been dedetapently [8, 14, 15, 33, 34]. Since the
goal is to compute statically a safe and tight over-apprexiom, the technology is very sophisticated.
These IR recovery techniques are difficult to implement far hon-expert because they target both
completeness and tightness of approximations. Note thite tie IR technology presented by Regis
al. [14, 15] may be implemented in a safe way, the current impfeat®n in GODESURFER/X86 [8]
is not: the analysis can only recover missing edges amongdefined set of instructions (actually,
the output of IDA Pro), but no missing instruction can be rered. The tool AKSTAB performs a
truly safe recovery [33]. Repst al. have also developed a verification technology for execatfillels
based on model-checking the recovered abstract model pdi8Jpo practical experimentation have
been reported.

In this paper, considering the problem from a testing pextigeeallows to relax the completeness
requirement. This greatly simplifies the implementatiothef static part, while correctness is ensured
by the concolic step.

Generic machine code analysisLim and Reps have designed a generic framework called TSL [36
to easily specify a new ISA/analyser intadBESURFER'X86. TSL is based on a ML-like language
whose basic connectors are overloaded according to thensemequired by the analyser. TSL shows
obvious connections with the framework developed here.rmhim difference is on the power of the
description language: TSL is based on a true programmirggkage, while in GAL a native instruction
can only be encoded into a sequence of micro-instructionsidding any nested loops. This restriction
may cause problems for a few complex instructions with Iaogkeir micro-code.

Connex problems. Some problems are closely related to the analysis of nataghine code. First,
some works aim at ensuring the conformance between macbuie @and high-level source code,
thus reducing machine code analysis to source code analysssline of research includes certified
compilation [13] as well as invariant preservation chegk[d0]. Though very interesting, these
approaches are limited to applications where the source t®dvailable, while it is not always
the case. Second, a few recent verification tools for the Guage take into account the low-level
semantic of data, for example the test data generation teplliased on concolic execution [16] and
the verification tool @LysTo [10] based on static analysis. However, these tools do riread the
low-level semantic of control in C programsxE relies on the bit-vector solver STP and a best-first
search enumeration of paths similar to the onesa¢&S Finally, many works have been conducted on
Java bytecode verification, for example the test data géoar@ol IMOPED[17, 44]. While former
versions aimed at full verification, the last one is devotetest data generation. The core technology
is based on BDD model-checking of weighted pushdown systdioe that Java bytecode is rather
high-level compared to usual machine code. Moreover, itdtemethods and virtual methods are not
handled.

Concolic execution. As already mentioned, concolic execution-based tools lirally blossomed
up since a few years. In addition toITlBCOPE EXE, SAGE and FEX already mentioned, other

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 27

works include ART [23], CUTE [45] and RTHCRAWLER [51]. These three tools work at the
programming language level (C for all three and also JavaCiore). They rely on path predicate
solving, bounded depth-first search and concolic execuBoemises of concolic execution can be
found in RTHCRAWLER to find a feasible initial path and discover the CFG on-theMligile the
current concept has been explicitly introduced and pojagdiby Dz\RT and GJTE. Each of these tools
has its own specific featuresaART and RTHCRAWLER have specific techniques to handle functions
in a modular way [27, 38]. GTE provides an hybrid test generation algorithm mixing bothctral
generation and random generation, which is proved to emhtre achieved coverage and the bug
detection abilities [41].

Compared to @MOSE these tools work on a structured language and do not havact the
IR recovery problem. Considering only the test data geimraechnique, there are three other
main differences. First they consider integer arithmetstead of bit-vector arithmetic. Second, these
tools discover dynamically the program, having at each stdpg a local view of the CFG, while
OsmoskErelies on a (abstract) global view, allowing some specifitnoations [11]. Third, ©TE
and RTHCRAWLER take advantage of the C program under verification to disceugtactic potential
alias relationships, typically through type declaratiansl pointer expressions in branch conditions.
However they cannot detect alias relationships dependihgam the memory layout. On the contrary,
OsmosEdoes not have access to any high-level information but theal@ execution is modified to
discover on-the-fly some alias relationships dependindgnemtemory layout.

Constraint Programming-based test data generatiolnKA [20, 21] performs structural test data
generation on C programs through Constraint Programminthis approach the whole program is
translated into an equivalent CP problem, while the teamsgresented so far translate only one path
at a time. Notably,NK A includes a solver for floating-point arithmetic constraiff]. Other CP-based
testing tools have been developped for programs and moslel®§mMoSsEis the only one targeting
executable files, and one of the very few CP-based toolsripaith bit-vector constraints.

Bit-vector solving. Many solvers for bit-vector theory have emerged recentlyg422], taking
advantages of the recent dramatic increase in performariceAT solvers. These solvers are based
on bit-blasting: the original problem is encoded into a SAdhpem, each bit of every bit-vector being
represented by a boolean variable and each bit-vectorredmdbeing represented by its logical circuit
implementation, which is then solved by a state-of-theSAf solver. While very effective on bitwise-
oriented problems, bit-blasting is well known to be lesscadfit on more high-level constraints, such
as (non-linear) arithmetic [32]. Current SAT-based bittee solvers combine bit-blasting with heavy
preprocessing to partly remedy this issue [22].

