An All-in-One Toolkit for
Automated White-Box Testing"

Sébastien Bardin, Omar Chebaro, Mickaél Delahaye, akdlaliKosmatov

CEA, LIST, Gif-sur-Yvette, F-91191, France
first.nane@ea. fr

Abstract. Automated white-box testing is a major issue in softwardreering.
Over the years, several tools have been proposed for sumpdistinct parts of
the testing process. Yet, these tools are mostly separatedhast of them sup-
port only a fixed and restricted subset of testing criteria.d&scribe in this paper
FRAMA-C/LTEST, a generic and integrated toolkit for automated white-lest-t
ing of C programs. LEST provides a unified support of many different testing
criteria as well as an easy integration of new criteria. Muoeg, it is designed
around three basic services (test coverage estimatioomatit test generation,
detection of uncoverable objectives) covering most magpeats of white-box
testing and taking benefit from a combination of static andaglyic analyses.
Services can cooperate through a shared coverage datBloekinary experi-
ments demonstrate the possibilities and advantages ofcaagierations.

1 Introduction

Automated white-box testing is a major issue in softwardreegring. Along the years,
several tools have been proposed for supporting distints [pd the testing process,
such as test replay, coverage estimation or automatic égstrgtion. Yet, these tools
are mostly separated, and most of them support only a fixedesidcted subset of
existing testing criteria.

Our main goals are (1) to provide tool support for most stépisewhite-box testing
process, and (2) to support a large range of coverage aréed to offer flexible ways
of adding new ones. We proposeAmA -C/LTEST, ageneric andintegrated toolkit for
automated white-box testing of C programs. It is generibédense that it supports a
broad class of coverage criteria in a unified way, and integria the sense that it covers
most major aspects of white-box testinirAMA-C/LTEST is implemented on top of
the FRAmMA-C verification platform [4] and relies on a combination asttgeneration
and static analysis. More precisely:

— LTEesTprovides three basic services for test automation: coeszatimation, auto-
matic test generation (ATG) and detection of uncoveralsteaijectives. Moreover,
several coverage criteria are already supported, and g@deéin ones is straightfor-
ward. We achieved this by building the tool upon label cogeif&], a specification
mechanism allowing to manage many existing criteria in diechivay.

* Work partially funded by EU FP7 (project STANCE, grant 313y&nd French ANR (project
BINSEC, grant ANR-12-INSE-0002).

— The toolkit is designed around four basic modules (progranotation, coverage
estimation, ATG and detection of uncoverable labels) tHaaatageously combine
static and dynamic analysis techniques and communicateghra shared database
of coverage information. This modular architecture alldarsflexible interactions
between modules and gives opportunities for dedicatednigadtions.

— We provide a summary of preliminary results demonstrativey ienefits of our
hybrid analysis approach, typical use-case scenariosaind gf our optimisations.

The paper is organized as follows. Section 2 provides nacgdmckground on
labels. An overview of the LEST platform is given in Section 3, including a descrip-
tion of the provided services, a typical use-case and impigation details. Section 4
presents a summary of experiments. Finally, related wodisisussed in Section 5 and
Section 6 concludes the paper.

2 Labels

Label coverage [2] provides a convenient and powerful $igation mechanism for
coverage criterialLabels are predicates attached to program instructions. A program
with labels is called aannotated program. A label is covered if a test execution reaches
it and satisfies the predicate. Labels can faithfully ensutatiny standard coverage
criteria, from decision or condition coverage to a subsshrtibset of weak mutations,
allowing us to manage all of them in a unified way. Basicalty, éach test objective

a new label is added to the program under test, such thatiogvtre label in the
annotated program is equivalent to covering the test algeirt the program under test.
The automatic insertion of adequate labels for a given @gescriterion is performed

by a so-calledabelling function. Several examples are presented in Fig. 1.

