
Description of the BINCOA model

Deliverable 1.1, part 2

BINCOA Project

August 2009

Contents

1 Introduction 2

2 Overview of the model 2

3 Formal model 3

3.1 Expressions . 3
3.2 Instructions . 4
3.3 Memory zone properties . 4
3.4 Annotations . 4
3.5 Asynchronous product of programs 5

4 Operational semantics 5

4.1 Environments . 5
4.2 Expressions . 6
4.3 Operational semantics . 6

5 Methodology 7

5.1 Using the model for disassembled binary code 7
5.2 Modelling open programs . 8
5.3 Exceptions and interruptions . 9
5.4 Limitations of the model . 9

A Example 10

A.1 C source code . 10
A.2 Assembly code . 10
A.3 Explanation of the disassembled code 11
A.4 A model for this function . 11
A.5 The node function . 12

B Bitvector semantics 13

B.1 Bitvectors . 13
B.2 BV operators . 13
B.3 Arithmetic properties . 16
B.4 Encoding of signed operators . 17

1

1 Introduction

This document provides a description of the formal model designed for the
Binary Code Analysis (BINCOA) project.

The main ideas of the model are:

• A very small set of instructions

• Self-contained models which do not require a separate description of the
memory model (like the fact of being big or little endian)

• Models look like transitions systems extended with bitvector variables and
memory arrays of bytes

• The ability to define tool-specific annotations

The aim of this model is to be able to represent formally binary programs;
many facilities are provided in the model for architectures which address their
memory in 8-bit quantities (bytes), and store negative integers in two’s comple-
ment notation. Simulating architectures outside these will probably be cumber-
some, but we are not aware of many.

Main limitations. All common features of low-level programming languages
are taken into account by the model, for example dynamic jumps, modification
of the call stack, dynamic memory and so on. The two main limitations of the
model are the following: first, the model cannot capture self-modifying code;
second, the model is untimed. Moreover, modelling asynchronous interruptions
is feasible, but it may lead to very large models. Finally, we do not consider
floating-point instructions: verification of floating-point programs is a very chal-
lenging problem on its own, and we prefer to focus on the specific issues raised
by binary code analysis.

2 Overview of the model

The formal model is a graph in which each arc contains one basic instruction.
These basic instructions are assignment (Assign), no-operation (Skip), jump
to a non-statically known address (Jump), guards to check necessary conditions
for progress (Guard), and an instruction to handle absent code such as API calls
(External).

Statically-known jumps are simply encoded as arcs of the graph; this means
that such a jump in the original program will be translated into a Skip instruc-
tion. The case of conditional jumps is handled thanks to guards on the arcs:
they are expressions which need to be satisfied in order for the control flow to
follow this arc. Jumps which are not determined statically are encoded by a
Jump arc which is dangling, i.e. which has no target vertex.

The memory model is a finite set of variables ranging over bitvectors and
some finite memory, accessed as disjoint arrays of bytes (8-bit quantities).

Moreover, each control point in the model is made apparent so that assertions
and annotations are easily associated with a given model.

2

3 Formal model

We denote by Instr the set of all possible instructions, and by Expr(X, M) (resp.
Form(X, M)) the set of expressions (resp. formulae) using memory arrays from
the set M and variables from the set X . Expressions are detailed in the following
subsection.

A program in our framework is a tuple 〈X, M, Z, V, E,node〉, where X is a
finite set of variables, M is a finite set of memory arrays, Z is a finite set of
memory zone properties, V is a finite set of vertices, E ⊆ V × Instr × (V ∪{⊥})
is a finite set of arcs; an arc has target ⊥ if and only if its instruction is Jump.
The partial function node : N × E → V gives the entry vertex where a jump
to the address given as a parameter should end up. The second parameter
may be used by the function in the case of programs generated by a product of
programs, to detect which subprogram actually made a jump.

Each variable x ∈ X has a size expressed in bits, denoted |x|. Each memory
array m ∈ M has a size expressed in bytes, also denoted |m|. Memory zone
properties are described in subsection 3.3, page 4.

