
An All-in-One Toolkit for
Automated White-Box Testing⋆

Sébastien Bardin, Omar Chebaro, Mickaël Delahaye, and Nikolai Kosmatov

CEA, LIST, Gif-sur-Yvette, F-91191, France
first.name@cea.fr

Abstract. Automated white-box testing is a major issue in software engineering.
Over the years, several tools have been proposed for supporting distinct parts of
the testing process. Yet, these tools are mostly separated and most of them sup-
port only a fixed and restricted subset of testing criteria. We describe in this paper
FRAMA -C/LTEST, a generic and integrated toolkit for automated white-box test-
ing of C programs. LTEST provides a unified support of many different testing
criteria as well as an easy integration of new criteria. Moreover, it is designed
around three basic services (test coverage estimation, automatic test generation,
detection of uncoverable objectives) covering most major aspects of white-box
testing and taking benefit from a combination of static and dynamic analyses.
Services can cooperate through a shared coverage database.Preliminary experi-
ments demonstrate the possibilities and advantages of suchcooperations.

1 Introduction

Automated white-box testing is a major issue in software engineering. Along the years,
several tools have been proposed for supporting distinct parts of the testing process,
such as test replay, coverage estimation or automatic test generation. Yet, these tools
are mostly separated, and most of them support only a fixed andrestricted subset of
existing testing criteria.

Our main goals are (1) to provide tool support for most steps of the white-box testing
process, and (2) to support a large range of coverage criteria and to offer flexible ways
of adding new ones. We propose FRAMA -C/LTEST, ageneric andintegrated toolkit for
automated white-box testing of C programs. It is generic in the sense that it supports a
broad class of coverage criteria in a unified way, and integrated in the sense that it covers
most major aspects of white-box testing. FRAMA -C/LTEST is implemented on top of
the FRAMA -C verification platform [4] and relies on a combination of test generation
and static analysis. More precisely:

– LTESTprovides three basic services for test automation: coverage estimation, auto-
matic test generation (ATG) and detection of uncoverable test objectives. Moreover,
several coverage criteria are already supported, and adding new ones is straightfor-
ward. We achieved this by building the tool upon label coverage [2], a specification
mechanism allowing to manage many existing criteria in a unified way.

⋆ Work partially funded by EU FP7 (project STANCE, grant 317753) and French ANR (project
BINSEC, grant ANR-12-INSE-0002).

– The toolkit is designed around four basic modules (program annotation, coverage
estimation, ATG and detection of uncoverable labels) that advantageously combine
static and dynamic analysis techniques and communicate through a shared database
of coverage information. This modular architecture allowsfor flexible interactions
between modules and gives opportunities for dedicated optimisations.

– We provide a summary of preliminary results demonstrating the benefits of our
hybrid analysis approach, typical use-case scenarios and gains of our optimisations.

The paper is organized as follows. Section 2 provides necessary background on
labels. An overview of the LTEST platform is given in Section 3, including a descrip-
tion of the provided services, a typical use-case and implementation details. Section 4
presents a summary of experiments. Finally, related work isdiscussed in Section 5 and
Section 6 concludes the paper.

2 Labels

Label coverage [2] provides a convenient and powerful specification mechanism for
coverage criteria.Labels are predicates attached to program instructions. A program
with labels is called anannotated program. A label is covered if a test execution reaches
it and satisfies the predicate. Labels can faithfully emulate many standard coverage
criteria, from decision or condition coverage to a substantial subset of weak mutations,
allowing us to manage all of them in a unified way. Basically, for each test objective
a new label is added to the program under test, such that covering the label in the
annotated program is equivalent to covering the test objective in the program under test.
The automatic insertion of adequate labels for a given coverage criterion is performed
by a so-calledlabelling function. Several examples are presented in Fig. 1.

statement_1;
if (x==y && a<b)

{...};
statement_3;

−→

statement_1;
// l1: x==y && a<b
// l2: !(x==y && a<b)
if (x==y && a<b)

{...};
statement_3;

statement_1;
// l1: x==y
// l2: x!=y
// l3: a<b
// l4: a>=b
if (x==y && a<b)

{...};
statement_3;

statement_1;
// l1: x==y && a<b
// l2: x!=y && a<b
// l3: x==y && a>=b
// l4: x!=y && a>=b
if (x==y && a<b)

{...};
statement_3;

Decisions (DC) Conditions (CC) Multiple Conditions (MCC)

int foo(int x){
statement_1;
...

