
BINSEC: Binary Code Analysis
with Low-Level Regions⋆

Adel Djoudi and Sébastien Bardin

CEA, LIST, Gif-sur-Yvette, F-91191, France
first.name@cea.fr

Abstract. This article presents the open source BINSEC platform for (formal)
binary-level code analysis. The platform is based on an extension of the DBA In-
termediate Representation, and it is composed of three mainmodules: a front-end
including several syntactic disassembly algorithms and heavy simplification of
the resulting IR, a simulator supporting the recent low-level region-based mem-
ory model, and a generic static analysis module.

1 Introduction

Binary-level program analysis has gained interest in theselast years in order to address
the problems of analyzing closed-source software or mobilecode (including malware)
and detecting compiler-induced bugs. Not requiring sourcecode makes such analysis
widely applicable.

The goal of BINSEC is to ease the development of binary code analyzers by provid-
ing an open formal model for binary programs and an open-source platform allowing
to share front-ends and ISA support. Like other platforms such as BAP [7], GDSL [12],
Jakstab [11] or OSMOSE [3, 4], our platform disassembles binary code and translates
the resulting machine instructions into an intermediate language, which is then ana-
lyzed. The main novelties of BINSEC are the following:

– an extended Intermediate Representation (IR) providing abstraction and specifica-
tion mechanisms (Section 2), contrary to the very operational nature of previous
proposals [5, 7, 9, 13];

– a low-level region-based semantics [2], allowing both an abstract view of the mem-
ory and the ability to simulate correctly many native codes (Section 3.3);

– a simplification engine able to remove a large part of flag operations (Section 3.2).

BINSEC is open-source (lgpl), it is written in OCaml and it is available at
http://sebastien.bardin.free.fr/binsec/.

2 Intermediate Representation: Extended DBA

DBA model.Dynamic Bit-vector Automata (DBA) [5] have been proposed asa generic
and concise formal model for low-level programs. They offerthe following advantages:

⋆ Work partially funded by French ANR (project BINSEC, grant ANR-12-INSE-0002).

2 Adel Djoudi and Sébastien Bardin

(1) an architecture-independent formalism, (2) a very concise set of instructions and
operators, and (3) a simple semantics, without any implicitside-effect. They have been
used for modeling PowerPC and a few other architectures in previous binary-level an-
alyzers [3, 4, 6]. Note that floating-point arithmetic, multi-thread and self-modification
are currently outside of the scope of DBA.

The key ingredients of the formalism are the following: a DBAprogram manip-
ulates a finite set of global variables ranging over bitvectors (registers) and an array
of bitvectors of size 8 (memory); all bitvector sizes are statically known; a single ma-
chine instruction is decoded into ablock of DBA instructions - including intermediate
computations and temporary variables.

Extended DBA model.While DBA have shown to be useful in the analysis of safety-
critical systems [1], they lack abstraction and specification mechanisms in order to han-
dle binary-level analysis over large non-critical codes1. We propose the following im-
provements:

– more abstract operations (malloc,nondet) together with basic specification mech-
anisms (assume, assert), see Figure 1;

– a more abstract low-level region-based semantics [2], representing memory as a dy-
namic collection of disjoint arrays (constant, stack, malloc(id)) while being
able to simulate precisely many low-level programs, see Section 4;

– access permissions forread, write andexecute operations; permissions are de-
fined onregion zones, i.e. region partitions defined by (user-given) predicates;

– tags on instructions and variables for embedding useful information available at
decoding, such as<tmp> or<flag> for variables and<call> or<ret> for jumps.