Often in this document, we will consider sets X and M respectively of vari-
ables and memory arrays. We will build the two sets X ′ and M ′ such that those
four sets are mutually disjoint, and such that there is a bijection between X and
X ′ and between M and M ′. The image by these bijections of a variable x will
be x′ and of a memory array m will be m′.

3.1 Expressions

Expressions are used in several places: assignments, guards, assertions, and will
probably be used in many annotations.

The two sets of expressions Expr(X, M) and Form(X, M) are defined as
follows (abbreviated respectively as E and F).

E ::= bv | x |

−bE | E +b E | E −b E | E ×b E |

E/uE | E%uE | E/sE | E%sE |

˜E | E|E | E&E | EˆE |

E :: E |

SignExt(E, k) | UnsignExt(E, k) |

E << E | E >>u E | E >>s E |

m[E;
→

k] | m[E;
←

k] |

E{k; k}

F ::= ¬F | F ∨ F | F ∧ F | E = E | E ≤u | E ≤s E

In this grammar, k denotes an integer constant; x is a variable in the set X ;
m is a memory array belonging to M .

The arithmetic operators have their usual meaning on bitvectors which is
detailed in appendix. The syntax mostly follows that of the C language: oper-

3

ators |, &, and ˆ are the bitwise or, and, and exclusive or, respectively. ˜ is the
bitwise not. A concatenation operator on bitvectors is provided (::).

3.2 Instructions

As mentioned earlier in this document, there are five types of instructions:

• Skip does nothing

• Assign l-value := Expr assigns the value of a given expression to an l-

value. In our model, l-values are a sequence of bytes or a sequence of bits
referring to some place in memory or inside a register. The value of the
expression must be a bitvector with a size corresponding to the size of the
l-value.

• External Form(X ∪X ′, M ∪M ′) is a special kind of node used to model
calls to an API, a system call, or a piece of program that was previously
analysed and summarized. The semantics of such a node is given by an
assertion.

• Jump Expr jumps to the address given by the value of the expression.
The value of this expression should be a natural integer.

• Guard Form(X, M) stops the flow of execution if the expression evaluates
to false, and allows the flow of execution to continue otherwise. It does
not modify any variable or memory array.

3.3 Memory zone properties

Statically-defined memory zone properties are part of the formal model because
for example, the fact that a memory zone is read-only affects the semantics
of the model. A memory zone property is a tuple (m, address, size, properties)
where m is a memory array, address and size are natural numbers denoting
the extent of the memory region within m, in bytes. The last component of a
memory region is a set of properties. The following properties are available:

• write-is-ignored to declare read-only memory areas.

• write-aborts to declare areas where writing is not allowed.

• read-aborts to declare areas where reading is not allowed.

Obviously, write-is-ignored and write-aborts are mutually exclusive.

3.4 Annotations

Annotations are defined in our context as additional information not affecting
the semantics of the model, contrary to memory zone properties or assertions.
Annotations are mostly intended to help automatic analysis under user guidance
and to provide a simple communication mechanism between analysis tools, for
example by declaring invariants of the model. We recommend the use of the
definition of expressions provided in subsection 3.1 page 3 when expressions
are needed in annotations. A set of common annotations will be defined later.
Moreover, each tool will be free to define its own annotations, and to support
only a subset of all existing annotations.

4

3.5 Asynchronous product of programs

Given two programs 〈X1, M1, Z1, V1, E1,node1〉 and 〈X2, M2, Z2, V2, E2,node2〉,
we define the asynchronous program of these two programs by 〈X, M, Z, V, E,node〉,
with:

X = X1 ∪X2

M = M1 ∪M2

Z = Z1 ∪ Z2

V = V1 × V2

E = {((v1, v2), ins, (v′1, v2))|(v1, ins, v′1) ∈ E1}∪
{((v1, v2), ins, (v1, v

′
2))|(v2, ins, v′2) ∈ E2}

node(n, ((v1, v2), ins, (v′1, v2))) = (node1(n, (v1, ins, v′1)), v2)
node(n, ((v1, v2), ins, (v1, v

′
2))) = (v1,node2(n, (v2, ins, v′2)))

4 Operational semantics

The operational semantics is given as a graph decorated by vertices of the orig-
inal model and environments, i.e. the mapping of variables and memory bytes
to values, so that following a path in this graph is like following exactly one run
of the model.