statement _1; statenment _1;
statement _1; Il 11 x==y /1 11 x==y && a<b
statement _1; /1 11 x==y && a<b /112 x!t=y /1 12: x!=y && a<b
if (x==y && a<b) . /112 1 (x==y && a<b)||// 13: a<b /Il 13: x==y && a>=b
{...}; if (x==y && a<b) /1 14: a>=b /Il 14: x!'=y && a>=b
st at ement _3; {...}; if (x==y & a<b) || if (x==y && a<b)
st at ement _3; {...}; {...};
statenent _3; statenent _3;
Decisions (DC) Conditions (CC) Multiple Conditions (MCC)
int foo(int x){
. . int foo(int x){ /1 11 x==0
tnt roo(int x)i /111 true 11 12 x>0
= |— statement _1; /1 13: x<0
statement _1;
} } -
}

Functions (FC) Input Domain Partition (IDC)

Fig. 1. Simulating standard coverage criteria with labels

Dynamic Symbolic Execution (DSE) [7, 11] is a popular apjgtog automatic test
generation, based on path exploration. We showed in prewiauk [2] how to extend
DSE for handling labels with only very small overhead, whgh&or instrumentation-
based approaches incur a blow-up of the search space [9].eWwatelby DSE this
modified version of DSE.

3 Overview of the platform

3.1 From the user perspective

LTEST comes as a series olREMA-C plugins [4]. The toolkit offers the following
main services:

Uncoverability detection: the service detects uncoverable test objectives, i.eethos
objectives which cannot be covered by any test datum. Tloerirdtion is primarily
used by other modules, but it can also be exported for extasea

Coverage estimation: the service replays a given test suite and reports its cgeera
Coverage is given as a whole (all test objectives taken iotowant) and per crite-
rion. Moreover, uncoverable or uncovered test objectiveseported.

ATG: the service produces a test suite which can be replayed ¥erage estimation.
In case a test suite has already been replayed, the ATG sevilidry to complete
the achieved coverage rather than to start from scratch.

The platform currently supports the following test crigefl, 2]: decision coverage
(DC), function coverage (FC), condition coverage (CC), tipld-condition coverage
(MCC), weak mutation (WM, operators AOR, ROR, COR, ABS) angdut domain
partition (IDC). Moreover, coverage criteria can be conebitogether, test objectives
can be restricted to certain procedures of the program uedeand it is possible to add
hand-written test objectives.

3.2 Atypical use-case

To illustrate the usage of the platform, let us consider agwgmple. The function

quadrant Of Fig.2 takes as inputs the coordinates of two poiRfs= (z1,y:) and

P, = (z2,y2) on the plane and checks if they belong to the same quadrant.
Suppose we run LESTfirst to generate labels for this function and choose the MCC

coverage criterion [1]. Here, 16 labels will be added by i@ before eachs state-

ment, that is, 64 labels in total. For instance, the labeth thie following conditions

are added just before line 6 of Fig. 2:

2100 A 2200 A y1 0 A y2 0, Whereoe {<, >}, e c {>, <}.

Next, we run the ATG service based on DSH covers 58 of the 64 labels after
exploring 409 (partial) program paths. The remaining 6 lsbee indeed uncoverable.
For example, the labeb = 21 >0 A 22 >0 A y1 >0 A yo > 0 added before the
statement of line 6 is uncoverable since the conditiois weaker than the condition

1 // Checks if input points (x1,yl) and (x2,y2) lie in the same quadrant
2 /] of the plane. Returns the quadrant nunmber if so, otherw se returns 0.
3 int quadrant (int x1, int yl, int x2, int y2){

if(x1l > 0 & x2 >= 0 & yl >= 0 && y2 >= 0)

4
5 return 1; Il (+,+): quadrant 1

6 if(xl <=0&& x2 <=0 && yl >=0 && y2 >= 0)

7 return 2; Il (-,+): quadrant 2

8 if(x1 <=0 & & x2 <= 0 && yl <= 0 && y2 <= 0)

9 return 3; Il (-,-): quadrant 3

10 if(x1 >= 0 & x2 >= 0 && yl <= 0 && y2 <= 0)

11 return 4; Il (+,-): quadrant 4

12 return O; /1 not in the sane quadrant

13 }

Fig. 2. Functionquadr ant

of the firstit+ statement followed by &eturn (cf lines 4-5 in Fig. 2), sa) cannot be
satisfied at this program point. Similarly, two uncoverdhleels are generated for line
8 and three for line 10, each of them being unsatisfiable tsecafithe preceding
andreturn Statements. Note that, here, using a standard DSE apprdttia direct
instrumentation instead of DSK2] would lead to exploring 3938 program paths.