Instructions
– lhs := rhs, goto addr
– goto addr < call, ret, none >
– goto expr < call, ret, none >
– ite(cond)? goto addr : goto addr’
– lhs := malloc(size), goto addr
– free(expr), goto addr
– lhs := nondet(size), goto addr
– assert(cond), goto addr
– assume(cond), goto addr
– stop < ok, ko, none >

Expressions
– e{i .. j}, extu,s(e,n), e :: e

– @(expr,
→

k), @(expr,
←

k)
– e {+,−,×, /u,s,%u,s} e
– e {<u,s,≤u,s,=, 6=,≥u,s, >u,s} e
– e {∧,∨,⊕, <<,>>u,s} e, !e

Fig. 1: Extended DBA instructions

3 Platform overview

BINSEC is designed around three basic services, depicted in Figure2: (1) a front-end
translating executable codes into DBA programs (loading, decoding, syntactic disas-
sembly, support of DBA stubs) and simplifying them; (2) a simulator for extended
DBA, supporting three different memory models (flat, standard regions [8], low-level
regions [2]); and finally (3) a generic static analysis engine (in progress) allowing safe
CFG recovery.

1 This drawback is common to other formal IRs such as REIL [9], RREIL [13] and BAP [7].

BINSEC: Binary Code Analysis with Low-Level Regions 3

Fig. 2: BINSEC platform

3.1 Front-end

Loading and decoding.The main service here is a decoding function taking a (virtual)
address and returning a block of DBA instructions simulating the semantics of the cor-
responding machine code instruction. The platform currently supports theELF format
(aPE loader is in progress) and a decoder forx86-32 is provided. The following fea-
tures are supported: all prefixes butwait andlock, all basic instructions (380 instr.)
and allmmx instructions not involving floating-point registers (100 instr.).

Disassembly.The goal of disassembly is to give the semantics of the whole executable
file. This is a very hard problem because of dynamic jumps [6, 10, 11]. We provide
implementations of the most common solutions: (1) recursive disassembly, with the
possibility to specify some jump targets; (2) linear sweep disassembly (typically used
by objdump) with instruction-wise or byte-wise granularity, the later allowing to disas-
semble overlapping instructions; (3) a combination of recursive and linear sweep disas-
sembly, mimicking the approach ofIDA pro; and finally (4) a combination of recursive
disassembly with dynamic execution, where jump targets arediscovered through simu-
lation.

Formal stubs.A formal stub is a block of DBA instructions that will be inserted at some
address of the retrieved program, either in place of the result of the decoder (@replace)
or in combination with it (@insert). This feature is useful either when the correspond-
ing code is not available (analysis of object files rather than executable files), or for
abstracting parts of the code (typically, library functions). A stub forlibc/malloc
function is described in Figure 3.

@replace :
0 xb7 f f f 414 {

tmp<32> := nondet (3 2) ; // abstracting a failure condition, typically out of memory
i f (tmp = 0<32>) goto l 1 e l s e goto l 2 ;

l 1 : eax<32> := 0<32>; goto l 3 ; // failure, result is NULL
l 2 : eax<32> := ma l loc (@[esp + 4<32> ,<− ,4]); // DBA malloc, with size read on stack

assume ((eax modu 4<32>) = 0<32>); // alignment constraint
l 3 : esp<32> := esp + 4<32>; // stack cleanup

goto @[esp− 4<32>,<−,4]; // jump to return address (call-site) retrieved from the stack
}

Fig. 3. A stub forlibc/malloc

4 Adel Djoudi and Sébastien Bardin

3.2 Simplifications

Simplifications discard unused DBA instructions, typically those instructions model-
ing flag updates. The goal is to help later analyzes, either automatic or human-based.
We essentially try to simplify temporary variables and flag variables, identified through
DBA tags. We rely on rewriting rules (instruction-wise), constant propagation and elim-
ination of temporary variables (block-wise), and livenessanalysis for flag elimination
(inter-block). The method removes up to 75% of flag operations (cf. Section 4).

3.3 Memory model and simulation

Memory models.We provide a partitioned memory model in the vein of CompCert[8],
with values of the form(r, val) wherer is a region symbol - the base, andval is a
bitvector - the offset (Cst being a special region symbol acting as0). This modeling
is very adapted for managing dynamically allocated memory and allows robust formal
analyzes thanks to implicit partitioning of memory. However, most operations are il-
legal with pure regions [8], e.g.(r1, v1) − (r2, v2) is undefined whenr1 6= r2 and
r2 6= Cst. Unfortunately, undefined patterns are found in commonlibc programs,
such asmemmove or memcopy, and, even worst, they can also be introduced at compile-
time. For instance, an instructionx = if (!x) then 1 else 0; can be compiled
as follows (assumingx is stored ineax):

neg eax // eax := -eax. CF := 0 if source operand (eax) is 0; otherwise CF := 1
sbb eax, eax // eax := eax - (eax + CF) = -CF
inc eax // eax := eax + 1 = -CF + 1