Exceptional conditions for which no further progress is possible (division by
zero, illegal access to memory) are “legal” in the formal model but lead to a
special vertex of the semantics which is a trap from which no arc exists. This
special vertex should help in practice to detect exceptional conditions, because
reaching it means that an error occurred in the initial program.

The operational semantics basically specifies how a program impacts memory
and variables after each basic instruction. The first notion needed is thus that
of the state memory and variables are in. This is called an environment.

4.1 Environments

An environment ρX,M is an application such that:

{

ρX,M (x) ∈ BV(|x|), if x ∈ X
ρX,M (m)(n) ∈ BV(8), if m ∈M and 0 ≤ n < |m|

and is undefined otherwise.
Environments are also used to specify an initial environment for a program.

The set of environments on X and M is written EnvX,M . Most often, X and
M will be known from the context and will be omitted from both ρ and Env .

Substitution in an environment We define a substitution operation which,
given a environment ρ, builds a new environment by modifying only one variable
or one byte of one memory array.

• ρX,M [bv/x] is the environment ρ′X,M such that

∀y ∈ X \ {x}, ρ′X,M (y) = ρX,M (y),

∀m ∈M, ρ′X,M (m) = ρX,M (m),

ρ′X,M (x) = bv

5

• ρX,M [bv/m[i]] is the environment ρ′X,M such that

∀x ∈ X, ρ′X,M (x) = ρX,M (x),
∀a ∈M \ {m}, ρ′X,M(a) = ρX,M (a),

∀0 ≤ n < |m| ∧ n 6= i, ρ′X,M (m)(n) = ρX,M (m)(n),

ρ′X,M (m)(i) = bv

4.2 Expressions

Bitvectors may be specified in two ways: either by extracting bits from the
value of an expression with curly braces (e.g. x{0; 16} represents the sixteen
least significant bits of variable x), or by extracting bytes from memory with
square braces. In the latter case, the address and size are given in bytes, and
the result is a bitvector of length eight times the length in bytes. Furthermore,
the arrow above the size specifies if the bytes should be accessed in big endian
(→) or little endian (←). For example, the following assignment is legal :

Assign x{0; 32} := ram[y + 8;
→
4]

All arithmetic operators operate on bitvectors of the same size and produce
bitvectors of that size.

The semantics of bitvector operators is given in appendix B, page 13.
The value of an expression e using variables in X and memory arrays in M in

a given environment ρX,M is denoted JeKρX,M
. If a division by zero or a modulo

zero is encountered during evaluation of e, then the value of e is ⊥. Otherwise,
if e is an arithmetic expression, its value is a bitvector; if it is a formula, its
value is either true or false.

4.3 Operational semantics

The operational semantics of a program 〈X, M, Z, V, E,node〉 is a graph whose
vertices are called configurations, built inductively starting from a set of initial
configurations. The configurations of the graph are in the set (V × EnvX,M) ∪
{⊥}.

For each (v, ρ) already found, and for each arc (v, ins, v′) ∈ E, depending
on the instruction ins, the graph is augmented by the subgraph given below for
each instruction. However, one rule preempts all the other rules: if any of the
expressions occurring in the instruction uses bytes declared read-aborts in Z or
if any of the expressions evaluates to ⊥, the subgraph is then only (v, ρ)→ ⊥.

• Skip: (v, ρ)→ (v′, ρ)

• Assign x{i; k} := e:

(v, ρ)→ (v′, ρ′) where ρ′ = ρ[bv/x] with bv being exactly ρ(x) except
for bits i + k − 1, . . . , i which are replaced by JeK.

