BINSEC: Binary Code Analysis
with Low-Level Regions*

Adel Djoudi and Sébastien Bardin

CEA, LIST, Gif-sur-Yvette, F-91191, France
first.name@ea. fr

Abstract. This article presents the open sourcenBec platform for (formal)
binary-level code analysis. The platform is based on ameite of the DBA In-
termediate Representation, and it is composed of threemadiules: a front-end
including several syntactic disassembly algorithms areleimplification of
the resulting IR, a simulator supporting the recent loweleegion-based mem-
ory model, and a generic static analysis module.

1 Introduction

Binary-level program analysis has gained interest in theesteyears in order to address
the problems of analyzing closed-source software or maioitke (including malware)
and detecting compiler-induced bugs. Not requiring sogase makes such analysis
widely applicable.

The goal of BNSEC is to ease the development of binary code analyzers by provid
ing an open formal model for binary programs and an openesoplatform allowing
to share front-ends and ISA support. Like other platfornthsas BAP [7], GDSL [12],
Jakstab [11] or OSMOSE [3, 4], our platform disassemblearyicode and translates
the resulting machine instructions into an intermediatglemge, which is then ana-
lyzed. The main novelties of IR SEC are the following:

— an extended Intermediate Representation (IR) providistrattion and specifica-
tion mechanisms (Section 2), contrary to the very operatioature of previous
proposals [5,7,9,13];

— alow-level region-based semantics [2], allowing both astia@tt view of the mem-
ory and the ability to simulate correctly many native cod&scfion 3.3);

— a simplification engine able to remove a large part of flag ajp@ns (Section 3.2).

BINSEC is open-source (Igpl), it is written in OCaml and it is avhimat

http://sebastien.bardin.free.fr/binsec/.

2 Intermediate Representation: Extended DBA

DBA model. Dynamic Bit-vector Automata (DBA) [5] have been proposed generic
and concise formal model for low-level programs. They dfffierfollowing advantages:

* Work partially funded by French ANR (project BINSEC, graffiR-12-INSE-0002).



2 Adel Djoudi and Sébastien Bardin

(1) an architecture-independent formalism, (2) a very @nset of instructions and
operators, and (3) a simple semantics, without any impdidie-effect. They have been
used for modeling PowerPC and a few other architecturesaviquis binary-level an-
alyzers [3, 4, 6]. Note that floating-point arithmetic, nmiiftread and self-modification
are currently outside of the scope of DBA.

The key ingredients of the formalism are the following: a DBfogram manip-
ulates a finite set of global variables ranging over bitvex{(oegisters) and an array
of bitvectors of size 8 (memory); all bitvector sizes ardistdly known; a single ma-
chine instruction is decoded intobdock of DBA instructions - including intermediate
computations and temporary variables.

Extended DBA model.While DBA have shown to be useful in the analysis of safety-
critical systems [1], they lack abstraction and specifarathechanisms in order to han-
dle binary-level analysis over large non-critical code¥/e propose the following im-
provements:

— more abstract operationsg | oc, nondet ) together with basic specification mech-
anisms éssune, assert ), see Figure 1;

— amore abstract low-level region-based semantics [2]egspiting memory as a dy-
namic collection of disjoint arrays ¢nst ant , st ack, mal | oc(i d) ) while being
able to simulate precisely many low-level programs, se¢i@ed;

— access permissions foead, wr i t e andexecut e operations; permissions are de-
fined onregion zones, i.e. region partitions defined by (user-given) predicates

— tags on instructions and variables for embedding usefarimétion available at
decoding, such agt np> or <f | ag> for variables and&cal | > or <r et > for jumps.

Instructions Expressions
lhs :=rhs, goto addr —ef{i .. j} extys(en), e:e
got o addr < call, ret, none >

@ expr, Z), @ expr, ‘;;)

goto expr < call, ret, none > - e _ e
ite(cond)? goto addr : goto addr’ {+, ’X"/”’i You,s

co . — e {<u,37gu,sa*a7éa2u,sv>uy5} €
l'hs := malloc(size), goto addr — e {AV, B, <<, >>ua) & le
free(expr), goto addr P sy s

I hs : = nondet (size), goto addr
assert(cond), goto addr
assune(cond), goto addr
stop < ok, ko, none >

Fig. 1: Extended DBA instructions

3 Platform overview

BINSEC is designed around three basic services, depicted in FRyui® a front-end

translating executable codes into DBA programs (loadimgoding, syntactic disas-
sembly, support of DBA stubs) and simplifying them; (2) a slator for extended
DBA, supporting three different memory models (flat, stadda&gions [8], low-level

regions [2]); and finally (3) a generic static analysis erdin progress) allowing safe
CFG recovery.