}

−→

int foo(int x){
// l1: true
statement_1;
...

}

int foo(int x){
// l1: x==0
// l2: x>0
// l3: x<0
statement_1;
...

}

Functions (FC) Input Domain Partition (IDC)

Fig. 1. Simulating standard coverage criteria with labels

Dynamic Symbolic Execution (DSE) [7, 11] is a popular approach to automatic test
generation, based on path exploration. We showed in previous work [2] how to extend
DSE for handling labels with only very small overhead, whileprior instrumentation-
based approaches incur a blow-up of the search space [9]. We denote by DSE⋆ this
modified version of DSE.

3 Overview of the platform

3.1 From the user perspective

LTEST comes as a series of FRAMA -C plugins [4]. The toolkit offers the following
main services:

Uncoverability detection: the service detects uncoverable test objectives, i.e. those
objectives which cannot be covered by any test datum. The information is primarily
used by other modules, but it can also be exported for external use.

Coverage estimation: the service replays a given test suite and reports its coverage.
Coverage is given as a whole (all test objectives taken into account) and per crite-
rion. Moreover, uncoverable or uncovered test objectives are reported.

ATG: the service produces a test suite which can be replayed for coverage estimation.
In case a test suite has already been replayed, the ATG service will try to complete
the achieved coverage rather than to start from scratch.

The platform currently supports the following test criteria [1, 2]: decision coverage
(DC), function coverage (FC), condition coverage (CC), multiple-condition coverage
(MCC), weak mutation (WM, operators AOR, ROR, COR, ABS) and input domain
partition (IDC). Moreover, coverage criteria can be combined together, test objectives
can be restricted to certain procedures of the program undertest and it is possible to add
hand-written test objectives.

3.2 A typical use-case

To illustrate the usage of the platform, let us consider a toyexample. The function
quadrant of Fig. 2 takes as inputs the coordinates of two pointsP1 = (x1, y1) and
P2 = (x2, y2) on the plane and checks if they belong to the same quadrant.

Suppose we run LTESTfirst to generate labels for this function and choose the MCC
coverage criterion [1]. Here, 16 labels will be added by the tool before eachif state-
ment, that is, 64 labels in total. For instance, the labels with the following conditions
are added just before line 6 of Fig. 2:

x1 ⋄ 0 ∧ x2 ⋄ 0 ∧ y1 • 0 ∧ y2 • 0, where ⋄ ∈ {≤, >}, • ∈ {≥, <}.

Next, we run the ATG service based on DSE⋆. It covers 58 of the 64 labels after
exploring 409 (partial) program paths. The remaining 6 labels are indeed uncoverable.
For example, the labelψ = x1 > 0 ∧ x2 > 0 ∧ y1 ≥ 0 ∧ y2 ≥ 0 added before the
statement of line 6 is uncoverable since the conditionψ is weaker than the condition

1 // Checks if input points (x1,y1) and (x2,y2) lie in the same quadrant
2 // of the plane. Returns the quadrant number if so, otherwise returns 0.
3 int quadrant (int x1, int y1, int x2, int y2){
4 if(x1 >= 0 && x2 >= 0 && y1 >= 0 && y2 >= 0)
5 return 1; // (+,+): quadrant 1
6 if(x1 <= 0 && x2 <= 0 && y1 >= 0 && y2 >= 0)
7 return 2; // (-,+): quadrant 2
8 if(x1 <= 0 && x2 <= 0 && y1 <= 0 && y2 <= 0)
9 return 3; // (-,-): quadrant 3