The compiler performs here an optimization calledbranchless conditional in order to
optimize instruction pipelining. In a region-based model,the result of the firstneg
instruction is undefined when the input is a pointer value, i.e. r 6= Cst. Low-level
region-based models [2] have been introduced recently to address this issue by allowing
some reasoning over region symbols.

Simulation. We provide simulation and random testing modes supporting all features
of extended DBA. Three different memory models can be selected: (a) flat model (mem-
ory as a single array), (b) standard region-based model and (c) low-level region-based
model. Interestingly, all models are implemented in a unified way, pure regions and flat
model being viewed as restrictions of low-level regions.

3.4 Static analysis interface

We provide a generic fixpoint computation for abstract domains given as lattices, al-
lowing one to quickly prototype binary-level analyzers. The current implementation
offers the following advantages: (1) tight interleaving ofsyntactic disassembly with
value analysis [6, 11], allowing sound resolution of indirect jumps; (2) the possibility to
restrict a priori the set of possible jump targets (closed mode) by providing a finite set of
acceptable targets; (3) a degraded mode, in the vein of [10],where the analyzer switches
to an unsound analysis whenever a jump or a memory operation cannot be resolved pre-
cisely enough. The interface is currently limited to non-relational abstract domains. We
plan to extend it quickly to relational domains and to provide implementations of the
most common domains.

BINSEC: Binary Code Analysis with Low-Level Regions 5

4 Experiments

We evaluate our implementation on two main criteria: the impact of low-level regions
and the effectiveness of our simplifications. Simplifications are performed over standard
Unix programs, while experiments on low-level regions are carried upon a collection
of small- to medium-size procedures (up to 5,000 machine instructions) fromlibc and
the VeriSec benchmark2. All experiments are performed on an Intel Core i5 3.20Ghz.

Benefits of simplifications.Results are presented in Table 1 and summarized in Table 2.
Simplifications allow a global reduction of instructions of24%, and (most important)
flag assignments are reduced by about 73%, which is interesting because these opera-
tions are complex to handle in analyzers. Simplified DBA programs are in average 2.5x
larger than native codes (3.3x larger without simplifications) 3. This is pretty close to
the minimal ratio between DBA and machine code, since an inter-blockgoto is added
to each DBA block.

programnative DBA simplified DBA
loc loc † ko loc time red

bash 166K 558K 5 402K 10.65m 27.95%
cat 7303 23K 0 18K 16.62s 20.55%
echo 3345 10K 0 8181 6.39s 22.38%
less 23K 80K 5 56K 89.31s 29.03%
ls 18K 63K 6 45K 83.42s 27.38%
mkdir 7329 24K 5 18K 23.65s 27.08%
netstat 16K 50K 3 41K 68.48s 17.43%
ps 11125 36K 0 28K 47.90s 21.38%
pwd 3581 11K 0 8942 9.77s 21.47%
rm 9186 30K 16 23K 31.13s 22.52%
sed 9993 32K 0 24K 37.50s 24.24%
tar 64K 212K 7 159K 5.2m 25.26%
touch 7944 26K 0 19K 30.02s 25.75%
uname 3271 10K 0 8131 8.89s 21.68%

† ko: # unsupported instructions

Table 1.Evaluating DBA optimization.

DBA vs asm 3.3x
(no simpl)

dba instr 24.00%
reductiontmp assign21.89%

flag assign73.17%

DBA vs asm 2.5x
(simpl)

DBA vs asm: ratio between # DBA instructions and #
machine instructions

Table 2.Average reductions

Benefits of low-level regions.We compare both memory models on their ability to pro-
vide defined concrete semantics on the benchmark programs. These programs contain
some patterns that illustrate illegal operations in standard region-based model. Results
are summarized in Table 3, where we also provide time information w.r.t. the flat mem-
ory model. The standard region-based model succeeds in only1/20 example, while low-
level regions succeed in 20/20 examples. It seems that low-level regions are absolutely
necessary in order to give a (useful) non-flat semantics to binary programs.