! This drawback is common to other formal IRs such as REIL [ER. [13] and BAP [7].



BINSEC: Binary Code Analysis with Low-Level Regions 3

Loader

01101

01001 ‘

10100

A ,

]
n__) Disassembler
+program-

level
simplification

Fig. 2: BINSEC platform

3.1 Front-end

Loading and decoding.The main service here is a decoding function taking a (Viytua
address and returning a block of DBA instructions simutatinee semantics of the cor-
responding machine code instruction. The platform culyenpports theELF format
(aPE loader is in progress) and a decoderxXés- 32 is provided. The following fea-
tures are supported: all prefixes buti t andl ock, all basic instructions (380 instr.)
and allmx instructions not involving floating-point registers (10&ir.).

DisassemblyThe goal of disassembly is to give the semantics of the whaewable
file. This is a very hard problem because of dynamic jumps(611]. We provide
implementations of the most common solutions: (1) recersilsassembly, with the
possibility to specify some jump targets; (2) linear sweeassembly (typically used
by obj dunp) with instruction-wise or byte-wise granularity, the lasdlowing to disas-
semble overlapping instructions; (3) a combination of reiwe and linear sweep disas-
sembly, mimicking the approach bbA pr o; and finally (4) a combination of recursive
disassembly with dynamic execution, where jump targetsisevered through simu-
lation.

Formal stubs. A formal stub is a block of DBA instructions that will be insed at some
address of the retrieved program, either in place of thdtretihe decoder@ epl ace)

or in combination with it @ nsert ). This feature is useful either when the correspond-
ing code is not available (analysis of object files rathenth&ecutable files), or for
abstracting parts of the code (typically, library func8dnA stub forl i bc/ mal | oc
function is described in Figure 3.

@replace :
Oxb7fff414 {
tmp<32> := nondet(32); /I abstracting a failure condition, typically out of memory
if (tmp = 0<32>) goto I1 else gotol2;
11: eax<32> := 0<32>; goto I13; /l failure, result is NULL
12: eax<32> := malloc (@[esp + 4&32>,<—,4]); /I DBA malloc, with size read on stack
assume ((eax modu<d32>) = 0<32>); /I alignment constraint
13: esp<32> = esp + &32>; /I stack cleanup
goto @[esp — 4<32>,<—4]; /I jump to return address (call-site) retrieved from the stack
}

Fig. 3. Astub forl i bc/ mal | oc



4 Adel Djoudi and Sébastien Bardin

3.2 Simplifications

Simplifications discard unused DBA instructions, typigatose instructions model-
ing flag updates. The goal is to help later analyzes, eithiemaatic or human-based.
We essentially try to simplify temporary variables and flagiables, identified through
DBA tags. We rely on rewriting rules (instruction-wise) nstant propagation and elim-
ination of temporary variables (block-wise), and livenasalysis for flag elimination

(inter-block). The method removes up to 75% of flag operati@h Section 4).

3.3 Memory model and simulation

Memory models.We provide a partitioned memory model in the vein of Comp(8rt
with values of the form(r, val) wherer is a region symbol - the base, and! is a
bitvector - the offset('st being a special region symbol acting @s This modeling

is very adapted for managing dynamically allocated memadyallows robust formal
analyzes thanks to implicit partitioning of memory. Howeveost operations are il-
legal with pure regions [8], e.dr1,v1) — (r2,v2) is undefined whem; # ro and

ro # Cst. Unfortunately, undefined patterns are found in commobc programs,
such agrermove or mencopy, and, even worst, they can also be introduced at compile-
time. For instance, an instruction= if (!x) then 1 el se 0; can be compiled

as follows (assuming is stored ineax):

neg eax /I eax := -eax. CF := 0if source operand (eax) isO; otherwise CF := 1
sbb eax, eax /l eax := eax - (eax + CF) = -CF
inc eax /leax:= eax+ 1=-CF+ 1

The compiler performs here an optimization calldnchless conditional in order to
optimize instruction pipelining. In a region-based modkt result of the firsheg
instruction is undefined when the input is a pointer value,. # Cst. Low-level
region-based models [2] have been introduced recentlydread this issue by allowing
some reasoning over region symbols.