10 if(x1 >= 0 && x2 >= 0 && y1 <= 0 && y2 <= 0)
11 return 4; // (+,-): quadrant 4
12 return 0; // not in the same quadrant
13 }

Fig. 2.Functionquadrant

of the firstif statement followed by areturn (cf lines 4–5 in Fig. 2), soψ cannot be
satisfied at this program point. Similarly, two uncoverablelabels are generated for line
8 and three for line 10, each of them being unsatisfiable because of the precedingif
andreturn statements. Note that, here, using a standard DSE approach with a direct
instrumentation instead of DSE⋆ [2] would lead to exploring 3938 program paths.

To avoid wasting time trying to cover uncoverable labels, wecan first run the un-
coverability detection service based on static analysis, successfully marking the six un-
coverable labels. The ATG service will now ignore them, exploring only 284 program
paths (instead of 409) while still covering the same 58 labels.

3.3 Inside LTEST

The toolkit is designed around the notions of labels and annotated programs, and struc-
tured in four modules: LANNOTATE, LREPLAY, LUNCOV and LGENTEST. Mod-
ules can interact through shared information comprising the annotated program and
a database mapping each label to its current status, namely:covered, uncoverable, un-
known (i.e. neither covered nor proven uncoverable). LANNOTATE acts as a front-end:
it annotates the program with labels according to the chosencriteria and creates the
status database. The other modules provide user-level services. They can update label
statuses and in some cases take advantage of them. Compared to the description given
in Sec. 2, labels are equipped with a unique identifier used bythe database and a “cat-
egory” tag allowing their classification according to coverage criteria. Finally, besides
annotated programs which are our core language and the primary input for DSE⋆, we
use two closely related classes of instrumented programs for uncoverability detection
(Fig. 3(b)) and test replay (Fig. 3(c)).

The whole architecture is depicted in Fig. 4. We give hereafter a few clues about the
technologies behind each module.

LA NNOTATE : The module implements the idea of labelling functions [2] and can be
seen as a mapping

(program, set of criteria) 7→ (annotated program, status database).

Given a C program and a set of supported criteria (listed in Sec. 3.1), LANNOTATE au-
tomatically computes a program annotated with the labels corresponding to the selected
criteria. It also initializes the status database that can be used by other LTEST services.

statement_1;
//id: p
statement_2;

−→

statement_1;
// fresh var b_id
b_id:=p;
statement_2;

,
statement_1;
if(p){output id};
statement_2;

p:label predicate

id: label identifier
(a) (b) (c)

Fig. 3.An annotated program (a), its instrumentations for LUNCOV (b) and LREPLAY (c)

LA NNOTATE contains an annotation function per criterion. The module relies on the
FRAMA -C kernel services for program transformation [4], based themselves on the CIL
library. More precisely, each annotation function takes asinput the program’s abstract
syntax tree (AST), inserts the required labels for the target criterion, and outputs a new
AST containing the labels. In addition to already supportedcriteria, users can extend
the module by writing their own annotation functions. LANNOTATE provides facilities
to easily insert labels into an AST and to collect all inserted labels into the shared status
database. Note that annotated programs can be exported for external use.

LU NCOV: This module acts as a mapping

(annotated program, status database) 7→ status database.

Given an annotated program and its status database, LUNCOV runs static analysis to
identify uncoverable labels and marks them as uncoverable in the database. A label
can be uncoverable for example when it has an unreachable location (dead code) or an
unsatisfiable condition.

The implementation of LUNCOV strongly relies on the value analysis plugin (VALUE)
of FRAMA -C [4]. VALUE computes (an overapproximationof) the set of possible values
of variables at each program point through abstract interpretation. Given an annotated
program, we launch VALUE on the instrumented version depicted in Fig. 3(b): if VALUE

reports that a “label variable” cannot be true, then the associated label is uncoverable.
For example, in Fig. 3(b), ifb_id cannot be true beforestatement_2, then either the ex-
ecution cannot reachstatement_2 or the predicatep cannot be satisfied. In both cases, it
follows that labelid in the original annotated program of Fig. 3(a) is uncoverable.