• Assign m[e1;
←

k] := e2: (big-endian write)

We write i = Je1K.

(v, ρ)→ ⊥ if some memory byte in m[i], . . . , m[i + k − 1] is de-
clared write-aborts in Z

(v, ρ)→ (v′, ρ′) otherwise, where ρ′ is ρ after performing the substi-
tutions [Je2K {8.(j − i); 8}/m[j]] for all i ≤ j < i + k
such that m[j] is not declared write-is-ignored in Z.

6

• Assign m[e1;
→

k] := e2: (little-endian write)

We write i = Je1K.

(v, ρ)→ ⊥ if some memory byte in m[i], . . . , m[i + k − 1] is de-
clared write-aborts in Z

(v, ρ)→ (v′, ρ′) otherwise, where ρ′ is ρ after performing the sub-
stitutions [Je2K {8.(i + k − j − 1); 8}/m[j]] for all
i ≤ j < i + k such that m[j] is not declared write-is-

ignored in Z.

• Jump e:

(v, ρ)→ (v′′, ρ) where v′′ = node(JeKu , (v, ins, v′)) if it is defined
(v, ρ)→ ⊥ otherwise

• Guard e

(v, ρ)→ (v′, ρ) if e evaluates to true
nothing otherwise

• External e

E such that all pairs ((v, ρ), (v′, ρ′)) ∈ E satisfy e (make
e true)

5 Methodology

The formal model described in this document is designed to model mainly binary
programs. We explain in this section how it can be done in practice, and take
into account several cases of interest.

5.1 Using the model for disassembled binary code

It is expected that models resulting from the disassembly of binary code will
follow the following principles:

• Each register in the processor will be modelled by a variable in the model,
and additional internal registers will be used to encode assembly instruc-
tions which need intermediate results.

• Each disassembled instruction will be translated in at least one vertex
and one arc. Complex instructions may create other vertices and arcs to
perform some intermediate computations or to simulate loops. The node

function of the model should ensure that when given the address of the
instruction, it yields the entry vertex of the set of vertices and arcs needed
to represent it.

• L-values used in assignments will be “simple”, i.e. will use only one oc-
currence of the [] operator, or of the {} operator, meaning that they will
be either a range of bytes in memory or a range of bits in a variable.

7

• Flags which are often summarized in one register can be split into one
1-bit variable per flag, or encoded into a single variable. The flags have
to be updated explicitly by each assembly instruction in the model 1 .

• The program counter need not be modelled because its value is known at
disassembly time. The link between the model and the PC value is quite
shallow and is used only when resolving dynamic jumps. The
node function embodies this link.

• Most of the time, only one memory array will be used because most pro-
grams execute in a single address space. The cases where a user would
want to use more memory arrays include for example: distinguishing an
I/O bus from a memory bus, distinguishing supervisor virtual memory
from user virtual memory.

5.2 Modelling open programs

Most programs are not self-contained and will make use of other software or
hardware to perform their task. We call such programs “open”.

Specifying behaviour with logic The instruction provided to deal with
open programs is External. It allows to express an absent piece of behaviour
by a logical specification. For example, if a function provided by the imple-
mentation of an Application Programming Interface computes the square root
of a number, it is possible to abstract this computation by a single External

instruction specifying that the square of the return register is “close enough” to
the input register.

Simulating behaviour with another model Given the product operation
on programs (subsection 3.5 p. 5), it is possible to simulate the execution of a
complex piece of code or the behaviour of a piece of hardware thanks to another
model which can be synchronized with the main program. Please note that
using this method is costly in two ways:

• in order to model access to a memory-mapped peripheral device, each
access to memory should be modelled as a test to check if the registers of
the device are hit by the memory access, and trigger the other model if
and only if it is the case. It will thus lead to larger models.

• computing the asynchronous product of several programs makes the re-
sulting model (very) large. The asynchronous product is a well known
cause of state-space explosion.

The advantage of this method is that it is very generic and can probably
encompass most modelling needs.