2 Available athttps://se.cs.toronto.edu/index.php/Verisec Suite.
3 Simonet al. report a 7x size increase for GDSL/RREIL, and a 3.5x size increase after simpli-

fications [12].

6 Adel Djoudi and Sébastien Bardin

program standard low-level flat

regions regions
aligned calloc x X 4.73s 0.0003s
llpointer arithmetic x X 3.51s 0.01s
malloc x X 0.62s 0.008s
memcpy x X 0.001s 0.003
memmove x X 0.49s 0.01s
mmap x X 0.03s 0.02s
neg sbb inc x X 2.81s 2.82s
pointer arithmetic x X 0.02s 0.02s
pointer logical x X 0.12s 0.001
pointer or int x X 0.07s 0.0006s

success 0/10 10/10 10/10

program standard low-level flat

regions regions
test or pointer 1.08s X 1.09s 1.09s
loops x X 1.006s 1.07s
full x X 5.76s 5.73s
istrstr x X 5.54s 5.77s
istrstr loops x X 5.40s 5.61s
istrstr2 loops x X 5.27s 5.64s
parse config x X 3.83s 4.12s
guard random index x X 0.14s 0.13
guard strstr x X 5.53s 5.53s
guard strchr x X 2.98s 3.02s

success 1/10 10/10 10/10

Table 3.Simulation with three different memory models

5 Future Work

We plan to extend very quickly our framework with more decoders (PowerPC,ARM) and
loaders (PE). We also plan to extend the static analysis interface and add basic facilities
for symbolic execution, taking low-level memory regions into account.

References
1. Bardin, S., Baufreton, P., Cornuet, N., Herrmann, P., Labbé, S.: Binary-level Testing of

Embedded Programs. In: QSIC 2013. IEEE, Los Alamitos (2013)
2. Blazy S., Besson F., Wilke P.: A Precise and Abstract Memory Model for C using Symbolic

Values. In: APLAS 2014. Springer, Heidelberg (2014)
3. Bardin, S., Herrmann, P.: Structural Testing of Executables. In: ICST 2008. IEEE, Los

Alamitos (2013)
4. Bardin, S., Herrmann, P.: OSMOSE: Automatic Structural Testing of Executables. Softw.

Test., Verif. Reliab. 21(1): 29-54(2011)
5. Bardin S. , Herrmann P., Leroux J., Ly O., Tabary R., Vincent A.: The BINCOA Framwork

for Binary Code Analysis. In: CAV 2011. Springer, Heidelberg (2011)
6. Bardin S., Herrman P., Védrine F.: Refinement-based CFG Reconstruction from Unstruc-

tured Programs. In: VMCAI 2011. Springer, Heidelberg (2011)
7. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.: BAP:A Binary Analysis Platform. In:

CAV 2011. Springer, Heidelberg (2011)
8. Leroy, X., Appel, A.W., Blazy, S., Stewart, G.: The CompCert memory model. In: Program

Logics for Certified Compilers. Cambridge University Press(2014)
9. Dullien, T., Porst, S.: REIL: A platform-independent intermediate representation of disas-

sembled code for static code analysis. In: CanSecWest 2009.
10. Kinder, J., Kravchenko, D.: Alternating Control Flow Reconstruction. In: VMCAI 2012.

Springer, Heidelberg (2012)
11. Kinder, J., Veith, H.: Jakstab: A static analysis platform for binaries. In: CAV 2008.

Springer, Heidelberg (2008)
12. Simon, A., Kranz, J.: The GDSL toolkit: Generating Frontends for the Analysis of Machine

Code. In: PPREW 2014. ACM, New York (2014)
13. Sepp, A., Mihaila, B., Simon A.: Precise Static Analysisof Binaries by Extracting Rela-

tional Information. In: WCRE 2011. IEEE, Los Alamitos (2011)