To avoid wasting time trying to cover uncoverable labels,ocar first run the un-
coverability detection service based on static analysis;esssfully marking the six un-
coverable labels. The ATG service will now ignore them, exiplg only 284 program
paths (instead of 409) while still covering the same 58 kabel

3.3 Inside LTEST

The toolkit is designed around the notions of labels and &ted programs, and struc-
tured in four modules: LANOTATE, LREPLAY, LUNcCoOV and LGENTEST. Mod-
ules can interact through shared information comprisirgghnotated program and
a database mapping each label to its current status, nacogéyed, uncoverable, un-
known (i.e. neither covered nor proven uncoverable).NMOTATE acts as a front-end:
it annotates the program with labels according to the chasiégria and creates the
status database. The other modules provide user-levetesrfhey can update label
statuses and in some cases take advantage of them. Compénediescription given
in Sec. 2, labels are equipped with a unique identifier usetthdylatabase and a “cat-
egory” tag allowing their classification according to cage criteria. Finally, besides
annotated programs which are our core language and therngrimaut for DSE-, we
use two closely related classes of instrumented programsnicoverability detection
(Fig. 3(b)) and test replay (Fig. 3(c)).

The whole architecture is depicted in Fig. 4. We give heegattfew clues about the
technologies behind each module.
LANNOTATE: The module implements the idea of labelling functions [2] aan be
seen as a mapping

(program, set of criteria) — (annotated program, status database).

Given a C program and a set of supported criteria (listed i $4), LANNOTATE au-
tomatically computes a program annotated with the labelesponding to the selected
criteria. It also initializes the status database that @anded by other LEST services.

statenent _1;

/1 fresh var b_id
b_id: =p;

stat ement _2;

statenment _1;
/lid: p —
statenent _2;

statement _1;
if(p){output id};
stat enent _2;

p: label predicate
i d: labelidentifier

(a) (b) (c)

Fig. 3. An annotated program (a), its instrumentations forNddv (b) and LREPLAY (c)

LANNOTATE contains an annotation function per criterion. The modeiies on the
FRAMA-C kernel services for program transformation [4], basedtelves on the CIL
library. More precisely, each annotation function takefasit the program’s abstract
syntax tree (AST), inserts the required labels for the tacgterion, and outputs a new
AST containing the labels. In addition to already suppodsgttria, users can extend
the module by writing their own annotation functions. NROTATE provides facilities
to easily insert labels into an AST and to collect all insgtgbels into the shared status
database. Note that annotated programs can be exporteddéona use.

LUNcov: This module acts as a mapping
(annotated program, status database) — status database.

Given an annotated program and its status databas®cbWM runs static analysis to
identify uncoverable labels and marks them as uncoverabtkd database. A label
can be uncoverable for example when it has an unreachalsitdo¢dead code) or an
unsatisfiable condition.

The implementation of Lilcov strongly relies on the value analysis plugimEe)
of FRAMA-C [4]. VALUE computes (an overapproximation of) the set of possibleaslu
of variables at each program point through abstract ingagtion. Given an annotated
program, we launchM.UE on the instrumented version depicted in Fig. 3(b):AL\E
reports that a “label variable” cannot be true, then the @ased label is uncoverable.
For example, in Fig. 3(b), i6_i d cannot be true befora at erent _2, then either the ex-
ecution cannot reach at enent _2 Or the predicate cannot be satisfied. In both cases, it
follows that label ¢ in the original annotated program of Fig. 3(a) is uncovezabl

LREPLAY: The interface of this module can be seen as a mapping
(annotated program, test suite, status database) — status database.