LR EPLAY : The interface of this module can be seen as a mapping

(annotated program, test suite, status database) 7→ status database.

Given an annotated program and an existing test suite, the module runs each test on
the instrumented version of Fig. 3(c) and inspects output traces in order to update label
statuses in the status database. In addition, it computes coverage statistics for the given
test suite.

LG ENTEST: This module provides the test generation service of LTESTand performs
the mapping

(annotated program, status database) 7→ (test suite, status database).

LGENTEST implements DSE⋆ [2] and is based on a modified version of the PATH-
CRAWLER test generator [11]. Compared to [2], the current version includes two new
optimisations: (OPT-1) DSE⋆ is stopped once all (potentially coverable) labels have
been covered, and (OPT-2) already-covered labels (e.g. by another test suite) and un-
coverable labels are ignored by DSE⋆. In this way, test generation effectively benefits
from static analysis results computed by LUNCOV (cf Sec. 3.2 & 4).

Fig. 4. Overview of LTESTArchitecture

3.4 Implementation details

The LTEST toolkit is built on top of the FRAMA -C verification platform for C pro-
grams [4] (open source, LGPL). We took advantage of the plugin-based architecture
of FRAMA -C as much as possible, reusing existing analyses of interest for our needs.
The FRAMA -C kernel, LANNOTATE, LGENTEST and LUNCOV modules are written
in OCaml. The LGENTEST module is based on a modified version of PATHCRAWLER

[11], which is written in ECLiPSe/Prolog. The LTEST code is open source (LGPL),
except the LGENTEST module, and available online.1

4 Experiments
Experiments1were conducted to evaluate the interest of the proposed combination of
test generation with static analysis and the new optimizations ofDSE⋆ in LGENTEST.
We consider the same annotated benchmark programs and the same three coverage
criteria (CC, MCC and WM) as in [2]. These are standard benchmark programs from the
literature, coming from the Siemens test suite, the Verisecbenchmark and MediaBench.
Their sizes range from a few dozen to a few hundred lines of codes.

We compare the following variants of LGENTEST: the DSE⋆ technique as de-
scribed in [2],DSE⋆+s that includes in addition the stopping criterion (OPT-1, Sec. 3.3),

1 Source code, benchmark programs and a detailed descriptionof experiments are available
online athttp://micdel.fr/ltest.html

andDSE⋆+u+s that exploits in addition uncoverable labels detected through a prelim-
inary pass of LUNCOV (OPT-2, Sec. 3.3).

Our results are very promising. First, experiments confirm the interest of the stop-
ping criterion. When full coverage is reached, test generation becomes in average 2.95×
faster, and up to 600× faster on some examples. Second, LUNCOV is indeed able to de-
tect several uncoverable objectives, and marks as uncoverable up to 35% of labels in
some examples. This yields an improvement of reported coverage ratios by discarding
uncoverable objectives. Coverage ratios can thus reach in some cases 100% of coverable
objectives. Moreover, by combining the knowledge of statically-detected uncoverable
objectives and the stopping criterion, test generation on programs with uncoverable
objectives becomes in average 1.36× faster, the speedup going up to 11.52×. Note
that the detection of uncoverable objectives takes a reasonable amount of time on our
benchmark programs (12% of the total computation time in average, up to 30% on a few
cases where test generation terminates quickly, but less than 3% when test generation
takes more than 10s). Finally, these experiments underlinethe real synergy between the
two optimisations: the stopping criterion is efficient as long as everything is coverable,
while static analysis improves the performances of test generation by removing some
uncoverable objectives.

5 Related work

Many different automatic testing tools are available, fromtest suite coverage estimation
and test replay to automatic test generation. Yet, these tools are usually limited to few
services and to few coverage criteria. On the opposite, we aim at providing an integrated
and generic toolbox for automated white-box testing.