Simulation. We provide simulation and random testing modes supporlirfgatures
of extended DBA. Three different memory models can be sete¢t) flat model (mem-
ory as a single array), (b) standard region-based model@rdv{-level region-based
model. Interestingly, all models are implemented in a udifi@y, pure regions and flat
model being viewed as restrictions of low-level regions.

3.4 Static analysis interface

We provide a generic fixpoint computation for abstract dorsajiven as lattices, al-

lowing one to quickly prototype binary-level analyzers.eTturrent implementation

offers the following advantages: (1) tight interleavingsyintactic disassembly with

value analysis [6, 11], allowing sound resolution of indifemps; (2) the possibility to

restrict a priori the set of possible jump targets (closed@)dy providing a finite set of

acceptable targets; (3) a degraded mode, in the vein of#@&re the analyzer switches
to an unsound analysis whenever a jump or a memory operatiorot be resolved pre-
cisely enough. The interface is currently limited to nofatienal abstract domains. We
plan to extend it quickly to relational domains and to previchplementations of the

most common domains.



BINSEC: Binary Code Analysis with Low-Level Regions 5

4 Experiments

We evaluate our implementation on two main criteria: theaotmf low-level regions
and the effectiveness of our simplifications. Simplificaiare performed over standard
Unix programs, while experiments on low-level regions aagied upon a collection
of small- to medium-size procedures (up to 5,000 machirteliasons) froml i bc and
the VeriSec benchmatkAll experiments are performed on an Intel Core i5 3.20Ghz.

Benefits of simplifications.Results are presented in Table 1 and summarized in Table 2.
Simplifications allow a global reduction of instructions2%%, and (most important)
flag assignments are reduced by about 73%, which is integelsécause these opera-
tions are complex to handle in analyzers. Simplified DBA pangs are in average 2.5x
larger than native codes (3.3x larger without simplificas®. This is pretty close to

the minimal ratio between DBA and machine code, since am-biteck got o is added

to each DBA block.

progranjnativel DBA simplified DBA
loc | loc Tko|l loc time red
bash 166K|558K

(=]

402K 10.65m 27.95
cat 7303 23K 18K 16.62s 20.55%
echo 3345 10K 8181 6.39s 22.38
less 23K| 80K 56K 89.31s 29.03
Is 18K| 63K 45K 83.42s 27.38

mkdir 7329 24K
netstat | 16K| 50K

18K 23.65s 27.08
68.48s 17.43¢

‘ DBA vs asm ‘ 3.3x ‘

OONOMWOOWUIO®UIO O Ul
I
[
~

NSO ST OO XNO O O O O o o

ps 11124 36K 28K 47.90s 21.389 (no simpl)

pwd 3581 11K 8942 9.77s 21.47 dba instr |24.00%

rm 9186 30K 16/ 23K 31.13s 22.52 reductiorjtmp assign21.89%

sed 9993 32K 24K 37.50s 24.24 flag assign73.17%

tar 64K| 212K 159K  5.2m 25.269 DBA vs asm > Bx

touch | 7944 26K 19K 30.02s 25.75¢ ‘ (simpl) ‘

uname | 3271 10K 8131 8.89s 21.68 X - X
- DBA vs asm: ratio between # DBA instructions and #
T ko: # unsupported instructions machine instructions

Table 1. Evaluating DBA optimization. Table 2. Average reductions

Benefits of low-level regionsWe compare both memory models on their ability to pro-
vide defined concrete semantics on the benchmark programseTprograms contain
some patterns that illustrate illegal operations in stashdagion-based model. Results
are summarized in Table 3, where we also provide time inftionav.r.t. the flat mem-
ory model. The standard region-based model succeeds irLf#0yexample, while low-
level regions succeed in 20/20 examples. It seems thatdwel-tegions are absolutely
necessary in order to give a (useful) non-flat semanticsrtarpiprograms.