1Another possibility would have been to allow operations with multiple return values as in

OSMOSE. It leads to smaller models, however, since flags are now part of the main instruc-

tion, adding a new flag needs to modify the semantic of the model as well as the underlying

analysers. Moreover, our new solution allows to easily remove useless flag computations, while

in a multiple return value, all values must be useless to remove the operation.

8

5.3 Exceptions and interruptions

Although interruptions were declared out of scope for the BINCOA project, we

provide here hints of methodology to model them because the model is versatile

enough to tackle these concepts.

The control flow of a processor may diverge in case of the occurrence of some
exceptional condition. Such a condition may be either synchronous (division by
zero, forbidden access to memory, . . .), or asynchronous (disk operation finished,
timer reached preset value, . . .). We follow the Motorola convention and call a
synchronous interruption an exception.

The case of exceptions is handled in a simplistic way in the model in the
sense that they make the model explicitly abort, so that their occurrence can be
checked as a property of the system reaching or not this special configuration.
The exception handling they would normally trigger in a processor is too com-
plex and too processor-specific to be put in the definition of the formal model
itself. However, it is possible to model exceptions by conditional jumps after
every instruction which may trigger an exception whose handling we wish to
monitor.

We suggest two ways to manage asynchronous interruptions: either check
separately that the interruption handler behaves as it should and that it does
not trash the registers or the stack beyond what is expected. Or model the
interruption handler in such a way that the product of its model by the model
of the main program behaves as desired.

5.4 Limitations of the model

Here is a list of the main limitations of the model.
Our model does not allow modelling of self-modifying code, however, it can

detect such cases. There is no notion of time in the model, so there is no way to
formally model timing constraints such as clock interruption handlers executing
completely before the next interruption occurs.

There is no explicit interruption handling in the model, so it has to be
modelled separately or by using asynchronous product of programs. The latter
option is very expensive.

We do not plan to handle floating-point numbers at first. These are easy to
add to the formal model, but they pose serious problems to standard verification
techniques.

Although not a limitation of the model itself, the recommended way of not
using an explicit variable for the program counter means that position inde-
pendant code cannot be verified as such, but must be set to a specific address
first.

9

A Example

We describe here how to model a small function in our formalism. The function
simply copies a given amount of bytes in memory and has the same prototype
as the standard C library memcpy() fucntion. It is written in C but we model
the binary code output by the C compiler. The target architecture is the intel
x86, and the compiler used is GCC 4.1.3 under NetBSD 5.0 using optimization
level 2.

A.1 C source code

#include <stddef.h>

void *

memory_copy(void *dest, const void *src, size_t len) {

char *d = dest;

const char *s = src;

while (len-- > 0)

*d++ = *s++;

return dest;

}

A.2 Assembly code

This code is the result of compiling the above function with GCC 4.1.3 for i386
with option -O2 and disassembling the object file with objdump -d.

00000000 <memory_copy>:

0: 55 push %ebp

1: 89 e5 mov %esp,%ebp

3: 56 push %esi

4: 53 push %ebx

5: 8b 75 08 mov 0x8(%ebp),%esi

8: 8b 5d 0c mov 0xc(%ebp),%ebx

b: 8b 4d 10 mov 0x10(%ebp),%ecx

e: 85 c9 test %ecx,%ecx

10: 74 0d je 1f <memory_copy+0x1f>

12: 31 d2 xor %edx,%edx

14: 8a 04 1a mov (%edx,%ebx,1),%al

17: 88 04 32 mov %al,(%edx,%esi,1)

1a: 42 inc %edx

1b: 39 ca cmp %ecx,%edx

1d: 75 f5 jne 14 <memory_copy+0x14>

1f: 89 f0 mov %esi,%eax

21: 5b pop %ebx

22: 5e pop %esi

23: c9 leave

24: c3 ret

10

A.3 Explanation of the disassembled code

We provide here a simple explanation of the assembly code above so that people
who are not familiar with the x86 can read it.