The approach proposed here stays at the exact oppositeedidrs are seen as integer variables
and constraints are encoded as integer constraints. I$ touh that this method performs better
on arithmetic-oriented problems than on bitwise-orienteablems. Some work have already been
conducted in this direction in the VHDL verification commtyril8, 53]. However, these approaches
show some drawbacks: (1) they use the CP solver in a black mower, preventing any “deep”
optimisation, and (2) they handle bitwise constraints vattit-blasting technique, which is very
inefficient in a CP setting. The $MOSEsolver avoids bit-blasting through delayed computatioth an
specific optimisations. Moreover, it relies on a boundettharéetic solver optimised for constraints over
very large domains, incorporating state-of-the-art tedbgies such as congruence domains [35] and

Copyright(©) 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

28 S. BARDIN AND P. HERRMANN

global constraints to detect quickly unsatisfiable parteetearch space [19]. It would be interesting to
conduct an in-depth comparison between SAT-based and §&dlagproaches for solving constraints
over bit-vectors.

10. Conclusion and future works

Verification at the machine code level is more difficult thagher-level analysis mainly due to the
absence of any exact control-flow graph. However, this nmechbde analysis may be the most
relevant one in case of strong security requirements or theeonly option left when no higher-level
documentation is available. This paper shows how to perfartomatic structural test data generation
on a standalone executable. The approach followed is taorebxisting robust technologies, namely
concolic execution and Constraint Programming, and to ttiem to the specific issues appearing in
binary-level analysis. Innovative techniques for IR remxyvhave also been developed. Results have
been implemented in a tool named@oseEand encouraging experiments have been conducted.
This work is just a preliminary step demonstrating the Jigbbf automatic structural test data
generation on standalone executables. There are at laast directions for future work. First,
the test data generation technology needs to be improvedder ¢o scale up to larger programs,
and especially to handle functions with many nested callsevy long paths. There are different
possibilities, from modular generation [1, 27, 38] to hybgeneration [41] or dedicated constraint
solving techniques [6, 22]. Second, the user interface eftttol must be improved to allow more
interaction. No verification tool can claim to be completaiitomatic and user guidance has proven to
be useful. Finally, safe static IR recovery techniques 154,33, 34] could give assurance about the
quality of both the abstract control-flow graph and the cagermeasure returned bys@o0SE This is
not yet done in the tool, but would be useful for safety agtians where preciseness of the coverage
measure is essential.

Acknowledgements.The authors wish to thank the three anonymous referees &r helpful
comments, contributing to a significant improvement of thpq.

REFERENCES

. S. Anand, P. Godefroid and N. Tillmann. Demand-Driven @ositional Symbolic Execution. IMACAS 2008Springer.

. K. R. Apt. Principles of Constraint Programming. CamgedUniversity Press, 2003.

K. R. Apt and M. Wallace. Constraint Logic Programmingngskclipse. Cambridge University Press, 2007.

. R. Brummayer and A. Biere. Boolector: An Efficient SMT SailVor Bit-Vectors and Arrays. ITACAS 2009Springer.

. S. Bardin, B. Botella, F. Dadeau, F. Charreteur, A. Gofl®. Marre, C. Michel, M. Rueher and N. Williams. Constraint
based software testing. In GDR-GPL meeting, 2009.

. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, Z.ria, A. Nadel, A. Palti and R. Sebastiani. A Lazy and Layered
SMT(BV) Solver for Hard Industrial Verification Problemsn CAV 2007 Springer.

. B. Botella, A. Gotlieb and C. Michel. Symbolic executioffloating-point computations. I18TVRvol. 16, 2006.

. G. Balakrishnan, R. Gruian, T. W. Reps and T. TeitelbaurndeSurfer/x86-A Platform for Analyzing x86 Executables.
In CC 2005 Springer.
9. S. Bardin and P. Herrmann. Structural Testing of ExedegabinlCST 2008 IEEE Computer Society.

10. D. Babic and A. J. Hu. Calysto: scalable and precise detstatic checking, IICSE 2008 ACM.

11. S.Bardin and P. Herrmann. Pruning the search spacethirbpatd test generation. IBEE ICST 2009IEEE.

o uhwNE

0 ~

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0
Prepared usingstvrauth.cls DOI: 10.1002/stvr

OSMOSE: AUTOMATIC TESTING OF EXECUTABLES 29

12.
13.

14.
. G. Balakrishnan, T. Reps, D. Melski and T. Teitelbaum. SINWYX: What You See Is Not What You eXecute. IFRIP

16.

17.
18.

19.

D. Brumley, C. Hartwig, M. G. Kang, Z. Liang, J. Newsome,PBosankam and D. Song. BitScope: Automatically
Dissecting Malicious Binaries. Technical report CS-03,18MU, 2007.

S. Blazy, X. Leroy. Formal verification of a memory modmi €-like imperative languages. International Conference
on Formal Engineering Methods (ICFEM 200%plume 3785, pages 280-299, 2005.