Given an annotated program and an existing test suite, tfileil@mouns each test on
the instrumented version of Fig. 3(c) and inspects outpees in order to update label
statuses in the status database. In addition, it computesage statistics for the given
test suite.

LGENTEST: This module provides the test generation service cf$Tand performs
the mapping

(annotated program, status database) — (test suite, status database).

LGENTEST implements DSE [2] and is based on a modified version of therR-
CRAWLER test generator [11]. Compared to [2], the current versiatuiies two new
optimisations: ¢PT-1) DSE* is stopped once all (potentially coverable) labels have
been covered, and¢T-2) already-covered labels (e.g. by another test suite) and un
coverable labels are ignored by D'SHn this way, test generation effectively benefits
from static analysis results computed by ktlov (cf Sec. 3.2 & 4).

test suite

A
test suite

AN

statistics
annotated
program

LReplay

Il

annotated program

program

A0O A3 00—

®+0 4033 >

coverage
criteria

|

LUncov

Fig. 4. Overview of LTESTArchitecture

3.4 Implementation details

The LTEST toolkit is built on top of the RAMA-C verification platform for C pro-
grams [4] (open source, LGPL). We took advantage of the phbgised architecture
of FRAMA-C as much as possible, reusing existing analyses of intEnesur needs.
The FRRAMA-C kernel, LANNOTATE, LGENTEST and LUNCOV modules are written
in OCaml. The L&ENTESTmodule is based on a modified version efRCRAWLER
[11], which is written in ECLiPSe/Prolog. The IEBT code is open source (LGPL),
except the L&NTESTmodule, and available onlirfe.

4 Experiments

ExperimentSvere conducted to evaluate the interest of the proposed ioann of
test generation with static analysis and the new optinonatof DSE* in LGENTEST.
We consider the same annotated benchmark programs andrteetseee coverage
criteria (CC, MCC and WM) as in [2]. These are standard beragkiprograms from the
literature, coming from the Siemens test suite, the Vetimexhmark and MediaBench.
Their sizes range from a few dozen to a few hundred lines oésod

We compare the following variants of LEBITEST: the DSE* technique as de-
scribed in [2],DSE*+s that includes in addition the stopping criteria@r(T-1, Sec. 3.3),

! Source code, benchmark programs and a detailed descriptierperiments are available
onlineathttp://mcdel . fr/ltest. htmn

andDSE*+u+s that exploits in addition uncoverable labels detected.tghoa prelim-
inary pass of LWcov (oPT-2, Sec. 3.3).

Our results are very promising. First, experiments confliminterest of the stop-
ping criterion. When full coverage is reached, test gefmrdtecomes in average 2.95
faster, and up to 600 faster on some examples. Second Nddv is indeed able to de-
tect several uncoverable objectives, and marks as undadeasp to 35% of labels in
some examples. This yields an improvement of reported egeeratios by discarding
uncoverable objectives. Coverage ratios can thus reacimie sases 100% of coverable
objectives. Moreover, by combining the knowledge of stdljedetected uncoverable
objectives and the stopping criterion, test generation mgnams with uncoverable
objectives becomes in average 1x3€aster, the speedup going up to 11x62Note
that the detection of uncoverable objectives takes a redgd@@mmount of time on our
benchmark programs (12% of the total computation time imaye, up to 30% on a few
cases where test generation terminates quickly, but l@ess3#6 when test generation
takes more than 10s). Finally, these experiments undeéhaeeal synergy between the
two optimisations: the stopping criterion is efficient asdas everything is coverable,
while static analysis improves the performances of teseggion by removing some
uncoverable objectives.

5 Related work

Many different automatic testing tools are available, ftest suite coverage estimation
and test replay to automatic test generation. Yet, theds &we usually limited to few
services and to few coverage criteria. On the opposite, m@asproviding an integrated
and generic toolbox for automated white-box testing.