Most DSE tools support only the basic decision coverage criterion, sometimes en-
hanced with some implicit “run-time error” coverage criterion (see [2] for a more
detailed discussion). An interesting exception is APEX [9], which targets the .NET
platform. It operates by adding additional predicates to path conditions during DSE,
whereas LTEST annotates the code with predicates. Our approach is less ATG-centric
since predicates can be reused outside test generation. In particular, we can use static
analysis in order to detect uncoverable labels or measure the (weak) mutation score
of a third party’s test suite. In addition, LTEST’s ATG service implements DSE⋆ [2]
dedicated to labels, drastically limiting the overhead observed for example with APEX.

The SANTE approach [3] combines static analysis and DSE in order to prove the
absence or presence of run-time errors. The present work canbe seen as an extension
of SANTE, providing a larger choice of coverage criteria and a largerchoice of services
(test replay and completion), together with a more flexible combination scheme.

Several recent results have been obtained concerning the combinations of different
formal methods inside a single tool [5, 6]. FRAMA -C is primarily devoted to verifica-
tion rather than testing: plugins collaborate in order to prove assertions written in the
high-level language ACSL, cooperation is based on recording which assertions have
been proved under which hypotheses [6]. The extensionsSANTE and STADY [10] take
advantage of dynamic analysis in order to disprove assertions as well. A similar combi-
nation has been studied using DAFNY and PEX [5]. While we also combine static and

dynamic techniques, our goal is clearly the opposite: we target testing, and use static
analysis for optimizing test generation and sharpening coverage measures.

6 Conclusion and Future Work

We propose FRAMA -C/LTEST, a generic and integrated toolkit for automated white-
box testing of C programs implemented on top of the FRAMA -C verification platform
and relying on a combination of test generation and static analysis.

LTESTcan be used in black-box as a powerful testing tool. Yet, thanks to its modular
architecture and open-source license, it can also be very useful as a basic building block
for developing other advanced testing tools. In the future,we plan to explore additional
cooperations with other FRAMA -C plugins and features. For example, we could take
advantage of the expressive annotation language ACSL [4] for specifying richer test
objectives.

References

1. P. Ammann, A. J. Offutt: Introduction to software testing. Cambridge University Press (2008)
2. S. Bardin, N. Kosmatov, F. Cheynier.: Efficient Leveraging of Symbolic Execution to Ad-

vanced Coverage Criteria. In: ICST 2014. IEEE, Los Alamitos(2014)
3. O. Chebaro, N. Kosmatov, A. Giorgetti, J. Julliand: Program slicing enhances a verification

technique combining static and dynamic analysis. In: SAC 2012. ACM, New York (2012)
4. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C - a

software analysis perspective. In: SEFM 2012. Springer, Heidelberg (2012)
5. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and testing with explicit

assumptions. In: FM 2012. Springer, Heidelberg (2012)
6. Correnson, L., Signoles, J.: Combining Analyses for C Program Verification. In: FMICS

2012. Springer, Heidelberg (2012)
7. P. Godefroid, N. Klarlund, K. Sen: DART: Directed Automated Random Testing. In: PLDI

2005. ACM, New York (2005)
8. P. Godefroid, M. Y. Levin, D. Molnar: Automated Whitebox Fuzz Testing. In: NDSS 2008.
9. K. Jamrozik, G. Fraser, N. Tillmann, J. de Halleux: Generating Test Suites with Augmented

Dynamic Symbolic Execution. In: TAP 2013. Springer, Heidelberg (2013)
10. Petiot, G., Kosmatov, N., Giorgetti, A., Julliand, J.: How Test Generation Helps Software

Specification and Deductive Verification in Frama-C. In: TAP2014. Springer, Heidelberg
(2014)

11. N. Williams, B. Marre and P. Mouy. On-the-Fly Generationof K-Path Tests for C Functions.
In: ASE 2004. IEEE, Los Alamitos (2004)