The first seven instructions prepare the stack frame to respect the x86 Appli-
cation Binary Interface (to make it possible for a debugger to print a backtrace
of the stacked function invocations), save a couple of (callee-saved) registers,
and fetch the three arguments from the stack.

There is a test for the special case of a zero length copy, which exits through
the postamble at address 0x1f.

The register edx is used as an index into both arrays to avoid incrementing
the two pointers (ebx and esi). The copying loop is between 0x14 and 0x1d,
and uses register al as a temporary register for each copied byte. The condition
to exit the loop is when edx reaches the number of bytes to be copied.

The rest of the code puts the stack pointer back in its original place, restore
some registers, and returns to the caller. You can note that esi is copied to
eax because the ABI specifies that eax shall contain the return value of the
function. In this case, the function returns the (untouched) pointer to the
destination buffer.

A.4 A model for this function

The model is the following tuple: 〈X, M, Z, V, E,node〉. The following subsec-
tions give the definitions of the various elements of the tuple.

A.4.1 Variables

Examining the disassembly of the function, we observe that the following regis-
ters are used : eax, ebx, ecx, edx, esi, ebp, and esp. Each of these registers will
be a 32-bit variable in our model. Note that although al appears, it is just the
lowest byte of eax and is thus not modelled separately.

A systematic compilation of the binary code into a model would probably
update the flags of the processor after every assembly instruction, but in this
example, we do not need to model the flags explicitly because only one is used
twice (the “equal” flag, used by instructions je and jne) and immediately, such
that there is no point in setting the flag only to check it right away.

In order to model the ret instruction, an internal register that we will call i0
is used because the return address has to be popped from the stack somewhere

before jumping to it.

X = {eax, ebx, ecx, edx, esi, ebp, esp, i0}
|eax| = |ebx| = |ecx| = |edx| = |esi| = |ebp| = |esp| = |i0| = 32

A.4.2 Memory arrays and memory zone properties

We use here only on memory array that we call ram. Its size is not important
as long as it is “large enough”, but the model needs to impose a size. We will
use very small numbers here compared with a real execution environment, but
still keep the various areas aligned on a 4 kibibytes boundary to honor the usual

11

page size on x86 processors. We will thus have a memory of 12 KiB (12288
bytes).

M = {ram}
|ram| = 12288

With memory zone properties, we will just encode the fact that the page
containing the code cannot be written to.

Z = {(ram, 0, 1024, {write-aborts})}

Although the addresses of the data area and of the stack would appear only
in the initial conditions and not in the model itself, we give a small description
of our simplified memory organization.

0x0

code write-aborts

0x1000

data

0x2000

stack
0x2fff

We model the memory_copy() function as if it started at address zero, al-
though it would very probably not be the case in practice.

A.4.3 Graph of the model

every picture/.style=node distance=1.2cm

A.5 The node function

The node function of the program is used to map addresses in the code into
vertices of the graph. It takes two arguments, but the second argument is
useful only when the node function belongs to a program which is the result of
an asynchronous product; we just ignore it here. Formally, this means that the
function returns the same value for any edge passed as the second argument.
The following table gives the value of the function for every address where it is
defined.

x 0 1 3 4 5 8 11 14 16 18
(x)16 0 1 3 4 5 8 b e 10 12
node(x) v0 v2 v3 v5 v7 v8 v9 v10 v10 v11

x 20 23 26 27 29 31 33 34 35 36
(x)16 14 17 1a 1b 1d 1f 21 22 23 24
node(x) v12 v13 v14 v15 v15 v16 v17 v19 v21 v24

12

B Bitvector semantics

B.1 Bitvectors

A bitvector a of size n ≥ 1 is a sequence (a0, . . . , an−1) of {0, 1}n. We write
a = an−1 . . . a0, and we denote by BV(n) the set of bitvectors of size n. The
size n of a will be denoted by |a|. We call ai the ith bit of a, a0 its least-
significant bit and an−1 its most-significant bit (see below). For 0 ≤ k < n, let
a[k..0] = ak . . . a0.