Most DSE tools support only the basic decision coverageroit, sometimes en-
hanced with some implicit “run-time error” coverage criter (see [2] for a more
detailed discussion). An interesting exception isexF9], which targets the .NET
platform. It operates by adding additional predicates tth ganditions during DSE,
whereas LEST annotates the code with predicates. Our approach is lessc&h@ic
since predicates can be reused outside test generatioartioytar, we can use static
analysis in order to detect uncoverable labels or measeréwtbak) mutation score
of a third party’s test suite. In addition, EETs ATG service implements DSH?2]
dedicated to labels, drastically limiting the overheadawsbed for example with APX.

The sANTE approach [3] combines static analysis and DSE in order taeptioe
absence or presence of run-time errors. The present work&saeen as an extension
of SANTE, providing a larger choice of coverage criteria and a laoh@ice of services
(test replay and completion), together with a more flexilolbination scheme.

Several recent results have been obtained concerning thiications of different
formal methods inside a single tool [5, 6]REMA-C is primarily devoted to verifica-
tion rather than testing: plugins collaborate in order toverassertions written in the
high-level language ACSL, cooperation is based on recgrdihich assertions have
been proved under which hypotheses [6]. The extensang e and SADY [10] take
advantage of dynamic analysis in order to disprove asssrtis well. A similar combi-
nation has been studied usingENY and Fex [5]. While we also combine static and

dynamic techniques, our goal is clearly the opposite: wgetatesting, and use static
analysis for optimizing test generation and sharpeningiamye measures.

6 Conclusion and Future Work

We propose RAMA-C/LTEST, a generic and integrated toolkit for automated white-
box testing of C programs implemented on top of tiaMA-C verification platform
and relying on a combination of test generation and statityars.

LTEsTcan be used in black-box as a powerful testing tool. Yet,khamits modular
architecture and open-source license, it can also be vefyles a basic building block
for developing other advanced testing tools. In the futwesplan to explore additional
cooperations with otherd#amA-C plugins and features. For example, we could take
advantage of the expressive annotation language ACSL [43decifying richer test
objectives.

References

1. P. Ammann, A. J. Offutt: Introduction to software testi@ambridge University Press (2008)

2. S. Bardin, N. Kosmatov, F. Cheynier.: Efficient Leveragof Symbolic Execution to Ad-
vanced Coverage Criteria. In: ICST 2014. IEEE, Los Alam({&x14)

3. O. Chebaro, N. Kosmatov, A. Giorgetti, J. Julliand: Pesgrslicing enhances a verification
technique combining static and dynamic analysis. In: SAC22ACM, New York (2012)

4. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., SigeaJ., Yakobowski, B.: Frama-C - a
software analysis perspective. In: SEFM 2012. Springeidélieerg (2012)

5. Christakis, M., Muller, P., Wustholz, V.: Collabonati verification and testing with explicit
assumptions. In: FM 2012. Springer, Heidelberg (2012)

6. Correnson, L., Signoles, J.: Combining Analyses for CgRmm Verification. In: FMICS
2012. Springer, Heidelberg (2012)

7. P. Godefroid, N. Klarlund, K. Sen: DART: Directed AutoradtRandom Testing. In: PLDI
2005. ACM, New York (2005)

8. P. Godefroid, M. Y. Levin, D. Molnar: Automated Whitebox#z Testing. In: NDSS 2008.

9. K. Jamrozik, G. Fraser, N. Tillmann, J. de Halleux: GetiegaTest Suites with Augmented
Dynamic Symbolic Execution. In: TAP 2013. Springer, Heimel (2013)

10. Petiot, G., Kosmatov, N., Giorgetti, A., Julliand, J.owA Test Generation Helps Software
Specification and Deductive Verification in Frama-C. In: TAPL4. Springer, Heidelberg
(2014)

11. N. Williams, B. Marre and P. Mouy. On-the-Fly GeneratidrkK-Path Tests for C Functions.
In: ASE 2004. IEEE, Los Alamitos (2004)