2 Available atht t ps: / / se. cs. t or ont 0. edu/ i ndex. php/ Ver i sec_Sui t e.
3 Simonet al. report a 7x size increase for GDSL/RREIL, and a 3.5x sizeemse after simpli-
fications [12].



6 Adel Djoudi and Sébastien Bardin
program standardlow-level || flat program standardlow-level || flat
regions| regions regions| regions

aligned.calloc X v 4.73s(|0.0003 testor_pointer 1.08s | v 1.09s|[1.095
lipointer _arithmetic X v/ 3.51s|| 0.01s loops X v 1.0064|1.079
malloc X v 0.62s]] 0.008s| full X v 5.76s[]5.739
memcpy X v 0.001g| 0.003 istrstr X v 5.54s][5.779
memmove X v 0.49s|| 0.01s istrstr_loops X v 5.40s][5.614
mmap X v 0.03s|| 0.02s istrstr2 _loops X v 5.27s||5.644
negsbb.inc X v 2.81s|| 2.82s parseconfig X v 3.83s[[4.129
pointer_arithmetic X v 0.02s|| 0.02s guard_random_index|  x v 0.14s|| 0.13
pointer_logical X v/ 0.12s|| 0.001 guard_strstr X v 5.53s|[5.534
pointer_or_int X v 0.07s([0.0006 guard_strchr X v 2.98s(|3.029
[success [ 0/10 | 10/10 [] 10710] [success [ /10 [ 10/10 ][10/19

Table 3. Simulation with three different memory models

5 Future Work

We plan to extend very quickly our framework with more deasdeower PC, ARM and
loaders PE). We also plan to extend the static analysis interface addadic facilities
for symbolic execution, taking low-level memory regionwiaccount.

References
1. Bardin, S., Baufreton, P., Cornuet, N., Herrmann, P.béals.: Binary-level Testing of
Embedded Programs. In: QSIC 2013. IEEE, Los Alamitos (2013)
2. Blazy S., Besson F., Wilke P.: A Precise and Abstract Memvwdel for C using Symbolic
Values. In: APLAS 2014. Springer, Heidelberg (2014)
3. Bardin, S., Herrmann, P.: Structural Testing of Exedetab In: ICST 2008. IEEE, Los
Alamitos (2013)
4. Bardin, S., Herrmann, P.. OSMOSE: Automatic Structuesting of Executables. Softw.
Test., Verif. Reliab. 21(1): 29-54(2011)
5. Bardin S., Herrmann P., Leroux J., Ly O., Tabary R., Vinden The BINCOA Framwork
for Binary Code Analysis. In: CAV 2011. Springer, HeidelpéR011)
6. Bardin S., Herrman P., Védrine F.: Refinement-based CEGRstruction from Unstruc-
tured Programs. In: VMCAI 2011. Springer, Heidelberg (2011
7. Brumley, D., Jager, |., Avgerinos, T., Schwartz, E.: BAPBinary Analysis Platform. In:
CAV 2011. Springer, Heidelberg (2011)
8. Leroy, X., Appel, AW., Blazy, S., Stewart, G.: The CompiGeemory model. In: Program
Logics for Certified Compilers. Cambridge University Préa314)
9. Dullien, T., Porst, S.: REIL: A platform-independentannediate representation of disas-
sembled code for static code analysis. In: CanSecWest 2009.
10. Kinder, J., Kravchenko, D.: Alternating Control Flowd®astruction. In: VMCAI 2012.
Springer, Heidelberg (2012)
11. Kinder, J., Veith, H.: Jakstab: A static analysis platfdor binaries. In: CAV 2008.
Springer, Heidelberg (2008)
12. Simon, A., Kranz, J.: The GDSL toolkit: Generating Feads for the Analysis of Machine
Code. In: PPREW 2014. ACM, New York (2014)
13. Sepp, A., Mihaila, B., Simon A.: Precise Static AnalysiBinaries by Extracting Rela-

tional Information. In: WCRE 2011. IEEE, Los Alamitos (2011