Integer concretisation. Bitvectors are classically used in programming lan-
guages to encode non-negative integers (power-two encoding) and integers (two’s
complement encoding). We recall in the following these two encodings.

We define J·Ku as a function mapping bitvectors of any size to unsigned
integers:

JaKu =

|a|−1
∑

i=0

ai × 2i

One can check that J·Ku is a bijection from BV(n) to [0..2n − 1]. Given a size
n > 0 and an unsigned integer k ∈ [0..2n − 1], the unique bitvector a of size n
satisfying JaKu = k is referred to as the (n-bits) binary encoding of k.

We also define J·Ks as a function mapping bitvectors of any size to signed
integers:

JaKs = −2|a|−1 × a|a|−1 +

|a|−2
∑

i=0

ai × 2i

Again, one can check that J·Ks is a bijection from BV(n) to [−2n−1..2n−1 − 1].
Given a size n > 0 and an integer k ∈ [−2n−1..2n−1 − 1], the unique bitvector
a of size n satisfying JaKs = k is referred to as the (n-bits) two-scomplement
encoding of k. Note that the most-significant bit of a is also called the sign bit,
since an−1 = 0 iff JaKs ≥ 0.

B.2 BV operators

In the following, we define &1 , |1 , ˆ1 : BV(1)× BV(1)→ BV(1) as the usual
and, or, xor operators on single bits.

Relational operators.

Let ≤u ⊆ BV(n) × BV(n) denotes the bitvector signed leq relational operator
defined by:

a ≤u b =

true if an−1 < bn−1

false if an−1 > bn−1

true if an−1 = bn−1 ∧ |a| = 1
a[n− 2..0] ≤u b[n− 2..0] if an−1 = bn−1 ∧ |a| > 1

13

Let ≤s ⊆ BV(n)× BV(n) denotes the signed leq comparaison operator defined
by:

a ≤s b =

a ≤u b if an−1 = bn−1

true if an−1 = 1 ∧ bn−1 = 0
false if an−1 = 0 ∧ bn−1 = 1

Bitwise operations.

All boolean operations are naturally extended to bitwise operations on bitvec-
tors of size n. For example, the bitwise “and” operation & : BV(n)×BV(n)→
BV(n) is defined by:

r = a & b

iff for all 0 ≤ i < n, ri = ai &1 bi

Operators | , ˆ and ∼ are defined similarly.

Other bit-manipulation operations.

Let ≪: BV(n) × N → BV(n) denotes the unsigned left shift operation defined
by:

r = a≪ k

iff for all 0 ≤ i < n, ri =

{

ai−k if k ≤ i < |a|
0 if 0 ≤ i < k

Let ≫: BV(n)×N→ BV(n) denotes the unsigned right shift operation defined
by:

r = a≫ k

iff for all 0 ≤ i < n, ri =

{

ai+k if 0 ≤ i < |a| − k
0 if |a| − k ≤ i < |a|

Let ≫s: BV(n) × N → BV(n) denotes the signed right shift operation defined
by:

r = a≫s k

iff for all 0 ≤ i < n, ri =

{

ai+k if 0 ≤ i < |a| − k
a|a|−1 if |a| − k ≤ i < |a|

Let extu : BV(n)× N→ BV(k) denotes the bitvector unsigned extension oper-
ator defined by:

r = extu(a, k), k ≥ n, |r| = k

iff for all 0 ≤ i < k, ri =

{

ai if i < |a|
0 if |a| < i < |r|

14

Let exts : BV(n)×N→ BV(k) denotes the bitvector signed extension operator
defined by:

r = exts(a, k), k ≥ n, |r| = k

iff for all 0 ≤ i < k, ri =

ai if 0 ≤ i < |a| − 1
0 if |a| − 1 ≤ i < |r| − 1

a|a|−1 if i = |r| − 1

Let extract : BV(n)×N×N→ BV(r) denotes the bitvector extraction operator
defined by:

r = a[k : j], j ≤ k, |r| = k − j + 1

iff for all 0 ≤ i < |r| : ri = ai+j

Let :: : BV(n) × BV(m) → BV(n + m) denotes the bitvector concatenation
operator defined by:

r = a :: b, |r| = |a|+ |b|

iff for all 0 ≤ i < |r|, ri =

{

bi if 0 ≤ i < |b|
ai−|b| if |b| ≤ i < |a|+ |b|

Linear machine arithmetic.