G. Balakrishnan and T. Reps. Analyzing memory accesse6 executables. 16C 2004 Springer.

Working Conference on Verified Software: Theories, ToolpeEments2005.

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill and D. Rglen EXE: automatically generating inputs of death. In
CCS 2006ACM.

J. Esparza and S. Schwoon. A BDD-based Model CheckerefcurBive Programs. 1BAV 2001 Springer.

F. Ferrandi, M. Rendine and D. Sciuto. Functional veiftn for SystemC descriptions using constraint solvimgDATE
2002

T. Feydy, A. Schutt and P. J. Stuckey. Global differerarestraint propagation for finite domain solvers. ARDP 2008
ACM.

. A. Gotlieb, B. Botella and M. Rueher. Automatic Test D@eneration Using Constraint Solving Techniques.|S8TA

1998 ACM.

. A. Gotlieb, B. Botella and M. Watel. Inka: Ten years aftez firstideas. INCSSEA 2006

. V. Ganesh and D. L. Dill. A Decision Procedure for Bit-i&s and Arrays. ITCAV 2007 Springer.

. P. Godefroid, N. Klarlund and K. Sen. DART: Directed Amtted Random Testing. RLDI’2005. ACM.

. P. Godefroid, N. Klarlund, M. Y. Levin and D. Molnar. Auated Whitebox Fuzz Testing. MDSS 2008

. N. Gupta, A. P. Mathur and M. L. Soffa. Automated Test Daémeration Using an Iterative Relaxation Method FBE

1998

. N. Gupta, A. P. Mathur and M. L. Soffa. UNA Based lteraffest Data Generation and its Evaluation. ABE 1999

. P. Godefroid. Compositional dynamic test generationrP@PL 2007 ACM.

. http://ww. hi spano- sui za- sa. com

. J. C. King. Symbolic execution and program testing. Camigations of the ACM, 19(7), july 1976.

. B. Korel. Automated Software Test Data GenerationlEEBE TSE IEEE, 1990.

. B. Korel. Automated Test Data Generation for Progrants ®iocedures. I{8STA 1996

. D. Kroening and O. Strichman. Decision Procedures: AgoAthmic Point of View. Springer, 2008.

. J. Kinder and H. Veith Jakstab: A Static Analysis Platfdor Binaries InCAV 2008 Springer.

. J. Kinder, F. Zuleger and H. Veith An Abstract InterptietaBased Framework for Control Flow Reconstruction from

Binaries. InVMCAI 2008 Springer.

. M. Leconte and B. Berstel. Extending a CP Solver With Coegces as Domains for Software Verification.Workshop

on Constraints in Software Testing, Verification and Anialy§P 2006 Springer

. J.Limand T. W. Reps. A System for Generating Static Aretly for Machine Instructions. BC 2008 Springer.
. B. Marre and A. Arnould. Test sequences generation fraf8 TRE descriptions: GATeL. IASE 2000I1EEE.

P. Mouy, B. Marre, N.Williams and P. Le Gall. Generatidi\t-Paths Unit Test with Function Calls. IKCST2008

. J. Offutt, Z. jin and J. Pan. The Dynamic Domain ReducBwoacedure for Test Data Generation. Software Practice

and Experience29 (2), January 1999.

. X. Rival. Invariant Translation-Based CertificationAafsembly Code. ISTTT 6(1), July 2004.

. R. Majumdar and K. Sen. Hybrid Concolic Testing.I@SE 2007 IEEE.

. F. Rossi, P. Van Beek and T. Walsh, editors. Handbook ot€aint Programming. Elsevier, 2006.

. T.Reps, S. Schwoon, S. Jha and D. Melski. Weighted pughdgstems and their application to interprocedural dataflo

analysis. In SCP, october 2005.

. D. Suwimonteerabuth, F. Berger, S. Schwoon and J. Espgioped: A Test Environment for Java programs. GAV

2007, Springer.

. K. Sen, D. Marinov and G. Agha. CUTE: A Concolic Unit TagtiEngine for C. IrESEC/FSE 20Q05ACM.

. A. S. Tanenbaum. Structured Computer OrganizationntieesHall, 6th edition, 2005.

. N. Tillmann and J. de Halleux. Pex-White Box Test Genendor .NET. InTAP 2008 Springer.

. N. Tillmann and W. Schulte. Parameterized unit testES3&C/SIGSOFT FSE 2008CM.

. http://ww. absi nt.conl

. http://ww. dat ar escue. com

. N. Williams, B. Marre and P. Mouy. On-the-Fly GeneratadrK-Path Tests for C Functions. WSE 2004IEEE.

. T. Xie, N. Tillmann, P. de Halleux and W. Schulte. Fitn€@sded Path Exploration in Dynamic Symbolic Execution. In

DSN 2009IEEE.

53. Z. Zeng, M. Ciesielski and B. Rouzeyre. Functional testegation using Constraint Logic Programming.VIoSI-SOC
2001
Copyright(©) 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia2009;0:0-0

Prepared usingstvrauth.cls DOI: 10.1002/stvr