Let +bv : BV(n) × BV(n) → BV(n) denotes the bitvector addition operator
defined by:

r = a +bv b

iff for all 0 ≤ i < n, ri = (aiˆ
1bi)ˆ

1ci

where ci is recursively defined by

ci =

{

0 if i = 0
carry(ai−1, bi−1, ci−1) if i > 0

with carry(a, b, c) = (a &1 b) |1 ((aˆ1b) &1 c).

Let −bv : BV(n)×BV(n)→ BV(n) denotes the bitvector subtraction operator
defined by:

r = a−bv b

iff for all 0 ≤ i < n, ri = (aiˆ
1bi)ˆ

1bwi

where the borrow bwi is recursively defined by

bwi =

{

0 if i = 0
borrow(ai−1 , bi−1, ci−1) if i > 0

with borrow(a, b, c) = (not1 c &1 (not1 a &1 b)) |1 (c &1 (not1 a |1 (a &1 b)))).

15

Non-linear machine arithmetic.

Non-linear machine arithmetic operators (×bv, /u, /s, %u , %s) are too diffi-
cult to describe in terms of bit manipulations. We provide instead a translation
of ×bv into bitvector operators previously defined. For the four other operators,
we rely on their specifiction in terms of integer encoding.

Let×bv : BV(n)×BV(n)→ BV(n) denotes the bitvector multiplication operator
defined in terms of basic bv operations by :

r = a×bv b

r =

|b|−1
∑

i=0

(a≪ i) & exts(bi, |a|)

B.3 Arithmetic properties

We recall here some well known properties about integer concretisations of
bitvectors. In the following theorems, we let n = |a| = |b| when a and b have
the same size.

a ≤u b iff JaKu ≤ JbKu

a ≤s b iff JaKs ≤ JbKs

Ja +bv bKu = (JaKu + JbKu) mod 2n

Ja +bv bKs = (JaKs + JbKs) mod 2n

Ja−bv bKu = (JaKu − JbKu) mod 2n

Ja−bv bKs = (JaKs − JbKs) mod 2n

J−bvaKu = (2|a| − JaKu) mod 2|a|

Ja×bv bKu = (JaKu × JbKu) mod 2n

Ja×bv bKs = (JaKs × JbKs) mod 2n

16

Ja/ubKu = JaKu // JbKu

Ja/sbKs = (JaKs // JbKs) mod 2n

Ja %u bKu = JaKu mod JbKu

Ja %s bKs = (JaKs mod JbKs) mod 2n

Ja≪ kKu = (JaKu × 2k) mod 2|a|

Ja≫ kKu = JaKu // 2k

Ja≫s kKs = JaKs // 2k

Jextu(a, i)Ku = JaKu

Jexts(a, i)Ks = JaKs

Ja :: bKu = JaKu × 2|b| + JbKu

J∼ rKu = 2|a| − 1− JaKu

B.4 Encoding of signed operators

All signed operators can be encoded with unsigned operators, case-splits and
basic signed comparisons to 0. For example /s : BV(n) × BV(n)→ BV(n) can
be encoded by

r = a/sb

JaKs 6= 0

a/ub if a ≥s 0 ∧ b ≥s 0
−bv(a/u(−bvb)) if a ≥s 0 ∧ b <s 0
−bv((−bva)/ub) if a <s 0 ∧ b ≥s 0
(−bva)/u(−bvb) if a <s 0 ∧ b <s 0

The same relationship holds between %s and %u . Moreover, ≤s, exts and
≫s can also be encoded into a similar way.

17

